Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information (ESI)

Fluorescent perylenylpyridine complexes: an experimental and theoretical study[†]

J. Emilio Expósito,a Gabriel Aullón, Manuel Bardají, Jesús A. Miguel,*a and Pablo Espinet*a

- ^a IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid (Spain).
- ^b Departament de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, (Spain).

Table of contents:

Fig. S1-S13. NMR spectra of compounds
Table S1. Reaction conditions (solvent, temperature, time) to obtain dinuclear Pd(II) complexes 3 and 4 . Percentage obtained by synthesizing the mononuclear complexes (estimated by ¹ H NMR spectrum)9
Table S2. Crystal and structure refinement data for 2, 4, 5, 8, 9, and 1010
Fig. S14, X-ray packing view of dinuclear Pd(II) compound 4 showing intermolecular π -stacking of the perylene groups. The plane-to-plane stacking of perylene rings is 3.538 Å11
Fig. S15. X-ray packing view of dinuclear Pd(II) compound 5 showing intermolecular π -stacking of the perylene groups. The plane-to-plane stacking of perylene rings is 3.373 Å11
Fig. S16. X-ray packing view of Pt(IV) compound 10 showing intermolecular π -stacking of the perylene groups. The plane-to-plane stacking of perylene rings is 3.523 Å.
Fig. S17. Absorption spectra of complexes 5 and 7 in different solvents (green: CHCl ₃ , blue: THF, red: CH ₃ CN, black: toluene) at room temperature11
Fig. S18. Absorption spectra of complexes 9 and 10 in different solvents (green: CHCl ₃ , blue: THF, red: CH ₃ CN, black: toluene) at room temperature12
Table S3. Relative free energies (in kcal/mol) between 5-membered and 6-membered isomers of [M(PerPy)(acac)] complexes (M = Pd, Pt). The 5-membered ones are always the most stable in both Pd and Pt systems
Table S4. Calculated absorption parameters (wavelengths in nm and their intensities) for HPerPy compounds in gas phase and chloroform solution. For each entry, main contributions of the orbitals for the transition and their coefficients are shown

Table S5. Molecular orbitals for the ligand HPerPy and its complexes. Percentage compositions for each one entry from Natural Populations Analysis are shown.	20
Fig. S19. Calculated electronic spectra in chloroform for HPerPy and its derivatives	36
Figure S20. Normalized emission spectra of complexes 5 , 7 , 9–10 , in 2- methyltetrahydrofuran at 298 K (red line) and 77 K (blue line)	36
Fig. S21 Normalized emission spectra of platinum complexes 9 and 10 in different solvents (green: CHCl ₃ , blue: THF, red: CH ₃ CN, black: toluene) at room temperature.	
Table S6. Emission and excitation in the solid state (KBr dispersion) at 298 K.	
Fig. S22. Normalized emission spectra recorded in KBr dispersions at room temperature of HPerPy (1) and its Ag and Pt complexes	37
Fig. S23. Normalized emission spectra recorded in KBr dispersions at room temperature of HPerPy (1) and its Pd complexes.	37
Fig. S24. Fluorescence decays in dichloromethane, at room temperature	38-40

Fig. S1 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 1.

Fig. S2 COSY NMR spectrum of HPerPy 1.

Fig. S3 ¹H NMR (400 MHz, CDCl₃) spectrum of compound **2**.

Fig. S4 ${}^{31}P{}^{1}H$ NMR (122 MHz, CDCl₃) of spectrum of compound 2.

Fig. S5 ¹H NMR (400 MHz, CDCl₃) spectrum of compound **3**.

Fig. S6 ¹H NMR (400 MHz, CDCl₃) spectrum of compound **4**: mixture of 5+5 (66%) and 5+6 (34%) isomers.

- 5 -

Fig. S7 ¹H NMR (400 MHz, CDCl₃) spectrum of compound **5**.

- 6 -

Fig. S9 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 7.

Fig. S10 $\,^1\text{H}$ NMR (400 MHz, CDCl₃) spectrum of compound 8.

Fig. S11 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 9.

Fig. S12 NOESY NMR spectrum of compound 9.

Fig. S13 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 10.

Table S1. Reaction conditions (solvent, temperature, time) to obtain dinuclear Pd(II) complexes **3** and **4**. Percentage obtained by synthesizing the mononuclear complexes (estimated by ¹H NMR spectrum).

Solvent	Temperature/ºC	Time/h	5-membered ring (%)	6-membered ring (%)
CH₃COOH	40	24	38	62
CH₃COOH	70	24	82	18
CH₃COOH	70	6	88	12
Toluene	30	16	30	70
Toluene	60	2	40	60
Toluene	80	2	37	63
Toluene	100	4	32	68
THF	40	24	30	70
CH_2CI_2	25	5	40	60
Methanol	25	5	31	69
Methanol	25	15	21	79
Methanol	25	20	24	76

Table S2. Crystal and structure refinement data for 2, 4, 5, 8, 9, and 10.

