Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

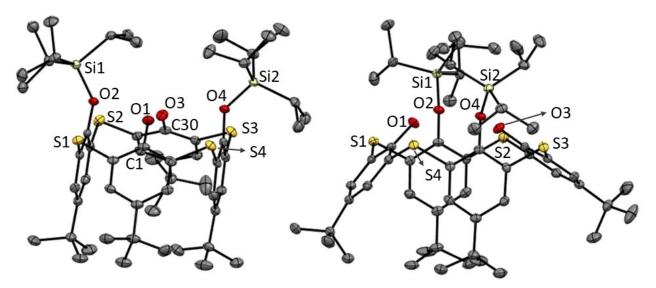
Supporting information for

Synthesis and Structures of Diaryloxystannylenes and -plumbylenes embedded in 1,3-Diethers of Thiacalix[4]arene

Ryunosuke Kuriki, Takuya Kuwabara,* and Youichi Ishii*

Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551,

Japan


Table of contents

1.	Details for the X-ray diffraction analysis	S1
2.	Molecular structures of thiacalix $^{t-Bu}$ (OH) $_2$ (OSi i Pr $_3$) $_2$ (4)	S2
3.	X-ray crystallographic data for 2-Sn, 2-Pb, 4, 5-Sn, and 5-Pb	S 3
4.	1 H, 13 C $\{^{1}$ H $\}$, 29 Si $\{^{1}$ H $\}$, 119 Sn $\{^{1}$ H $\}$ and 207 Pb NMR spectra of the products	S4-12
5.	References	S13

1. Details for the X-ray diffraction analysis

Diffraction data for **2-Sn**, **2-Pb**, **4**, **5-Sn**, and **5-Pb** were collected on a VariMax Saturn CCD diffractometer with graphite-monochromated Mo K α radiation (λ = 0.71075 Å) at -180 °C. Intensity data were corrected for Lorenz-polarization effects and for empirical absorption (REQAB).¹ All calculations were performed using the CrystalStructure² crystallographic software package except for refinements, which were performed using SHELXL-2018/3.³ All non-hydrogen atoms were refined on F_o^2 anisotropically by full-matrix least-square techniques. All hydrogen atoms were placed at the calculated positions with fixed isotropic parameters.

2. Molecular structures of thiacalix^{t-Bu}(OH)₂(OSiⁱPr₃)₂ (4).

Figure S1. Molecular structures of **4** with thermal ellipsoid plots at 30 % probability. All hydrogen atoms and a THF molecule are omitted for clarity. Selected bond lengths [Å]: C1–O1 1.359(3); C30–O2 1.358(3).

3. X-ray crystallographic data for 2-Sn, 2-Pb, 4, 5-Sn, and 5-Pb.

 Table S1.
 X-ray crystallographic data.

