Electronic Supplementary Information (ESI) for Dalton Transactions.

This journal is © The Royal Society of Chemistry 2020

Supporting Information For

Acetoxy functionalized Al(III) based metal-organic framework showing selective "turn on" detection of perborate in environmental samples

Soutick Nandi,^a Helge Reinsch,^b and Shyam Biswas^{a*}

^a Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India.

^b Institut für Anorganische Chemie, Christian-Albrechts-Universität, Max-Eyth-Strasse 2, 24118 Kiel, Germany.

* Corresponding author. Tel: 91-3612583309, Fax: 91-3612582349.

E-mail address: sbiswas@iitg.ac.in.

Materials and Characterization Methods. The ligand 5-acetoxy isophthalic acid (H₂IPA-OCOCH₃) was achieved by following the previously reported procedure, which is followed for the preparation of 2,5-diacetoxy benzene-1,4-dicarboxylic acid ligand (Scheme S1).¹ The ¹H NMR, ¹³C NMR and mass spectra of this ligand are shown in Figures S1-S3 (Supporting Information). All other required chemicals were purchased from commercial sources and used without purification. Fourier transform infrared (FT-IR) spectra were recorded with a Perkin Elmer Spectrum two FT-IR spectrometer in the range of 440-4000 cm⁻¹ with KBr pellet. The below mentioned indications were employed for the characterization of the absorption bands: medium (m), weak (w), broad (br), very strong (vs), strong (s) and shoulder (sh). Ambient temperature X-Ray powder diffraction (XRPD) patterns were collected on a Bruker D2 Phaser X-ray diffractometer (30 kV, 10 mA) using Cu- $K\alpha$ ($\lambda = 1.5406$ Å) radiation. FE-SEM images were captured with a Zeiss (Zemini) scanning electron microscope. Thermogravimetric analyses (TGA) were collected under air atmosphere at a heating rate of 10 °C min⁻¹ in a temperature region of 25-800 °C by employing a Netzsch STA-409CD thermal analyzer. Fluorescence emission behavior was recorded by a HORIBA JOBIN YVON Fluoromax-4 spectrofluorometer. The excitation wavelength (λ_{ex}) was 365 nm for all the fluorescence experiments. The nitrogen sorption isotherms were performed employing a Quantachrome Autosorb iQ-MP gas sorption analyzer at -196 °C. Prior to the sorption measurement, degassing of the material was performed at 90 °C for 12 h under dynamic vacuum. A Bruker Avance III 600 spectrometer was utilized for recording ¹H NMR spectra at 400 MHz. The mass spectrum (in ESI mode) was measured with an Agilent 6520 Q-TOF high-resolution mass spectrometer.

Scheme S1. Scheme for the preparation of 5-acetoxy isophthalic acid (H_2 IPA-OCOCH₃) ligand.

Figure S1. ¹H NMR spectrum of H₂IPA-OCOCH₃ ligand.

Figure S2. ¹³C NMR spectrum of H₂IPA-OCOCH₃ ligand.

Figure S3. ESI-MS spectrum of H₂IPA-OCOCH₃ ligand.

Figure S4. FE-SEM images of 1' under different magnifications.

Figure S5. EDX spectrum of 1'.

Figure S6. EDX elemental mapping of 1'.

Table S1. Structural refinement	parameters for 1.
---------------------------------	-------------------

MOF	CAU-10-OCOCH ₃			
Crystal system	tetragonal			
Space group	I4 ₁ md			
a = b [Å]	21.3489(5)			
<i>c</i> [Å]	10.9008(3)			
$\alpha = \beta = \gamma [^{\circ}]$	90			
R _{wp} [%]	3.8			
GoF	1.9			

Figure S7. XRPD patterns of the as-synthesized (black) and activated (red) CAU-10-OCOCH₃ compound.

Figure S8. FT-IR spectra of as-synthesized 1 and thermally activated 1'.

Figure S9. TG curves of as-synthesized and activated material measured in the temperature range of 25-800 °C at a heating rate of 10 °C min⁻¹.

Figure S10. XRPD patterns of as-synthesized **1** (a), in methanol (b), in ethanol (c), in DMF (d), in acetic acid (e) and in 1 (M) HCl (i).

Figure S11. N_2 adsorption (solid black circles) and desorption (solid red circles) isotherms of activated compound measured at -196 °C.

Figure S12. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM NaF solution (500 μ L).

Figure S13. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM NaCl solution (500 μ L).

Figure S14. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM NaBr solution (500 μ L).

Figure S15. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM NaI solution (500 μ L).

Figure S16. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM NaNO₂ solution (500 μ L).

Figure S17. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM NaNO₃ solution (500 μ L).

Figure S18. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM NaN₃ solution (500 μ L).

Figure S19. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM NaOAc solution (500 μ L).

Figure S20. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM Na₂S₂O₃ solution (500 μ L).

Figure S21. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM NaHSO₃ solution (500 μ L).