Compound	2	4	5
Empirical formula	C44H32AgCINO4P	$C_{56}H_{38}N_2O_4Pd_2$	$C_{31}H_{23}NO_2Pd$
Formula weight	812.99	1015.68	547.90
Temperature/K	293	293(2)	293(2)
Crystal system	monoclinic	monoclinic	monoclinic
Space group	P2 ₁ /n	C2/c	P2 ₁ /n
a/Å	18.675(2)	18.6782(8)	7.9917(2)
b/Å	10.7526(12)	17.1192(5)	15.8643(5)
c/Å	19.190(3)	16.1066(7)	18.4722(4)
α/°	90	90	90
β/°	109.521(14)	116.206(6)	100.131(2)
γ/°	90	90	90
Volume/ų	3632.0(8)	4620.8(4)	2305.45(11)
Z	4	4	4
ρ _{calc} g/cm ³	1.487	1.460	1.579
µ/mm⁻¹	0.718	0.827	0.835
F(000)	1656.0	2048.0	1112.0
Crystal size/mm ³	0.2692 × 0.1184 × 0.0667	0.4132 × 0.3198 × 0.1502	$0.22 \times 0.14 \times 0.05$
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.406 to 57.778	4.758 to 58.922	4.48 to 59.064
	-23 ≤ h ≤ 25, -13 ≤ k ≤ 14, -	-25 ≤ h ≤ 25, -23 ≤ k ≤ 23, -	-10 ≤ h ≤ 9, -21 ≤ k ≤ 20, -
Index ranges	19≤ ≤25	21≤ ≤21	24 ≤ l ≤ 24
Reflections collected	15923	12093	11815
	7991 [R _{int} = 0.0320, R _{sigma} =	5402 [R _{int} = 0.0254, R _{sigma} =	5490 [R _{int} = 0.0447, R _{sigma} =
Independent reflections	0.0548]	0.0402]	0.0841]
Data/restraints/parameters	7991/0/498	5402/0/291	5490/0/319
Goodness-of-fit on F ²	1.018	1.011	0.993
Final R indexes [I>=2σ (I)]	R ₁ = 0.0488, wR ₂ = 0.0961	$R_1 = 0.0329$, w $R_2 = 0.0741$	R ₁ = 0.0488, wR ₂ = 0.0710
Final R indexes [all data]	R ₁ = 0.0960, wR ₂ = 0.1146	$R_1 = 0.0506$, $wR_2 = 0.0841$	R ₁ = 0.1084, wR ₂ = 0.0888
Largest diff. peak/hole / e Å-3	0.47/-0.33	0.52/-0.44	0.53/-0.52

Compound	8	9	10
Empirical formula	C ₂₈ H ₁₉ NOS ₂ Pd	C ₃₁ H ₂₃ NO ₂ Pt	C ₃₂ H ₂₆ INO ₂ Pt
Formula weight	555.96	636.59	778.53
Temperature/K	293(2)	293	293
Crystal system	orthorhombic	orthorhombic	triclinic
Space group	Pna2 ₁	Pbca	P-1
a/Å	19.8850(4)	7.8450(2)	7.7315(5)
b/Å	15.3326(3)	19.7471(6)	12.3683(5)
c/Å	7.25084(18)	29.7999(10)	13.9478(4)
α/°	90	90	80.964(3)
β/°	90	90	84.500(4)
γ/°	90	90	81.117(4)
Volume/ų	2210.70(8)	4616.5(2)	1297.91(10)
Z	4	8	2
ρ _{calc} g/cm ³	1.670	1.832	1.992
µ/mm⁻¹	1.051	6.109	6.626
F(000)	1120.0	2480.0	744.0
Crystal size/mm ³	0.30 × 0.25 × 0.19	0.37 × 0.12 × 0.04	0.30 × 0.25× 0.06
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.882 to 58.684	4.126 to 59.096	4.154 to 59.252
	-18 ≤ h ≤ 25, -20 ≤ k ≤ 14, -9 ≤	-8 ≤ h ≤ 10, -17 ≤ k ≤ 26, -40 ≤ l	-9 ≤ h ≤ 8, -14 ≤ k ≤ 16, -14 ≤ l s
Index ranges	≤6	≤ 40	19
Reflections collected	8215	17667	10089
Independent reflections	3776 [R _{int} = 0.0294, R _{sigma} = 0.0379]	5650 [R _{int} = 0.0291, R _{sigma} = 0.0343]	6049 [R _{int} = 0.0289, R _{sigma} = 0.0567]
Data/restraints/parameters	3776/1/301	5650/0/319	6049/0/338
Goodness-of-fit on F ²	1.068	1.069	1.036
Final R indexes [I>=2σ (I)]	R ₁ = 0.0308, wR ₂ = 0.0608	R ₁ = 0.0325, wR ₂ = 0.0530	R ₁ = 0.0356, wR ₂ = 0.0673
Final R indexes [all data]	R ₁ = 0.0416, wR ₂ = 0.0675	R ₁ = 0.0574, wR ₂ = 0.0596	R ₁ = 0.0482, wR ₂ = 0.0751
Largest diff. peak/hole / e Å-3	0.27/-0.60	0.47/-0.74	0.58/-1.22

Fig. S14 X-ray packing view of dinuclear Pd(II) compound **4** showing intermolecular π -stacking of the perylene groups. The plane-to-plane stacking of perylene rings is 3.358 Å.

Fig. S15 X-ray packing view of compound **5** showing partial intermolecular π -stacking of the perylene groups. The plane-to-plane stacking of perylene rings is 3.373 Å.

Fig. S16 X-ray packing view of Pt(IV) compound **10** showing intermolecular π -stacking of the perylene groups. The plane-to-plane stacking of perylene rings is 3.523 Å.

Fig. S17. Absorption spectra of complexes **5** and **7** in different solvents (green: $CHCl_3$, blue: THF, red: CH_3CN , black: toluene) at room temperature.

Fig. S18 Absorption spectra of complexes **9** and **10** in different solvents (green: $CHCl_3$, blue: THF, red: CH_3CN , black: toluene) at room temperature.

Table S3. Relative free energies (in kcal/mol) between 5-membered and 6-membered isomers of [M(PerPy)(acac)] complexes (M = Pd, Pt). The 5-membered ones are always the most stable in both Pd and Pt systems.

Solvent	?	Pd	Pt
Gas phase	-	4.35	5.89
C_6H_{14}	1.88	4.16	5.72
PhMe	2.37	4.10	5.66
CS ₂	2.61	4.08	5.63
Et ₂ O	4.24	3.96	5.52
CHCl₃	4.71	3.94	5.50
THF	7.43	3.86	5.43
CH_2CI_2	8.93	3.83	5.40
Me ₂ CO	20.49	3.74	5.32
MeOH	32.61	3.71	5.29

Table S4. Calculated absorption parameters (wavelengths in nm and their intensities) for HPerPy compounds in gas phase and chloroform solution. For each entry, main contributions of the orbitals for the transition and their coefficients are shown.

