Supporting Information

Pincer-type pyridylidene amide complexes with the first row transition metals nickel, cobalt and zinc

Philipp Melle, Nathalie Ségaud, and Martin Albrecht*

Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.

*email: martin.albrecht@dcb.unibe.ch

Table of contents:

1.	ORTEP structures of complexes 2b, 2c, 3b, 3c	S1
2.	Synthesis and characterization of [Ru(ortho-pyPYA ₂)(MeCN) ₃](PF ₆) ₂	S2
3.	Isomerization of [Zn(<i>ortho</i> -pyPYA ₂) ₂](PF ₆) ₂ complex 6c	S3
4.	IR spectra of all compounds	S5
5.	Cyclic voltammetry measurements	S9
6.	Deuterium incorporation in PYA pyridinium in complex 2b ⁺	S10
7.	¹ H and ¹³ C NMR spectra of Zn-complexes 6a–c	S11
8.	Crystallographic details	S14
9.	References	S17

1. ORTEP structures of complexes 2b, 2c, 3b, 3c

Figure S1. ORTEP representations of complex cations of 2b, 2c, 3b, and 3c; all ellipsoids at 50% probability level (hydrogen atoms and co-crystallized solvent molecules omitted for clarity).

	2b (M = Co)	2c (M = Co)	3b (M = Ni)	3c (M = Ni)
M–N2	2.160(2)	2.141(2)	2.136(2)	2.096(3)
M–N3	2.036(2)	2.029(2)	1.997(2)	1.983(3)
M–N4	2.137(2)	2.123(3)	2.125(2)	2.119(4)
N2-M-N4	149.6(2)	151.4(2)	152.9(1)	154.5(2)
M–E1 ^{<i>a</i>}	2.196(2)	2.190(2)	2.181(2)	2.191(3)
M-N1	2.033(2)	2.043(2)	1.992(2)	1.990(3)
M–E2 ^{<i>a</i>}	2.205(2)	2.217(2)	2.183(3)	2.158(3)
E1–M–E2 ^{<i>a</i>}	151.5(1)	149.6(2)	153.6(2)	153.7(1)

Table S1. Selected bond lengths (Å) and angles (deg) of complex cations 2b-c and 3b-c.

^{*a*} E1 = N5 and E2 = N6 for **2b** and **3b**; E = O for **2c** and **3b**.

2. Synthesis and characterization of [Ru(ortho-pyPYA₂)(MeCN)₃](PF₆)₂

Synthetic procedure: A solution of the *ortho*-pyPYA₂ ligand (260 mg, 0.4 mmol), $[Ru(\eta^6-p-cymene)Cl_2]_2$ (120 mg, 0.2 mmol) and Na₂CO₃ (130 mg, 1.2 mmol) in MeCN (100 mL) was stirred at reflux for 16 h. The reaction mixture changed colour from orange to deep red. After cooling to r.t., the reaction mixture was filtered over Celite and the red solution was concentrated under reduced pressure to 5 mL. Addition of Et₂O (100 mL) gave a dark red precipitate which was collected by filtration and redisolved in MeCN (10 mL), filtered over Celite and precipitated again by addition of Et₂O (100 mL). The crude product was purified chromatographically (MeCN, AlOX) and drying under reduced pressure yielded complex [Ru(*ortho*-pyPYA₂)(MeCN)₃](PF₆)₂ as an orange-red powder (150 mg, 45% yield). ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.78 (d, *J* = 6.0 Hz, 2H, H_{PYA}), 8.41–8.31 (m, 2H, H_{PYA}), 8.28–8.23 (m, 3H, H_{pyr}), 7.72 (t, *J* = 7.1 Hz, 2H, H_{PYA}), 7.57 (t, *J* = 7.1 Hz, 2H, H_{PYA}), 3.96 (s, 6H, N-CH₃), 2.44 (s, 3H, NCCH₃), 2.40 (s, 6H, NCCH₃). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 169.5 (CO), 159.6 (C_{PYA}), 155.1 (C_{pyr}), 144.7 (CH_{PYA}), 144.5 (CH_{PYA}), 137.2 (CH_{pyr}), 126.9 (CH_{pyr}), 126.2 (CH_{PYA}), 121.2

(CH_{PYA}), 43.6 (NCH₃), 3.5 (NCCH₃), 3.1 (NCCH₃). HR ESI-MS: m/z calculated for $C_{23}H_{23}O_2N_7F_6PRu [M-PF_6]^+ = 717.0870$; found: 717.09. Elemental Analysis: anal. calculated for $C_{25}H_{26}F_{12}N_8O_2P_2Ru$: C: 34.85; H: 3.04; N: 13.01. Found: C: 34.48; H: 2.56; N: 12.92.