	2-Sn·(Tol)₃	2-Pb·(Tol)	4·(THF)	5-Sn	6-Pb·(C ₅ H ₁₂) ₂
CCDC	2016537	2021967	2021969	2016539	2021968
formula	$C_{75}H_{82}O_4S_4Sn$	$C_{61}H_{66}O_4PbS_4$	$C_{62}H_{96}O_5S_4Si_2$	$C_{58}H_{86}O_4S_4Si_2Sn$	$C_{131}H_{208}O_8Pb_2S_8Si_4$
fw	1294.33	1198.56	1105.8	1150.37	2694.18
crystal dimension	$0.17 \times 0.15 \times 0.05$	$0.14 \times 0.14 \times 0.09$	$0.16 \times 0.14 \times 0.06$	$0.18 \times 0.17 \times 0.10$	$0.18 \times 0.17 \times 0.15$
crystal system	triclinic	monoclinic	triclinic	monoclinic	triclinic
space group	P-1	C2/c	P-1	P2 ₁ /c	P-1
a [Å]	12.094(3)	22.413(3)	13.510(2)	13.3770(12)	13.4391(8)
b [Å]	12.497(3)	20.959(2)	15.106(2)	17.7497(15)	13.7334(7)
c [Å]	22.902(6)	12.5139(14)	16.040(2)	25.887(2)	20.3149(10)
α [deg]	83.617(10)	90	79.593(5)	90	71.319(3)
β [deg]	85.056(11)	108.6460(10)	81.074(4)	102.696(2)	77.604(3)
γ [deg]	75.959(9)	90	89.230(6)	90	77.966(3)
<i>V</i> [ų]	3330.9(15)	5570.1(11)	3180.1(8)	5996.3(9)	3429.3(3)
Z	2	4	2	4	1
$ ho_{ m calcd}$ [g cm $^{-3}$]	1.29	1.429	1.155	1.274	1.305
F(000)	1356	2440	1200	2432	1406
μ [cm $^{-1}$]	5.57	32.24	2.32	6.48	26.59
transmission					
factors	0.8455 – 1	0.8697 – 1	0.8616 – 1	0.8793 – 1	0.8718 – 1
range					
index range	-15 ≤ h ≤ 13	-28 ≤ h ≤ 22	-17 ≤ h ≤ 17	-17 ≤ h ≤ 17	-11 ≤ h ≤ 16
	-16 ≤ k ≤ 15	-27 ≤ k ≤ 26	-16 ≤ k ≤ 19	-22 ≤ k ≤ 23	-16 ≤ k ≤ 16
	-29 ≤ l ≤ 29	-16 ≤ l ≤ 16	-15 ≤ l ≤ 20	-33 ≤ l ≤ 29	-25 ≤ l ≤ 25
no. reflections	26547	22455	26240	48104	25173
unique (R _{int})	14566 (0.0636)	6294 (0.0366)	14039 (0.0411)	13722 (0.0396)	13148 (0.0316)
$l > 2\sigma(1)$	11317	5736	10139	11958	11126
no. parameters	795	338	684	646	742
$R_1 (I > 2\sigma(I))^a$	0.0851	0.0319	0.0598	0.0372	0.0271
wR ₂ (all data) ^b	0.1827	0.0695	0.1488	0.0899	0.0683
GOF ^c	1.098	1.117	1.083	1.118	1.06
max diff peak / hole [e $ m \AA^{-3}$]	1.297/-1.222	1.5/-1.746	0.475/-0.454	0.48/-0.989	1.635/-1.413

a $R_1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$. b $wR_2 = [\Sigma \{w(F_0^2 - F_c^2)^2\}/\Sigma w(F_0^2)^2]^{1/2}$, $w = 1/[\sigma^2 F_0^2 + (aP)^2 + bP]$ (a and b are constants suggested by the refinement program; $P = [\max(F_0^2, 0) + 2F_c^2]/3$). cGOF = $[\Sigma w(F_0^2 - F_c^2)^2/(N_{\text{obs}} - N_{\text{params}})]^{1/2}$.

4. ¹H and ¹³C{¹H} NMR spectra of the products

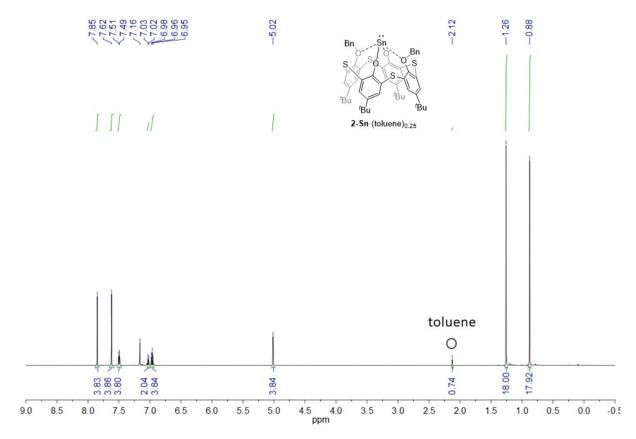


Figure S2. 1 H NMR spectrum of 2-Sn·(toluene) $_{0.25}$ recorded at 50 °C.

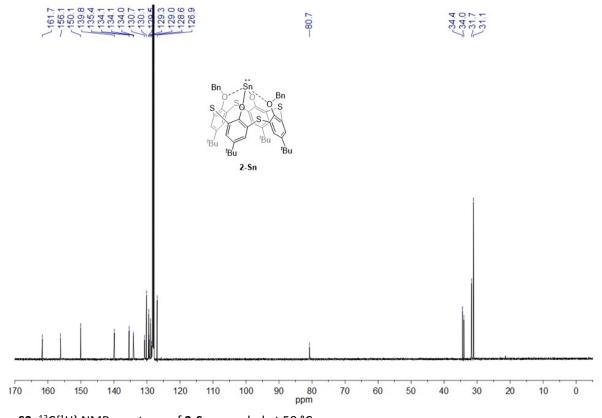


Figure S3. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of 2-Sn recorded at 50 °C.