(*a*) HPerPy **1**

Gas phase		CHCl ₃	
λ (f)	Assignment	λ (ƒ)	Assignment
450 (0.55)	Perylene: HOMO → LUMO [0.70]	465 (0.69)	Perylene: HOMO → LUMO [0.71]
259 (0.22)	Perylene: HOMO $\rightarrow \pi^*(\text{Per}) [0.44]$ $\pi(\text{Py}) \rightarrow \text{LUMO} [0.34]$ $\pi(\text{Per}) \rightarrow \text{LUMO} [0.32]$	261 (0.37)	Perylene: HOMO $\rightarrow \pi^*(\text{Per}) [0.48]$ $\pi(\text{Per}) \rightarrow \text{LUMO} [0.34]$ $\pi(\text{Py}) \rightarrow \text{LUMO} [0.31]$
235 (0.16)	ILCT (Per \rightarrow Py): π (Per) $\rightarrow \pi^*$ (Py) [0.48] π (Per,Py) $\rightarrow \pi^*$ (Py) [0.40]	235 (0.17)	ILCT (Per \rightarrow Py): π (Per) $\rightarrow \pi^*$ (Py) [0.45] π (Per,Py) $\rightarrow \pi^*$ (Py) [0.40]
		•••	

Gas phase		CHCl3	
λ (ƒ)	Assignment	λ (ƒ)	Assignment
533 (0.44)	Perylene: HOMO \rightarrow LUMO [0.69]	534 (0.64)	Perylene: HOMO \rightarrow LUMO [0.70]
402 (0.03)	ILCT (Per \rightarrow Py): HOMO $\rightarrow \pi^*$ (Py) [0.61] π (acac) \rightarrow LUMO [0.21]	383 (0.04)	ILCT (Per \rightarrow Py): HOMO $\rightarrow \pi^*$ (Py) [0.58] HOMO $\rightarrow \pi^*$ (acac) [0.21]
397 (0.04)	MLCT (Pd \rightarrow Per): $z_2 \rightarrow$ LUMO [0.56] $\pi(acac) \rightarrow$ LUMO [0.40]	388 (0.04)	MLCT (Pd \rightarrow Per): $z_2 \rightarrow$ LUMO [0.58] $\pi(acac) \rightarrow$ LUMO [0.37]
357 (0.04)	Perylene: π (Per) \rightarrow LUMO [0.47] HOMO $\rightarrow \pi^*(acac)$ [0.33] HOMO $\rightarrow \pi^*(acac),\pi d$ [0.26]	351 (0.04)	Perylene: $\pi(\text{Per}) \rightarrow \text{LUMO [0.53]}$ HOMO $\rightarrow \pi^*(\text{Py) [0.25]}$ HOMO $\rightarrow \pi^*(\text{acac})$ [0.21]
354 (0.04)	LLCT (Per \rightarrow Py,acac): HOMO $\rightarrow \pi^*(acac),\pi d$ [0.40] π (Per) \rightarrow LUMO [0.40] HOMO $\rightarrow \pi^*(acac)$ [0.32] HOMO $\rightarrow \pi^*(Py)$ [0.21]	355 (0.02)	LLCT (Per \rightarrow Py,acac): HOMO $\rightarrow \pi^*(Py)$ [0.54] HOMO $\rightarrow \pi^*(acac)$ [0.24] $\pi(Per) \rightarrow$ LUMO [0.23]
339 (0.07)	Perylene + MLCT (Pd \rightarrow acac): HOMO $\rightarrow \pi^*$ (Per) [0.33] $z_2 \rightarrow \pi^*$ (acac), πd [0.31] $z_2 \rightarrow \pi^*$ (acac) [0.26] π (Per) \rightarrow LUMO [0.24] π (Per) \rightarrow LUMO [0.23]	337 (0.08)	Perylene + MLCT (Pd \rightarrow acac): HOMO $\rightarrow \pi^*$ (Per) [0.35] π^* (Per) \rightarrow LUMO [0.29] $z_2 \rightarrow \pi^*$ (acac) [0.24] π (Per) \rightarrow LUMO [0.24] $z_2 \rightarrow \pi^*$ (acac), π d [0.24]
304 (0.05)	LLCT (acac \rightarrow Py): $\pi(acac) \rightarrow \pi^*(Py)$ [0.42] $\pi d \rightarrow LUMO$ [0.24] $\pi(Per) \rightarrow LUMO$ [0.20]	296 (0.02)	LLCT (acac \rightarrow Py): $\pi(acac) \rightarrow \rightarrow \pi^*(Py)$ [0.55] HOMO $\rightarrow \pi^*(Per)$ [0.21]
277 (0.02)	acac: $\pi(acac) \rightarrow \pi^*(acac) \ [0.43]$ $\pi(acac) \rightarrow \pi^*(acac), \pi d \ [0.38]$	279 (0.08)	acac: $\pi(acac) \rightarrow \pi^*(acac) [0.44]$ $\pi(acac) \rightarrow \pi^*(acac), \pi d [0.41]$
275 (0.07)	Perylene: HOMO $\rightarrow \pi^*(\text{Per})$ [0.44] HOMO $\rightarrow \pi^*(\text{Per})$ [0.31] $\pi(\text{Per}) \rightarrow \text{LUMO}$ [0.24]	274 (0.15)	Perylene: HOMO $\rightarrow \pi^*(\text{Per}) [0.47]$ $\pi(\text{Per}) \rightarrow \text{LUMO} [0.28]$ $\pi(\text{acac}) \rightarrow \pi^*(\text{Py}) [0.22]$
273 (0.06)	Perylene + ILCT (Per \rightarrow Py): HOMO $\rightarrow \pi^*$ (Per) [0.35] π (Per) $\rightarrow \pi^*$ (Py) [0.33] π d, π (Per) \rightarrow LUMO [0.26]	275 (0.06)	LLCT (acac \rightarrow Py): $\pi(acac) \rightarrow \pi^*(Py)$ [0.45] $\pi(acac) \rightarrow \pi^*(acac), \pi d$ [0.27] $z_2 \rightarrow \pi^*(acac), \pi d$ [0.22]