Figure S2. ORTEP representation of $[Ru(\kappa^3-N,N,N-ortho-pyPYA_2)(MeCN)_3]$; all ellipsoids at 50% probability level (hydrogen atoms and co-crystallized solvent molecules omitted).

3. Isomerization of [Zn(ortho-pyPYA₂)₂](PF₆)₂ complex 6c

Figure S3. a) Aromatic area between 9 and 6.5 ppm of temperature-dependent ¹H NMR spectra of $[Zn(ortho-pyPYA_2)_2](PF_6)_2$ 6c (400 MHz, CD₂Cl₂ solution) recorded from +20 °C to -80 °C; b) Same spectral range with larger intensity to identify minor species.

Figure S4. a) Aromatic area between 9 and 6.5 ppm of temperature-dependent ¹H NMR spectra of $[Zn(ortho-pyPYA_2)_2](PF_6)_2$ **6c** (400 MHz) in CD₃CN solution, recorded from +30 °C to -40 °C, indicating essentially identical dynamic processes as observed in CD₂Cl₂ (see Fig. S3). However, decoalescence temperature is not reached due to the higher melting point of CD₃CN.

Table S2. Chemical shifts of pyridyl and PYA protons for the two different coordination isomers of $[Zn(ortho-pyPYA_2)_2](PF_6)_2$ complex **6c** (-80°C, CD₂Cl₂, 400 MHz), difference of the resonance frequencies δv , coalescence temperature T_c and energy barrier ΔG^{\ddagger} for the isomerization process.

δ _H (-80 °C) [ppm]								
entry	proton	$(\kappa^3-N,N,N)_2$	$(\kappa^{3}-N,N,N)/(\kappa^{3}-O,N,O)$		δv [Hz]	T_c [K]	ΔG^{\ddagger} [kcal/mol]	
			kN	кО	Ø	-		
1^{a}	$\mathrm{H}^{1}_{\mathrm{pyr}}$	8.41	-	-	-	-	233	-
2	${\rm H}^2_{\rm pyr}$	8.77	8.63	8.56	8.60	65	233	11.2
3	$H^3{}_{PYA} \\$	7.98	8.09	8.17	8.13	60	233	11.2
4	$H^4{}_{PYA} \\$	7.80	7.77	7.88	7.83	50	233	11.3
5	$\mathrm{H}^{5}_{\mathrm{PYA}}$	7.00	7.06	7.22	7.14	55	233	11.3
6	$\mathrm{H}^{6}_{\mathrm{PYA}}$	8.28	8.03	8.03	8.03	100	253	11.9
7 (aver	age)							11.4 ± 0.3

^aassignment of H¹_{pyr} protons in minor species impossible due to overlap of resonances.

4. IR spectra of all compounds.

Figure S5. IR spectra of *meta*-pyPYA₂ pincer series.

Figure S6. IR spectra of *para- meta-* and *ortho-*pyPYA₂ ligands **1a–c**.

Figure S7. IR spectra of [Co(pyPYA₂)₂](PF₆)₂ complexes 2a-c.

Figure S8. IR spectra of [Ni(pyPYA₂)₂](PF₆)₂ complexes 3a-c.

Figure S9. IR spectra of [Ni(pyPYA₂)₂](PF₆)₂ complexes 6a-c.

Figure S10. IR spectra of [Co(pyPYA₂)Cl₂] complexes 4a–c.

Figure S11. IR spectra of [Ni(pyPYA₂)Cl₂] complexes 5a-c.

5. Cyclic voltammetry measurements

Figure S12. Linear dependence of redox peak current on the square root of the scan rate: a) cobalt complex series (R > 0.99); b) nickel complex series (R > 0.98); $[M(terpy)_2](PF_6)_2$ green curves; $[M(para-pyPYA_2)_2](PF_6)_2$ black curves; $[M(meta-pyPYA_2)_2](PF_6)_2$ blue curves; $[M(ortho-pyPYA_2)_2](PF_6)_2$ red curves.

