Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supporting information

Title:

Ionic conduction mechanism in Ca-doped Lanthanum Oxychloride

Kazuki Shitara^{1,2}, Akihide Kuwabara², Keisuke Hibino³, Kotaro Fujii³, Masatomo Yashima³, James

- R. Hester⁴ Masanori Umeda⁵, Naoyoshi Nunotani⁵, Nobuhito Imanaka⁵
- ¹ Joint and Welding Research Institute, Osaka University
- ² Nanostructures Research Laboratory, Japan Fine Ceramics Center
- ³ Department of Chemistry, School of Science, Tokyo Institute of Technology
- ⁴ ANSTO

⁵ Department of Applied Chemistry, Faculty of Engineering, Osaka University

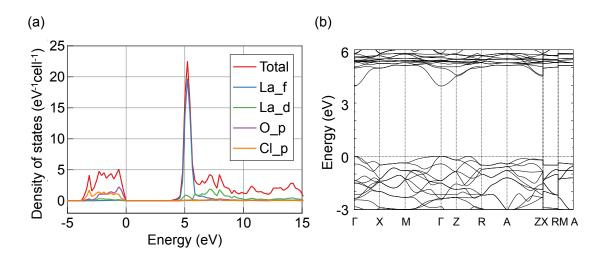


Figure S1 Calculated (a) density of states and (b) band structure of LaOCl

Figure S2 shows the atomic structures around $V\dot{c}l$ optimized by first-principles calculations. In the $V\dot{c}l$ model, there are three independent distances between the Cl vacancy site and surrounding ions: two types of distances between $V\dot{c}l$ and La, and one distance between $V\dot{c}l$ and Cl. The distances before and after the structure optimization are summarized in Table S1. The distance between La and $V\dot{c}l$ became shorter and the distance between Cl and vacancy became longer after structure optimization in this model. Attractive Coulomb interactions occur between La³⁺ and Cl⁻ ions. In contrast, Cl⁻ ions have repulsive Coulomb interactions towards each other. Electrostatic interactions disappear owing to the Cl vacancy formation, as La³⁺ ions move away from the Cl vacancy site and Cl⁻ ions shift toward the Cl vacancy site. In the $V\dot{c}l$ model, the thickness of the Cl layer is expanded as the distance between $V\dot{c}l$ and La increases. This is possibly the reason for the conduction of Cl⁻ ions.

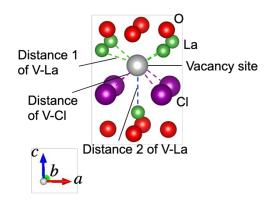


Figure S2. Local structure of a Cl⁻ ion vacancy in LaOCl crystal

	Distance before structure optimization (Å)	Distance after structure optimization (Å)
Distance 1 of V-La	3.165	3.227
Distance 2 of V-La	3.107	3.181
Distance of V-Cl	3.389	3.168

Table S1. Distances related to a Cl⁻ ion vacancy before and after structure optimization