Gas phase		CHCl3	
λ (ƒ)	Assignment	λ (ƒ)	Assignment
500 (0.50)	Perylene: HOMO \rightarrow LUMO [0.70]	514 (0.66)	Perylene: HOMO \rightarrow LUMO [0.70]
408 (0.06)	LLCT (acac \rightarrow Per): $\pi(acac) \rightarrow$ LUMO [0.68]	403 (0.07)	LLCT (acac \rightarrow Per): $\pi(acac) \rightarrow$ LUMO [0.68]
322 (0.06)	Perylene: $\pi(\text{Per}) \rightarrow \text{LUMO} [0.46]$ $\pi(\text{Per}) \rightarrow \text{LUMO} [0.30]$ $\pi(\text{Per}) \rightarrow \text{LUMO} [0.20]$	321 (0.08)	Perylene: $\pi(\text{Per}) \rightarrow \text{LUMO [0.47]}$ $\pi(\text{Per}) \rightarrow \text{LUMO [0.30]}$ $\text{HOMO} \rightarrow \pi^*(\text{Py) [0.20]}$
301 (0.03)	MLCT + ILCT (Pd,Per,acac \rightarrow Py): $\pi d \rightarrow$ LUMO [0.46] $\pi d,\pi(Per) \rightarrow \pi^*(Py,Per)$ [0.25] $z_2 \not x_{2}-y_2$ [0.22]	303 (0.04)	MLCT + ILCT (Pd,Per,acac \rightarrow Py): $\pi(acac) \rightarrow \pi^*(Py,Per)$ [0.41] $\pi(acac) \rightarrow LUMO$ [0.33] $\pi d \rightarrow LUMO$ [0.31] $\pi(acac) \rightarrow x2-y2$ [0.20]
287 (0.04)	acac: $\pi(acac) \rightarrow \pi^*(acac) [0.51]$ $\pi d, \pi(Per) \rightarrow \pi^*(Py, Per) [0.27]$	286 (0.08)	acac: HOMO $\rightarrow \pi^*(\text{Per})$ [0.44] $\pi(\text{acac}) \rightarrow \pi^*(\text{acac})$ [0.36] $\pi(\text{Per}) \rightarrow \text{LUMO}$ [0.20]
273 (0.11)	Perylene: $\pi d \rightarrow LUMO \ [0.38]$ HOMO $\rightarrow \pi^*(Per) \ [0.37]$ $\pi(Per) \rightarrow LUMO \ [0.20]$	273 (0.29)	Perylene: HOMO $\rightarrow \pi^*(\text{Per})$ [0.47] $\pi d \rightarrow LUMO$ [0.27] $\pi(\text{Per}) \rightarrow LUMO$ [0.23]
265 (0.07)	MLCT (Pd \rightarrow Per): $\pi d, \pi$ (Per) \rightarrow LUMO [0.38] π (Per) $\rightarrow \pi^*$ (Py,Per) [0.28] HOMO $\rightarrow \pi^*$ (Per) [0.27] π (acac) $\rightarrow \pi^*$ (acac) [0.25] π (Per) $\rightarrow \pi^*$ (Py,Per) [0.21]	263 (0.10)	MLCT (Pd \rightarrow Per): $\pi d, \pi$ (Per) \rightarrow LUMO [0.49] HOMO $\rightarrow \pi^*$ (Per) [0.24] $\pi d, \pi$ (Per) $\rightarrow \pi^*$ (acac) [0.22]
261 (0.04) 	MLCT + ILCT (Pd,Per \rightarrow Py): $\pi d, \pi(Per) \rightarrow \pi^*(Py)$ [0.48] $z_2 \rightarrow \pi^*(Py)$ [0.25] HOMO $\rightarrow \pi^*(Per)$ [0.22]		MLCT + ILCT (Pd,Per \rightarrow Py): π (Per) $\rightarrow \pi^*$ (Py,Per) [0.41] π d, π (Per) $\rightarrow \pi^*$ (Py) [0.40] $z^2 \rightarrow \pi^*$ (Py) [0.21]

Gas phase		CHCl3	
λ (ƒ)	Assignment	λ (ƒ)	Assignment
563 (0.39)	Perylene: HOMO → LUMO [0.69]	559 (0.58)	Perylene: HOMO → LUMO [0.70]
425 (0.04)	ILCT (Per \rightarrow Py): HOMO $\rightarrow \pi^*(Py)$ [0.69]	408 (0.04)	ILCT (Per \rightarrow Py): HOMO $\rightarrow \pi^*(Py)$ [0.69]
397 (0.06)	LLCT (acac \rightarrow Per): $\pi(acac),\pi d \rightarrow$ LUMO [0.66]	394 (0.07)	LLCT (acac \rightarrow Per): $\pi(acac), \pi d \rightarrow$ LUMO [0.68]
373 (0.17)	ILCT (Per \rightarrow Py): $\pi d, \pi$ (Per) \rightarrow LUMO [0.52] HOMO $\rightarrow \pi^*$ (Py,Per) [0.41]	366 (0.09)	ILCT (Per \rightarrow Py): HOMO $\rightarrow \pi^*(Py,Per)$ [0.63] $\pi d,\pi(Per) \rightarrow LUMO$ [0.22]
298 (0.07)	Acac + MLCT (Pt \star acac): $\pi(acac), \pi d \rightarrow \pi^*(acac)$ [0.55] $\pi d, \pi(Per) \rightarrow \pi^*(Py)$ [0.24]	295 (0.09)	Acac + MLCT (Pt \rightarrow acac): $\pi(acac), \pi d \rightarrow \pi^*(acac)$ [0.59]
291 (0.08)	MLCT + ILCT (Pt,Per \rightarrow Py): $\pi d, \pi$ (Per) $\rightarrow \pi^*$ (Py) [0.45] π (acac) \rightarrow LUMO [0.29]	287 (0.13)	MLCT + ILCT (Pt,Per \rightarrow Py): $\pi d, \pi$ (Per) $\rightarrow \pi^*$ (Py) [0.59]
279 (0.10)	Perylene: HOMO $\rightarrow \pi^*(\text{Per})$ [0.35] HOMO $\rightarrow \pi^*(\text{Per})$ [0.27] $\pi(\text{Per}) \rightarrow \text{LUMO}$ [0.21] $\pi(\text{Per}) \rightarrow \pi^*(\text{Py})$ [0.21]	278 (0.15)	Perylene: HOMO $\rightarrow \pi^*(\text{Per})$ [0.36] HOMO $\rightarrow \pi^*(\text{Per})$ [0.33] HOMO $\rightarrow \pi^*(\text{Per})$ [0.27] $\pi(\text{Per}) \rightarrow \text{LUMO}$ [0.21]
277 (0.03)	Perylene: HOMO $\rightarrow \pi^*(\text{Per})$ [0.32] $\pi(\text{Per}),\pi d \rightarrow \text{LUMO}$ [0.32] $\pi d,\pi(\text{Per}) \rightarrow \pi^*(\text{acac})$ [0.24] $\pi d,\pi(\text{Per}) \rightarrow \pi^*(\text{Py},\text{Per})$ [0.21] $z_2 \rightarrow \pi^*(\text{Py},\text{Per})$ [0.18]	278 (0.08)	Perylene: HOMO $\rightarrow \pi^*(\text{Per})$ [0.43] $\pi d, \pi(\text{Per}) \rightarrow \pi^*(\text{acac})$ [0.29] $\pi(\text{Per}), \pi d \rightarrow \text{LUMO}$ [0.21]
271 (0.05)	MLCT (Pt \rightarrow Py,Per): $\pi d, \pi$ (Per) $\rightarrow \pi^*$ (Py,Per) [0.46] π (Per) $\rightarrow \pi^*$ (Py) [0.23] π (Per), $\pi d \rightarrow$ LUMO [0.20]	264 (0.07)	MLCT (Pt \rightarrow Py,Per): $\pi d, \pi$ (Per) $\rightarrow \pi^*$ (Py,Per) [0.54] $\pi d, \pi$ (Per) $\rightarrow \pi^*$ (acac) [0.21]