Figure S13. Cyclic voltammetry measurements of pyPYA₂ ligands **1a–c** in MeCN: a) negative potential range: -1.7 to 0 V; b) positive potential range: 0 to +2 V. Conditions: 10 mL solvent, 1 mM sample and 100 mM (*n*Bu₄N)PF₆ as supporting electrolyte at 100 mVs⁻¹ scan rate (potentials vs. SSCE using the Fc⁺/Fc couple as standard; E_{1/2} = +0.4319).

Figure S14. Cyclic voltammetry measurements of complexes **6a–c** in MeCN; **6a** $[Zn(para-pyPYA_2)_2](PF_6)_2$ in black; **6b** $[Zn(meta-pyPYA_2)_2](PF_6)_2$ in blue; **6c** $[Zn(ortho-pyPYA_2)_2](PF_6)_2$ in red. Conditions: 10 mL solvent, 1 mM sample and 100 mM (nBu_4N)PF₆ as supporting electrolyte at 100 mVs⁻¹ scan rate (potentials vs. SSCE using the Fc⁺/Fc couple as standard; $E_{1/2} = +0.4319$).

6. Deuterium incorporation in PYA pyridinium in complex 2b⁺

	2b	2b ⁺	$2b^+ - d_8$
	[Co(meta-pyPYA ₂) ₂](PF ₆) ₂	[Co(meta-pyPYA ₂) ₂](PF ₆) ₃	[Co(meta-pyPYA ₂ -d ₄) ₂](PF ₆) ₃
$[M-PF_6]^+$	898.1740	1043.1393	1051.1883
$[M-2PF_6]^{2+}$	376.6044	449.0865	453.1108
$[M-3PF_6]^{3+}$	not detected	251.0696	253.7526

Table S3. Cationic complex species observed in HR ESI-MS analysis for 2b, $2b^+$ and $2b^+-d_8$.

¹H NMR analysis of complexes 2b⁺ and 2b⁺-d₈

Figure S15. ¹H NMR spectra of complex $2b^+$ (top) and $2b^+-d_8$ (middle) in MeCN- d_3 . Showing deuterium incorporation in H² and H⁶ position of the PYA pyridinium. Assignment of PYA pyridinium protons with help of 1D NOESY experiment (bottom) with selective irradiation of N–CH₃ protons.

7. ¹H and ¹³C NMR spectra of Zn-complexes 6a-c

Figure S16. ¹H NMR spectrum of complex 6a (300 MHz, CD₃CN, 298 K).

Figure S17. ¹³C NMR spectrum of complex 6a (75 MHz, CD₃CN, 298 K).

Figure S18. ¹H NMR spectrum of complex 6b (300 MHz, CD₃CN, 298 K).

Figure S19. ¹³C NMR spectrum of complex 6b (75 MHz, CD₃CN, 298 K).

Figure S20. ¹H NMR spectrum of complex 6c (300 MHz, CD₃CN, 298 K).

Figure S21. ¹³C NMR spectrum of complex 6c (75 MHz, CD₃CN, 298 K).