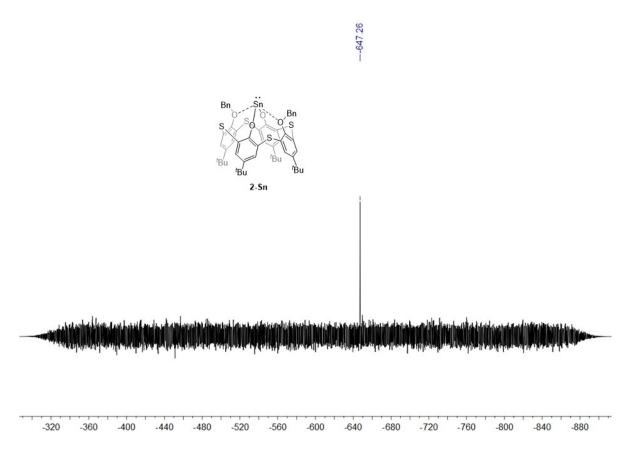
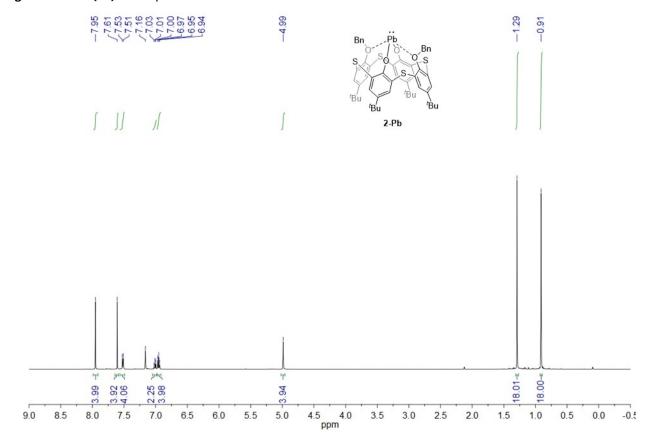



Figure S4. ¹¹⁹Sn{¹H} NMR spectrum of **2-Sn** recorded at 50 °C.

Figure S5. ^1H NMR spectrum of **2-Pb** recorded at 50 $^{\circ}\text{C}$.

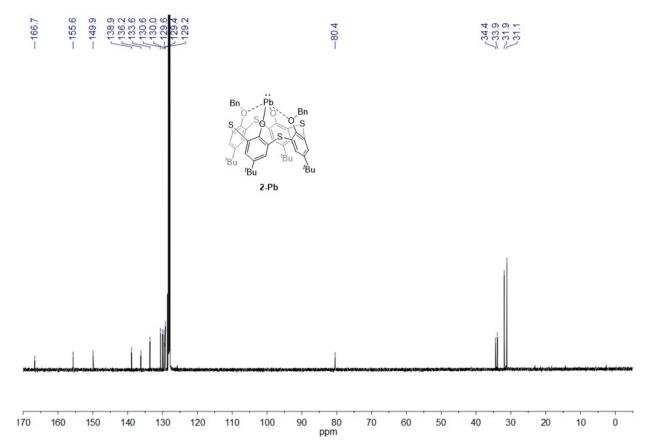
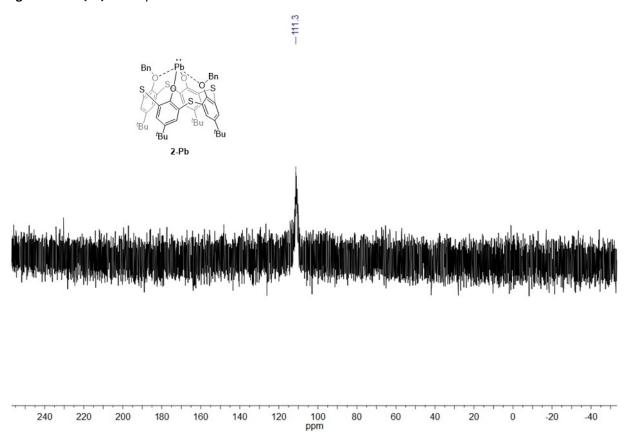



Figure S6. 13 C $\{^{1}$ H $\}$ NMR spectrum of **2-Pb** recorded at 50 °C.