Gas phase		CHCl3	
λ (ƒ)	Assignment	λ (ƒ)	Assignment
507 (0.45)	Perylene: HOMO → LUMO [0.69]	519 (0.61)	Perylene: HOMO \rightarrow LUMO [0.70]
422 (0.12)	MLCT + ILCT (Pt,acac,Per \rightarrow Per): π (Per,acac), π d \rightarrow LUMO [0.67]	420 (0.14)	MLCT + ILCT (Pt,acac,Per \rightarrow Per): π (Per,acac), π d \rightarrow LUMO [0.68]
391 (0.06)	LLCT (acac \rightarrow Per): $\pi d, \pi(acac) \rightarrow$ LUMO [0.62] HOMO $\rightarrow \pi(Py,Per)$ [0.24]	390 (0.06)	LLCT (acac \rightarrow Per): HOMO $\rightarrow \pi(Py,Per)$ [0.56] $\pi d,\pi(acac) \rightarrow LUMO$ [0.37]
322 (0.06)	Perylene: π (Per) \rightarrow LUMO [0.48] π (Per) \rightarrow LUMO [0.33] HOMO \rightarrow π *(Per) [0.20]	321 (0.07)	Perylene: π (Per,acac), π d $\rightarrow \pi$ (Py,Per) [0.37] π (Per) \rightarrow LUMO [0.37] π (Per) \rightarrow LUMO [0.27] HOMO $\rightarrow \pi^*$ (Py) [0.24]
302 (0.05)	MLCT + ILCT (Pt,acac \rightarrow Py): $\pi d,\pi(acac) \rightarrow \pi(Py,Per)$ [0.43] $z_2 \rightarrow \pi^*(Per)$ [0.29] $\pi(Per) \rightarrow LUMO$ [0.27]	300 (0.09)	MLCT + ILCT (Pt,acac \rightarrow Py): $\pi d,\pi(acac) \rightarrow \pi(Py,Per)$ [0.59]
290 (0.07)	MLCT (Pt,acac \rightarrow acac) + Perylene: $\pi(acac) \rightarrow$ LUMO [0.50] $\pi d,\pi(acac) \rightarrow \pi^*(acac)$ [0.39]	292 (0.13)	MLCT (Pt,acac \rightarrow acac) + Perylene: $\pi d,\pi(acac) \rightarrow \pi^*(acac)$ [0.42] HOMO $\rightarrow \pi^*(Per)$ [0.36] HOMO $\rightarrow \pi^*(Per)$ [0.21]
275 (0.05)	Perylene: $\pi d, \pi(\text{Per}) \rightarrow \text{LUMO} [0.42]$ HOMO $\rightarrow x_2 - y_2, \pi^*(\text{Per}) [0.36]$	276 (0.14)	Perylene: HOMO $\rightarrow \pi^*(\text{Per})$ [0.44] $\pi d, \pi(\text{Per}) \rightarrow \text{LUMO}$ [0.35] $\pi(\text{Per}) \rightarrow \text{LUMO}$ [0.20]
275 (0.03)	MLCT (Pt \rightarrow Py): $\pi d,\pi(acac) \rightarrow \pi(Py)$ [0.60]	271 (0.08)	MLCT (Pt \rightarrow Py): $\pi d, \pi(acac) \rightarrow \pi^*(Py)$ [0.53]
267 (0.14)	Perylene: $\pi d, \pi(\text{Per}) \rightarrow \text{LUMO [0.41]}$ $\pi(\text{Per}) \rightarrow \pi(\text{Py}, \text{Per}) [0.22]$ HOMO $\rightarrow \pi^*(\text{Per}) [0.32]$ $\pi(\text{Per}) \rightarrow \pi(\text{Py}, \text{Per}) [0.21]$	267 (0.16)	Perylene: $\pi d, \pi(\text{Per}) \rightarrow \text{LUMO} [0.46]$ HOMO $\rightarrow \pi^*(\text{Per}) [0.28]$ $z_2 \rightarrow x_2 - y_2, \pi^*(\text{Per}) [0.23]$