8. Crystallographic details

complex	2b	2b ⁺	3b
CCDC No	2015875	2015876	2015878
Empirical formula	C44H43C0F12N13O4P2	C38H38CoF18N10O6P3	C44H43F12N13NiO4P2
Formula weight	1166.78	1224.62	1166.56
Temperature/K	123(2)	173.00(10)	123(2)
Wavelength /Å	0.71073 (MoKa)	0.71073 (MoKa)	0.71073 (ΜοΚα)
Crystal system	triclinic	monoclinic	triclinic
Space group	<i>P</i> -1	$P2_{1}/c$	<i>P</i> -1
a/Å	12.5415(4)	13.05781(13)	12.5126(3)
b/Å	13.9618(4)	14.7905(2)	13.9713(4)
c/Å	15.2652(4)	24.4665(3)	15.2848(4)
α/°	67.212(3)	90	67.053(2)
β/°	82.957(2)	99.3165(10)	82.782(2)
γ/°	83.194(2)	90	82.793(2)
Volume /Å ³	2438.35(13)	4662.91(10)	2432.53(12)
Z	2	4	2
Density (calculated) /Mg/m ³	1.589	1.744	1.593
Absorption coefficient /mm ⁻¹	0.522	0.602	0.569
F(000)	1190	2472	1192
Crystal size /mm ³	0.332 x 0.082 x 0.043	$0.3\times0.05\times0.05$	0.272 x 0.068 x 0.046
Theta range for data collection	1.587 to 28.22°	3.16 to 54.098°	1.588 to 28.176°
Index ranges	$-16 \le h \le 16$ $-18 \le k \le 18$ $-19 \le l \le 19$	$-16 \le h \le 16$ $-18 \le k \le 18$ $-23 \le l \le 31$	$\begin{array}{l} -16 \leq h \leq 16 \\ -18 \leq k \leq 17 \\ -20 \leq l \leq 20 \end{array}$
Reflections collected	44161	39769	48509
Independent reflections	$11003 [R_{int} = 0.0442]$	10068 [$R_{int} = 0.0427$, $R_{sigma} = 0.0450$]	11031 [$R_{int} = 0.0503$]
Data / restraints / parameters	11003 / 63 / 692	10068 / 3 / 699	11031 / 0 / 692
Goodness-of-fit on F ²	1.026	1.102	1.027
Final R indices [I>2sigma(I)]	$\begin{array}{l} R_1 = 0.0497 \\ wR_2 = 0.1136 \end{array}$	$\begin{array}{l} R_1 = 0.0584 \\ wR_2 = 0.1544 \end{array}$	$\begin{array}{l} R_1 = 0.0509 \\ wR_2 = 0.1118 \end{array}$
R indices (all data)	$\begin{array}{l} R_1 = 0.067 \\ wR_2 = 0.1237 \end{array}$	$\begin{array}{l} R_1 = 0.0816 \\ wR_2 = 0.1661 \end{array}$	$\begin{array}{l} R_1 = 0.0731 \\ wR_2 = 0.1239 \end{array}$
Largest diff. peak and hole /e.Å ⁻³	2.21 and -0.72	1.28 and -0.80	1.783 and -0.652

Table S4. Crystal data and structure refinement for complexes 2b, $2b^+$ and 3b.

complex	2c	3c	[Ru(<i>ortho</i> -pyPYA ₂)(MeCN) ₃] (PF ₆) ₂
CCDC No	2015877	2015879	2015883
Empirical formula	$C_{38}H_{34}CoF_{12}N_{10}O_4P_2\\$	$C_{38}H_{34}F_{12}N_{10}NiO_4P_2 \\$	$C_{29}H_{32}F_{12}N_{10}O_2P_2Ru$
Formula weight	1043.62	1043.40	943.65
Temperature/K	173.01(10)	173.00(10)	123(2)
Wavelength /Å	0.71073 (ΜοΚα)	0.71073 (ΜοΚα)	0.71073 (ΜοΚα)
Crystal system	monoclinic	monoclinic	triclinic
Space group	$P2_1/n$	$P2_1/n$	P -1
a/Å	11.94056(17)	11.9760(2)	12.4959(3)
b/Å	21.9377(4)	21.8343(3)	12.8519(4)
c/Å	16.2425(2)	16.1933(2)	13.2986(3)
α/°	90	90	77.984(2)
β/°	93.1440(13)	92.2670(10)	77.089(2)
γ/°	90	90	64.978(2)
Volume /Å ³	4248.28(12)	4231.03(11)	1870.64(9)
Z	4	4	2
Density (calculated) /Mg/m ³	1.632	1.638	1.675
Absorption coefficient /mm ⁻¹	0.587	0.642	0.609
F(000)	2116.0	2120.0	948
Crystal size /mm ³	$0.462\times 0.348\times 0.163$	$0.15\times0.05\times0.05$	0.253 x 0.197 x 0.059
Theta range for data collection	3.122 to 56.388°	3.132 to 56.302	1.584 to 28.265
Index ranges	$-15 \le h \le 15$ $-29 \le k \le 29$ $-21 \le 1 \le 20$	$-14 \le h \le 15$ $-28 \le k \le 27$ $-21 \le 1 \le 20$	-16<=h<=16 -16<=k<=16 -17<=l<=17
Reflections collected	73492	36391	47400
Independent reflections	9855 [$R_{int} = 0.0471$, $R_{sigma} = 0.0263$]	9541 [$R_{int} = 0.0777$, $R_{sigma} = 0.0843$]	$8603 [R_{int} = 0.0321]$
Data / restraints / parameters	9855 / 618 / 727	9541 / 0 / 608	8603 / 738 / 640
Goodness-of-fit on F ²	1.117	1.021	1.074
Final R indices [I>2sigma(I)]	$\begin{array}{l} R_1 = 0.0585 \\ wR_2 = 0.1509 \end{array}$	$\begin{array}{l} R_1 = 0.0651 \\ wR_2 = 0.1344 \end{array}$	$\begin{array}{l} R_1 = 0.0319 \\ wR_2 = 0.0796 \end{array}$
R indices (all data)	$\begin{array}{l} R_1 = 0.0702 \\ wR_2 = 0.1581 \end{array}$	$\begin{array}{l} R_1 = 0.1133 \\ wR_2 = 0.1578 \end{array}$	$\begin{array}{l} R_1 = 0.0361 \\ wR_2 = 0.0824 \end{array}$
Largest diff. peak and hole /e.Å ⁻³	1.17 and -0.74	0.65 and -0.60	0.816 and -0.466