Figure S22. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM NaHSO₄ solution (500 μ L).

Figure S23. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM Na₂SO₃ solution (500 μ L).

Figure S24. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM Na₂SO₄ solution (500 μ L).

Figure S25. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM NaSCN solution (500 μ L).

Figure S26. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM NaClO₄ solution (500 μ L).

Figure S27. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM O₂ · solution (500 μ L).

Figure S28. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM ¹O₂ solution (500 μ L).

Figure S29. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM H₂O₂ solution (500 μ L).

Figure S30. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM OH solution (500 μ L).

Figure S31. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM TBHP solution (500 μ L).

Figure S32. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM ^tBuO[•] solution (500 μ L).

Figure S33. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM ClO⁻ solution (500 μ L).

Figure S34. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM NO[•] solution (500 μ L).

Figure S35. Change in the fluorescence emission intensity of 1' upon addition of 10 mM NaBO₃ solution (500 μ L) in presence of 10 mM ONOO⁻ solution (500 μ L).

Figure S36. Fluorescence enhancement effect of 1' towards the introduction of different ROS and RNS (10 mM, 500 μ L) in aqueous medium. The error bars indicate the standard deviations of three measurements.

Figure S37. XRPD patterns of thermally activated (1') (a) and after treatment with superoxide (b).

Figure S38. Effect in the emission intensity of aqueous suspension of 1' by the addition of perborate solution (10 mM, 500 μ L) in the co-existence of ROS and RNS. The error bars indicate the standard deviations of three measurements.

Figure S39. Change in the fluorescence emission intensity of 1' in aqueous medium as a function of NaBO₃ concentration.

Figure S40. XRPD patterns of **1** in different forms: as-synthesized (a), thermally activated (b) and after perborate sensing (c).

Figure S41. FT-IR spectra of 1' and perborate-treated 1' (recovered after sensing).

Figure S42. ¹H NMR spectrum of (a) H_2IPA -OCOCH₃ ligand and (b) perborate-treated H_2IPA -OCOCH₃ ligand in DMSO-*d*₆. New proton signals at 7.93 ppm and 7.48 ppm signify the formation of H_2IPA -OH after treatment with perborate.

Figure S43. Relative fluorescence response of 1', H₂IPA-OCOCH₃ ligand and unfunctionalized CAU-10 towards 10 mM NaBO₃ (500 µL) in aqueous medium.

Figure S44. Recyclability test for the fluorescence turn-on response of 1' towards NaBO₃.

Sl.	Sensor	Type of	Sensing	Mode of	Detection	Response	Ref.
No.		Material	Medium	Detection	Limit	Time	
1	CAU-10-	MOF	water	turn-on	1.19 μM	5 min	this
	OCOCH ₃						work
2	AIE-	organic-	THF/HEPES	turn-on	0.10 µM	-	2
	perborate	molecule	(1/99 v/v),				
			pH = 5.0				
3	APBT	organic-	(H ₂ O/CH ₃	ratiometric	9.04 μM	90 sec	3
	and	molecule	CN=1:1 v/v,		and	and	
	ANBT		10 mM		19.03	110 sec	
			HEPES		μM		
			buffer,				
			pH=7.4				
4	compound 1	organic-	acetate	turn-on	2.2×10 ⁻⁵	5 min	4
		molecule	buffer-		M.		
			CH ₃ CN				
			(90:10, v/v),				
			pH =4.8				
5	pyridyl azo-	sol-gel	CH ₃ CN-H ₂ O	ratiometric	-	-	5
	based		(1:1, v/v)				
	naphthyl						
	acetate						
6	nanosensor	nano-	water	turn-on	0.5 µM	-	6
	1	particle					

Table S2. Comparison of the sensing performance of various fluorescent sensors of perborate.

References:

- 1. J. Liu, Y. Xu, P. B. Groszewicz, M. Brodrecht, C. Fasel, K. Hofmann, X. Tan, T. Gutmann and G. Buntkowsky, *Catal. Sci. Technol.*, 2018, **8**, 5190-5200.
- 2. R. Zhang, M. Gao, S. Bai and B. Liu, J. Mater. Chem. B, 2015, 3, 1590-1596.
- 3. A. K. Mahapatra, S. Mondal, S. K. Manna, K. Maiti, R. Maji, S. S. Ali, S. Mandal, M. R. Uddin and D. K. Maiti, *Chemistry Select*, 2016, **3**, 375-383.
- 4. M. G. Choi, S. Cha, J. E. Park, H. Lee, H. L. Jeon and S.-K. Chang, *Org. Lett.*, 2010, **12**, 1468-1471.
- 5. A. Panja and K. Ghosh, *Chemistry Select*, 2018, **3**, 9448-9453.
- 6. R. U. Gawas, S. Anand, B. K. Ghosh, P. Shivbhagwan, K. Choudhary, N. N. Ghosh, M. Banerjee and A. Chatterjee, *Chemistry Select*, 2018, **3**, 10585-10592.