Gas phase			CHCl3
λ (ƒ)	Assignment	λ(ƒ)	Assignment
502 (0.49)	Perylene: HOMO \rightarrow LUMO [0.65] $p(I) \rightarrow$ LUMO [0.25]	519 (0.65)	Perylene: HOMO \rightarrow LUMO [0.70]
411 (0.02)	ILCT (Per \rightarrow Py): $p(I) \rightarrow \pi^{*}(Py) [0.46]$ HOMO $\rightarrow \pi^{*}(Py) [0.37]$ $p(I) \rightarrow \pi^{*}(Py) [0.25]$	410 (0.07)	ILCT (Per \rightarrow Py): HOMO $\rightarrow \pi^*(Py)$ [0.69]
324 (0.03)	Perylene: $\pi(\text{Per}) \rightarrow \text{LUMO} [0.48]$ $p(I) \rightarrow \pi d, \pi^*(\text{Per}) [0.30]$ HOMO $\rightarrow \pi d, \pi^*(\text{Per}) [0.25]$ $\pi(\text{Per}) \rightarrow \text{LUMO} [0.21]$	336 (0.06)	Perylene: $\pi(\text{Per}) \rightarrow \text{LUMO} [0.52]$ $\text{HOMO} \rightarrow \pi d, \pi^*(\text{Per}) [0.24]$ $\text{HOMO} \rightarrow \pi^*(\text{Per}) [0.21]$ $\pi(\text{Per},\text{Py}) \rightarrow \text{LUMO} [0.20]$
315 (0.03)	Perylene: $\pi(\text{Per}) \rightarrow \text{LUMO} [0.40]$ $\pi(\text{Per}) \rightarrow \text{LUMO} [0.39]$ $\pi(\text{Per}) \rightarrow \text{LUMO} [0.28]$ HOMO $\rightarrow \pi d, \pi^*(\text{Per}) [0.20]$	327 (0.02)	Perylene: $\pi(\text{Per,Py}) \rightarrow \text{LUMO [0.43]}$ $\text{HOMO} \rightarrow \pi^*(\text{Per) [0.31]}$ $\pi(\text{Per}) \rightarrow \text{LUMO [0.23]}$ $p(I),\pi(\text{acac}) \rightarrow \pi^*(\text{Py) [0.21]}$
337 (0.01)	LLCT (I,acac \rightarrow Py,acac): $p(I),\pi(acac) \rightarrow \pi^*(Py) [0.46]$ $p(I),\pi(acac) \rightarrow \pi^*(acac)[0.45]$	323 (0.06)	LLCT (I,acac \rightarrow Py,acac): $p(I),\pi(acac) \rightarrow \pi^*(Py) [0.41]$ $p(I),\pi(acac) \rightarrow \pi^*(acac) [0.27]$ $\pi(Per,Py) \rightarrow LUMO [0.25]$
315 (0.05)	Perylene: π (Per) \rightarrow LUMO [0.43] HOMO $\rightarrow \pi^*$ (Per), πd [0.35] HOMO $\rightarrow \pi d, \pi^*$ (Per) [0.29]	318 (0.05)	Perylene: π (Per) \rightarrow LUMO [0.58] HOMO $\rightarrow \pi^*$ (Per) [0.19]
306 (0.03)	Perylene: HOMO \rightarrow LUMO [0.44] π (Per) \rightarrow LUMO [0.35] HOMO $\rightarrow \pi^*$ (Per) [0.30]	308 (0.02)	Perylene: HOMO $\rightarrow \pi^*(\text{Per}) [0.41]$ $\pi(\text{Per}) \rightarrow \text{LUMO} [0.28]$ HOMO $\rightarrow \pi^*(\text{Per}) [0.24]$
315 (0.01)	LLCT (I,acac \rightarrow Py): $p(I),\pi(acac) \rightarrow \pi^*(Py,Per),\pi d [0.38]$ $\pi(acac) \rightarrow \pi^*(Py) [0.33]$ $p(I),\pi(acac) \rightarrow \pi^*(Py) [0.27]$ $\pi(acac) \rightarrow \pi^*(acac) [0.23]$	306 (0.06)	LLCT (I,acac \rightarrow Py): $\pi(acac,Per) \rightarrow \pi^{*}(Py) [0.33]$ $p(I),\pi(acac) \rightarrow \pi^{*}(Py) [0.31]$ $p(I),\pi(acac) \rightarrow \pi^{*}(acac) [0.30]$ $p(I) \rightarrow \pi^{*}(Py,acac),\pi d [0.20]$
275 (0.05)	LLCT (acac \rightarrow Py): π (acac,Per) $\rightarrow \pi$ (Py,Per), π d [0.48] π (Per,acac) $\rightarrow \pi^*$ (Py) [0.22] π (acac,Per) $\rightarrow \pi^*$ (Py) [0.21]	275 (0.07)	LLCT (acac \rightarrow Py): $\pi(acac,Per) \rightarrow \pi^*(Py,acac),\pi d [0.54]$ $p(I),\pi(acac) \rightarrow \pi^*(Py) [0.23]$
272 (0.08)	LLCT (acac \rightarrow Py): π (Per,acac) $\rightarrow \pi^*$ (Py) [0.36]	271 (0.04)	LLCT (I,acac \rightarrow Py): $p(I),\pi(acac) \rightarrow \pi^*(Py) [0.52]$