Table S5. Crystal data and structure refinement for complexes 2c and 3c.

complex	4a	4b	4c
CCDC No	2015880	2015881	2015882
Empirical formula	C19H19Cl2CoN5O3	C19H19Cl2CoN5O3	$C_{19}H_{17}Cl_2CoN_5O_2$
Formula weight	633.46	495.22	477.20
Temperature/K	173.01(10)	123(2)	173.00(10)
Wavelength /Å	1.54184 (CuKα)	0.71073 (MoKα)	0.71073 (MoKα)
Crystal system	monoclinic	monoclinic	triclinic
Space group	<i>I</i> 2/ <i>a</i>	C2/c	P-1
a/Å	20.84210(10)	17.4295(4)	7.9978(2)
b/Å	13.98040(10)	14.5425(3)	9.2730(2)
c/Å	19.00770(10)	7.9196(2)	14.4181(4)
α/°	90	90	102.016(2)
β/°	95.0990(10)	100.252(2)	99.280(2)
$\gamma/^{\circ}$	90	90	104.188(2)
Volume /Å ³	5516.56(6)	1975.32(8)	988.23(4)
Z	8	4	2
Density (calculated) /Mg/m ³	1.525	1.665	1.604
Absorption coefficient /mm ⁻¹	8.409	1.173	1.165
F(000)	2616.0	1012	486.0
Crystal size /mm ³	$0.2\times0.05\times0.05$	0.22 x 0.17 x 0.04	$0.15 \times 0.1 \times 0.05$
Theta range for data collection	7.624 to 154.284	1.836 to 28.138°	4.69 to 56.206°
Index ranges	$\begin{array}{l} -26 \leq h \leq 26 \\ -16 \leq k \leq 17 \\ -17 \leq l \leq 23 \end{array}$	$\begin{array}{l} -22 \leq h \leq 22 \\ -19 \leq k \leq 18 \\ -10 \leq l \leq 10 \end{array}$	$\begin{array}{l} -10 \leq h \leq 10 \\ -12 \leq k \leq 12 \\ -18 \leq l \leq 18 \end{array}$
Reflections collected	27154	10573	16903
Independent reflections	$\begin{array}{l} 5678 \; [R_{int} = 0.0431, \\ R_{sigma} = 0.0310] \end{array}$	2251 [$R_{int} = 0.0258$]	$\begin{array}{l} 4480 \; [R_{int} = 0.0382, \\ R_{sigma} = 0.0376] \end{array}$
Data / restraints / parameters	5678 / 0 / 340	2251 / 1 / 143	4480 / 0 / 264
Goodness-of-fit on F^2	1.043	1.038	1.033
Final R indices [I>2sigma(I)]	$R_1 = 0.0339$	$R_1 = 0.0260$	$R_1 = 0.0333$
R indices (all data)	$wR_2 = 0.0833$ $R_1 = 0.0373$ $wR_2 = 0.0849$	$wR_2 = 0.0653$ $R_1 = 0.0308$ $wR_2 = 0.0679$	$wR_2 = 0.0707$ R ₁ = 0.0486 wR ₂ = 0.0776
Largest diff. peak and hole /e.Å $^{-3}$	0.30/-0.39	0.405 and -0.247	0.32 and -0.29

Table S6. Crystal data and structure refinement for complexes 4a–c.

9. References

- S1 H. Ackermann, J. Prue and G. Schwarzenbach, *Nature*, 1949, 723–724.
- S2 C. M. Harris, T. N. Lockyer, R. L. Martin, R. L. Patil, E. Sinn and I. M. Stewart, *Aust. J. Chem.* **1969**, *22*, 2105–2126.