Figure S7. 207 Pb NMR spectrum of **2-Pb** recorded at 50 °C.

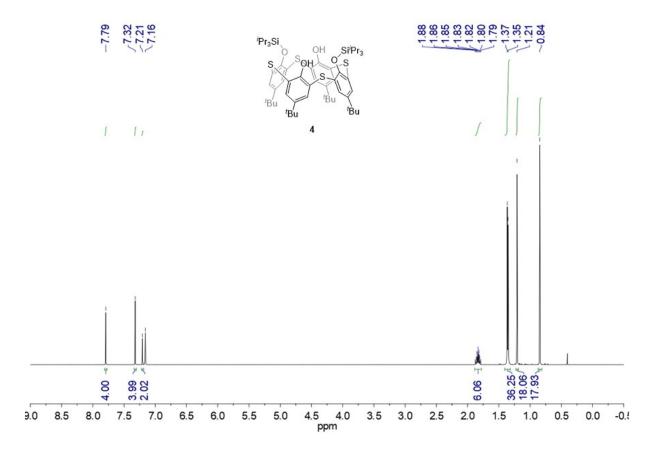


Figure S8. ¹H NMR spectrum of 4.

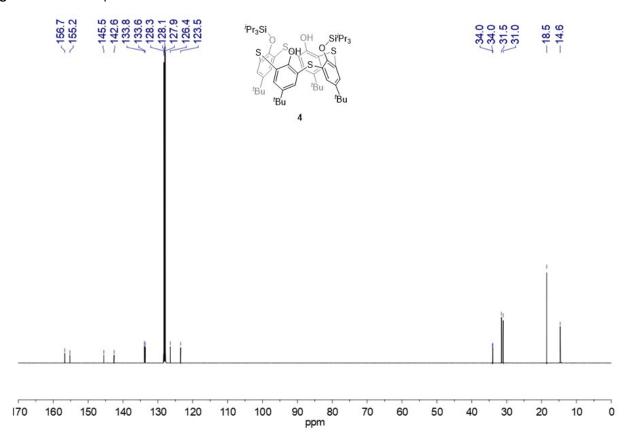


Figure S9. $^{13}C\{^{1}H\}$ NMR spectrum of 4.