			- 19) -
	$\pi(\text{Per,acac}) \rightarrow \pi^*(\text{acac}) \ [0.31]$ $\pi(\text{Py}), \pi d \rightarrow \text{LUMO} \ [0.30]$		$p(I),\pi(acac) \rightarrow \pi^*(Py,acac),\pi d [0.22]$	
270 (0.06)	Perylene: HOMO $\rightarrow \pi^*(\text{Per}) [0.39]$ $\pi(\text{Per}) \rightarrow \pi^*(\text{Py}) [0.31]$ $\pi(\text{Per,acac}) \rightarrow \pi^*(\text{acac}) [0.29]$	273 (0.18)	Perylene: HOMO $\rightarrow \pi^{*}(\text{Per}) \ [0.41]$ $\pi(\text{Per},\text{Py}) \rightarrow \pi^{*}(\text{Py}) \ [0.27]$ $p(I),\pi(\text{acac}) \rightarrow \pi^{*}(\text{Py}) \ [0.25]$ $\pi(\text{Per}) \rightarrow \pi^{*}(\text{Py}) \ [0.25]$	
269 (0.08)	LLCT (I,acac \rightarrow Per): $p(I),\pi(acac) \rightarrow \pi d,\pi^*(Per) [0.34]$ $p(I) \rightarrow \pi^*(Per) [0.34]$ $\pi(Py),\pi d \rightarrow LUMO [0.21]$	268 (0.04)	LLCT (I,acac \rightarrow Per): $p(I),\pi(acac) \rightarrow \pi d,\pi^*(Per)$ [0.33] $\pi(acac,Per) \rightarrow \pi d,\pi^*(Per)$ [0.29] $\pi(Per,Py) \rightarrow \pi^*(Py)$ [0.21]	
263 (0.06)	LLCT (acac \rightarrow Py,Per): π (acac,Per) $\rightarrow \pi d, \pi^*$ (Per) [0.32] π (acac,Per) $\rightarrow \pi^*$ (Py) [0.31] p (I), π (acac) $\rightarrow \pi d, \pi^*$ (Per) [0.22]	261 (0.09)	LLCT (acac \rightarrow Py,Per): $\pi(Py),\pi d \rightarrow$ LUMO [0.28] $\pi(acac,Per) \rightarrow \pi^*(Py)$ [0.25] $p(I),\pi(acac) \rightarrow \pi d,\pi^*(Per)$ [0.24] $\pi(Per) \rightarrow \pi^*(Py)$ [0.24]	
250 (0.11)	ILCT (Per \rightarrow Py): π (Per) $\rightarrow \pi^*$ (Py) [0.35] π (Per,acac) $\rightarrow \pi^*$ (Py,Per), π d [0.26]	255 (0.11)	ILCT (Per \rightarrow Py): π (Per) $\rightarrow \pi^*$ (Py) [0.41] π (Per,Py) $\rightarrow \pi^*$ (acac) [0.37]	

Annotation for the involved orbitals:

- π (Per) and π *(Per) indicates generic occupied and empty orbitals of perylene. Since all perylene orbitals are of type π , only HOMO and LUMO are emphasized. Analogously, for π (Py) and π *(Py), or π (acac) and π *(acac).

- *z*² indicates a *d*-orbital centered in the metal considering the most symmetric environment for the metals, as bonding-axes for lineal Au complexes or perpendicular to square-planar environment ones.

- x_2-y_2 indicate an empty *d*-orbital centered in the metal having σ -antibonding character.

- πd is used to design occupied *d*-orbitals related to the metal-ligand back-bonding having antibonding contribution.

Table S5. Molecular orbitals for the ligand HPerPy and its complexes. Percentage compositions for each one entry from Natural Populations Analysis are shown.

(a) HPerpy 1

MO 115: -0.265 Ha **Pd (48), Per (33)**, acac (9)

MO 117: -0.247 Ha **Pd (56)**, Py (14), acac (13), Per (6)

MO 119: -0.242 Ha **Per (91)**, Pd (4)

MO 121: -0.234 Ha **Per (78)**, Pd (9), Py (7)

MO 123: -0.216 Ha **Pd (70)**, Per (13), acac (7)

MO 125 (*HOMO*): -0.172 Ha **Per (85**), Pd (5)

MO 127: -0.040 Ha **Py (66)**, Per (25)

MO 129: -0.027 Ha acac (44), Py (19), Pd (14), Per (6)

MO 122: -0.228 Ha **Per (66)**, Pd (23), acac (4)

MO 124: -0.208 Ha acac (75), Pd (13)

MO 126 (*LUMO*): -0.076 Ha **Per (71**), Py (23)

MO 128: -0.029 Ha **Py (45)**, Per (22), acac (17), Pd (4)

MO 130: -0.023 Ha acac (34), Pd (31), Per (14), Py (5)

MO 132: +0.005 Ha **Per (92)**, Pd (7)

MO 131: -0.010 Ha Per (92)

MO 134: +0.013 Ha **Per (72)**, Py (21)

МО 117: -0.249 На

Pd (57), acac (18), Py (12)

MO 119: -0.246 Ha Per (96)

MO 121: -0.237 Ha **Per (83)**, Py (11)

MO 122: -0.222 Ha **Pd (42), Per (31)**, acac (14), Py (4)

MO 124: -0.207 Ha acac (60), Pd (17), Per (14)

MO 126 (*LUMO*): -0.077 Ha **Per (71**), Py (20), Pd (3)

MO 128: -0.029 Ha acac (63), Py (20), Per (4)

MO 123: -0.219 Ha **Pd (57)**, Per (19), acac (11)

MO 125 (*HOMO*): -0.177 Ha **Per (88**), Py (8)

MO 127: -0.043 Ha **Py (55), Per (33)**, Pd (3)

MO 129: -0.026 Ha **Py (45)**, acac (26), Per (17)

MO 130: -0.022 Ha **Pd (49)**, Per (18), Py (12), acac (8)

MO 132: +0.000 Ha **Per (90)**

MO 131: -0.010 Ha **Per (89)**

MO 133: +0.008 Ha **Per (84)**, Pd (7)

MO 115: -0.261 Ha **Per (42), Pt (35),** acac (11)

MO 117: -0.247 Ha Pt (47), acac (35), Per (7)

MO 119: -0.239 Ha **Per (70)**, Pt (13), acac (5)

Per (79), Pt (9)

MO 122: -0.220 Ha Pt (44), Per (38), acac (6)

MO 124: -0.208 Ha acac (49), Pt (27), Per (10)

MO 126 (*LUMO*): -0.075 Ha **Per (66)**, Py (25)

MO 128: -0.032 Ha acac (82), Py (5), Pt (3)

MO 123: -0.215 Ha Pt (83), Per (7)

MO 125 (*HOMO*): -0.167 Ha **Per (80**), Pt (9)

MO 127: -0.042 Ha **Py (59)**, Per (17), acac (11)

Py (62), Per (28)

Per (94)

MO 132: +0.009 Ha **Per (64)**, Pt (15), Py (7)

MO 134: +0.016 Ha **Per (61)**, Py (15), Pt (13)

MO 131: +0.005 Ha **Per (73)**, Pt (15)

MO 133: +0.013 Ha **Per (57)**, Pt (20), Py (7)

MO 120: -0.240 Ha **Per (89)**

MO 115: -0.266 Ha **Pt (43), Per (38)**, acac (7), Py (4)

MO 117: -0.249 Ha **Pt (70)**, acac (16), Per (4)

MO 119: -0.244 Ha acac (33), Pt (32), Per (18), Py (8)

MO 121: -0.236 Ha **Per (78)**, Py (12)

MO 122: -0.221 Ha **Pt (91)**, Per (3)

MO 124: -0.203 Ha **Per (35), Pt (31)**, acac (27)

MO 126 (*LUMO*): -0.076 Ha **Per (69)**, Py (21), Pt (4)

MO 128: -0.035 Ha acac (83), Py (4)

MO 123: -0.214 Ha **Pt (39), acac (31)**, Per (15), Py (7)

MO 125 (*HOMO*): -0.175 Ha **Per (86**), Py (8)

MO 127: -0.043 Ha **Py (53), Per (30)**, acac (5), Pt (3)

MO 129: -0.025 Ha **Py (64)**, Per (23), acac (4)

MO 130: -0.009 Ha **Per (90)**

MO 132: +0.009 Ha **Per (77)**, Pt (14)

MO 133: +0.012 Ha **Pt (42)**, Per (24), Py (13), acac (6)

MO 125: -0.253 Ha **Per (95)**

MO 127: -0.245 Ha **Per (85)**, Py (5)

MO 129: -0.227 Ha acac (56), Per (28), Pt (8)

MO 126: -0.249 Ha **Per (87)**

MO 128: -0.241 Ha **Per (48)**, acac (14), Py (11), Pt(9), I(8)

MO 130: -0.209 Ha I (52), acac (16), Me (14), Pt (7)

MO 132: -0.190 Ha I (95), Pt (4)

MO 134 (*LUMO*): -0.086 Ha Per (67), Py (23)

MO 136: -0.047 Ha acac (68), Py (7)

MO 138: -0.036 Ha **Py (51)**, acac (17), Per (10), Pt (7)

MO 131: -0.191 Ha I (91), Pt (4)

MO 133 (*HOMO*): -0.185 Ha **Per (84**), Py (7), I (4)

MO 135: -0.055 Ha **Py (49), Per (26)**, Pt (8), I (4)

MO 137: -0.038 Ha **Py (24)**, Pt (19), Per (18), acac (11), Me (11)

MO 139: -0.022 Ha **Per (46), Pt (25)**, Py (5), Me (5), I (5)

MO 141: -0.006 Ha **Per (91)**

MO 140: -0.015 Ha **Per (73)**, Pt (9), Me (4)

MO 142: 0.004 Ha Per (90)

Fig. S19 Calculated electronic spectra in chloroform for HPerPy and its derivatives.

Fig. S20 Normalized emission spectra of complexes **5**, **7**, **9–10**, in 2-methyltetrahydrofuran at 298 K (red line) and 77 K (blue line).

Fig. S21 Normalized emission spectra of platinum complexes **9** and **10** in different solvents (green: $CHCI_3$, blue: THF, red: CH_3CN , black: toluene) at room temperature.

Compound	λ_{ex}/nm	λ_{em}/nm
1	423	605
2	470	561
3	483	666
5	483	665
6	482	661
7	485	662
8	485	665
9	482	661
10	471	644

Table S6. Emission and excitation in the solid state (KBr dispersion) at 298 K.

Fig. S22 Normalized emission spectra recorded in KBr dispersions at room temperature of HPerPy (1) and its Ag and Pt complexes.

Fig. S23 Normalized emission spectra recorded in KBr dispersions at room temperature of HPerPy (1) and its Pd complexes.

Fig. S24 Fluorescence decays in dichloromethane, at room temperature.

Mono-exponential and bi-exponential fluorescence decay models were fitted to each decay. Eqn (1) describes the mono-exponential decay model:

 $I(t) = I_0 \cdot exp(-t/\tau) (1)$

where I_0 is the relative intensity, t is the time and τ is the fluorescence lifetime, both expressed in ns. The bi-exponential decay model is expressed by Equation (2) as:

 $I(t) = A + B_1 \cdot exp(-t/\tau_1) + B_2 \cdot exp(-t/\tau_2)$ (2)

where B_1 and B_2 are the relative intensities associated with two lifetimes, τ_1 and τ_2 , respectively.

Mono-exponential models are normally used to fit fluorescence decay. Bi-exponential fits may be more appropriate for samples containing non-linear decays. Fitting was done using FAST software from Edinburgh Instruments by a least-squares algorithm using a reconvolution approach. In this method, convolution of Equation (1) or (2) with the instrumental response function (IRF) is done prior to evaluating the goodness of fit with a weighted χ^2 parameter.

Compou	ind 1					
Param.	Value/ns	Std. Dev./ns	Param.	Value	Std. Dev.	Rel.%
τ1	0.51	0.15	B1	0.01	0.00	0.92
τ2	3.74	0.01	B2	0.15	0.00	99.08
A 5	5.633					

 χ^2 1.063

Compound 2

Param	Value/ns	Std. Dev./ns	Param	Value	Std. Dev.	Rel.%
τ1	3.76	0.01	B1	5120.39	0.59	100.00
А	9.772					
2	1 105					

Time (ps)

Ō

(0 D) ∆A (0 D)

Compound 9

Param.	Value/ns	Std. Dev./ns	Param.	Value	Std. Dev.	Rel.%
τ1	0.31	0.00	B1	0.36	0.00	88.45
τ2	2.81	0.04	B2	0.01	0.00	11.55

A 0.488

χ² 1.074

Compound **10**

Param	Value/ns	Std. Dev./ns	Param	Value	Std. Dev.	Rel.%
τ1	0.16	0.00	B1	0.40	0.00	87.55
τ2	3.30	0.05	B2	0.00	0.00	12.45

A 0.794

χ² 1.112