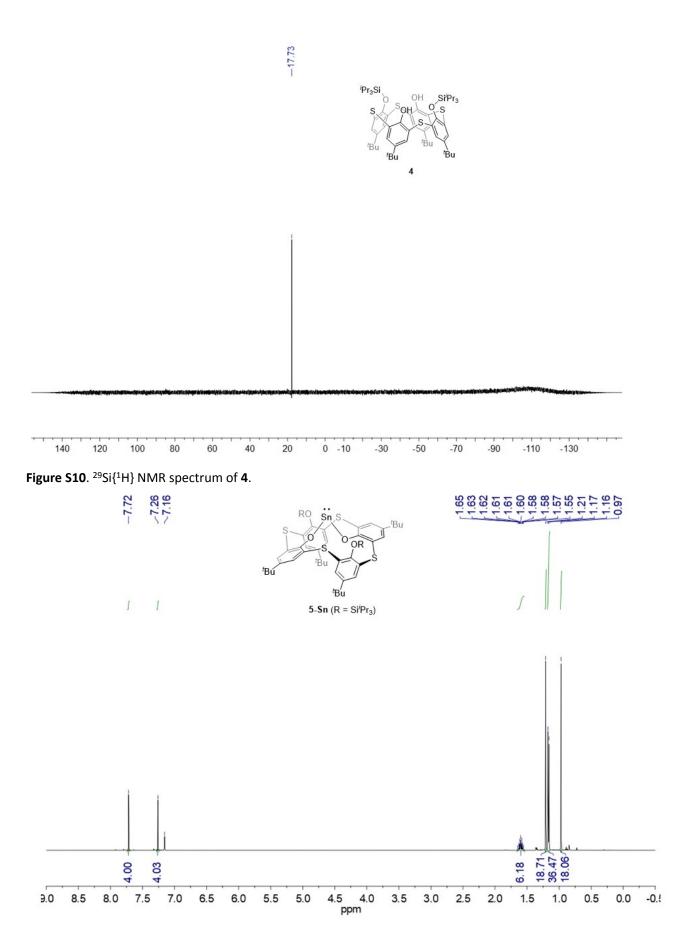
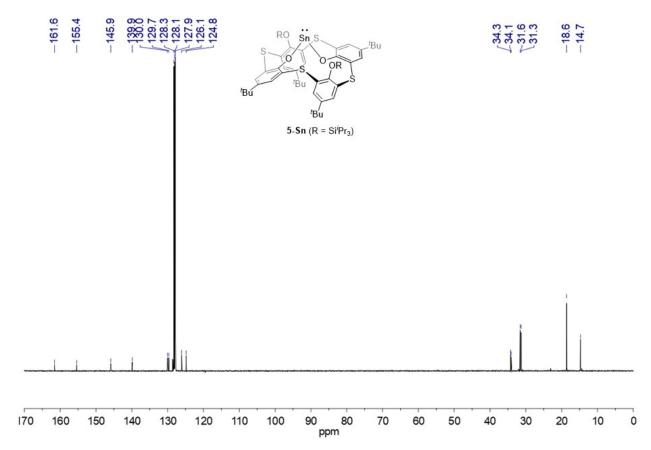
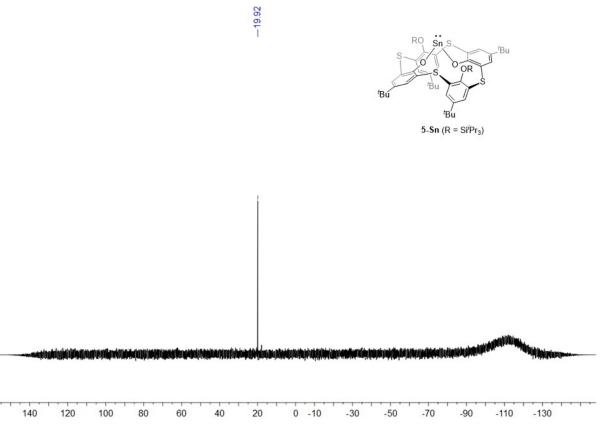
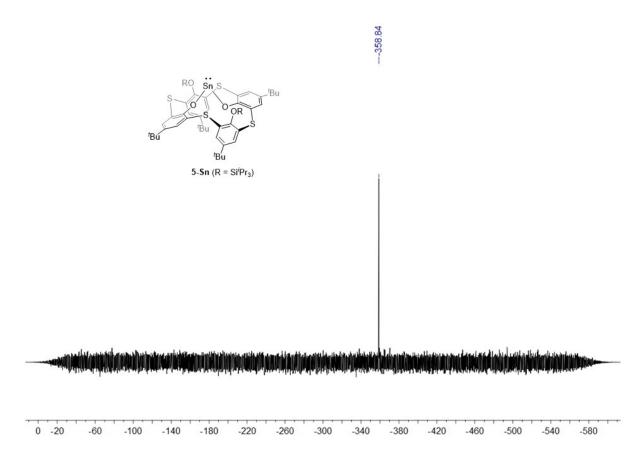
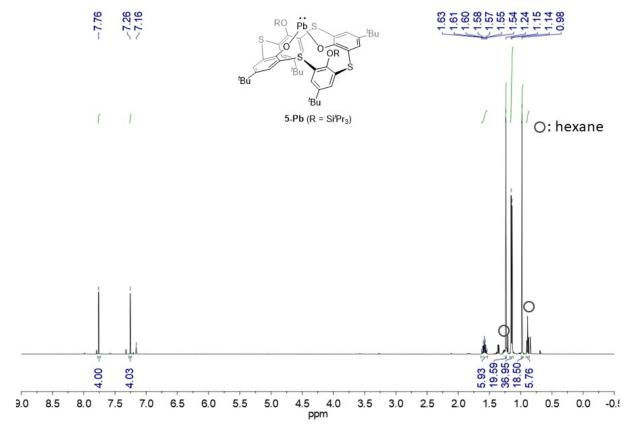
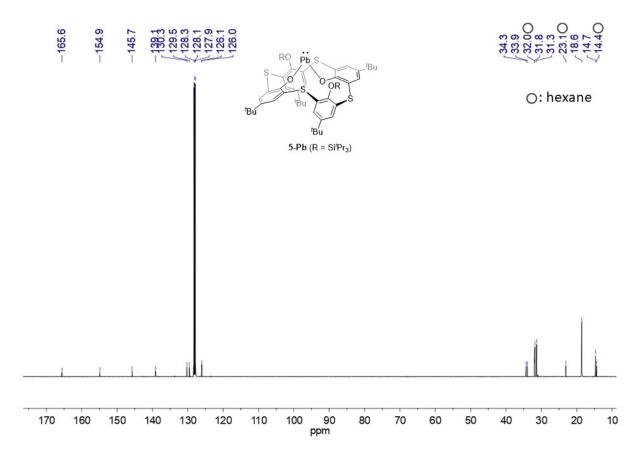
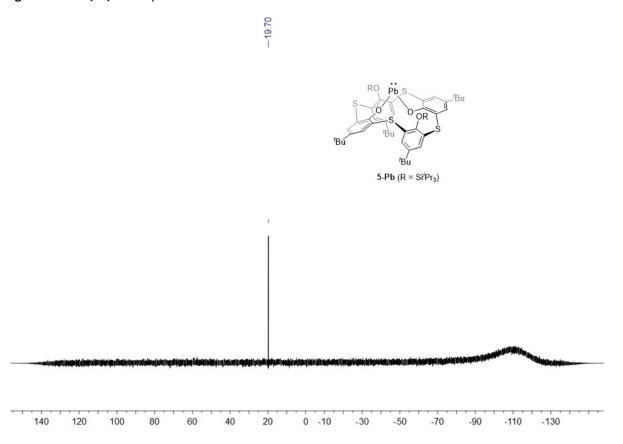




Figure S11. ¹H NMR spectrum of 5-Sn.

Figure S12. $^{13}C\{^{1}H\}$ NMR spectrum of **5-Sn**.

Figure S13. ²⁹Si{¹H} NMR spectrum of **5-Sn**.


Figure S14. 119Sn{1H} NMR spectrum of 5-Sn.

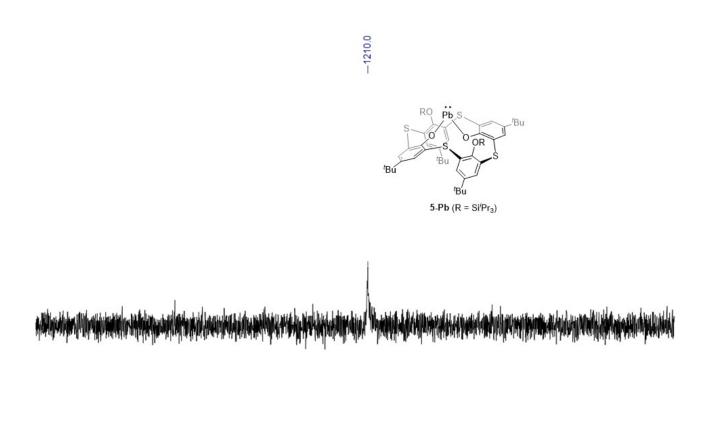

Figure S15. ¹H NMR spectrum of **5-Pb**.

Figure S16. ¹³C{¹H} NMR spectrum of **5-Pb**.

Figure S17. ²⁹Si{¹H} NMR spectrum of **5-Pb**.

ppm

Figure S18. ²⁰⁷Pb NMR spectrum of **5-Pb**.

5. References

- (1) Jacobson, R. A., Private Communication to Rigaku Corp.; Rigaku Corp.; Tokyo Japan 1998.
- (2) Crystal Structure 4.0: Single Crystal Structure Analysis Package; Rigaku Corp.; Tokyo, Japan 2000-2010.
- (3) Sheldrick, G., Crystal structure refinement with SHELXL. Acta Crystallogr. Sec. C 2015, 71, 3-8.