Electronic Supplementary Information

Syntheses, structures, and photocatalytic properties of openframework Ag-Sn-S compounds

Yanhua Li, ^a Xuedan Song, ^a Yan Liu, ^a Yongkang Guo, ^a Yu Sun, ^a Min Ji, ^{*a} Zhonglu You^{*b} and Yonglin An^{*a}

^a Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China

^b Department of Chemistry and Chemical Engineering, Liaoning Normal University,

Dalian 116029, PR China

Corresponding Authors

*E-mail: jimin@dlut.edu.cn; youzhonglu@lnnu.edu.cn; ylan@dlut.edu.cn

Contents

1. Experiments and Characterizations

2. Synthetic Procedures

3. PXRD Patterns

Fig. S1. Experimental PXRD pattern of SnS.

Fig. S2. Simulated and experimental PXRD pattern of compound 5.

4. Crystal Structures

Fig. S3. SnS₅ trigonal bipyramids in compound 5.

Fig. S4. $[SnS_3]_n^{2n}$ chain in compound **5**.

Fig. S5. Crystal structure of compound 5 viewing along from the [101] direction.

Fig. S6. Coordination environment of Cs⁺ ions in compound 4.

5. Theoretical Calculation

6. References

1. Experiments and Characterizations

EDS analyses were performed using the EDS-equipped Quanta 450 scanning electronic microscope (SEM). Single crystals diffraction data were collected on Bruker Smart APEX II diffractometer equipped with graphite monochromatized Mo K α radiation (λ = 0.71073 Å) at room temperature. The crystal structures were all solved by direct methods [1], and all atomic positions and displacement parameters were performed in Fourier maps and refined anisotropically based on F^2 using SHELXL-2017 [2]. Powder X-ray diffraction (PXRD) were performed on Smart-Lab 9KW instrument with Cu K α (λ = 1.5418 Å) radiation at room temperature. The data were collected in the range of 2θ = 5-50° and a scanning speed of 5° per minute. The ultraviolet-visible (UV-vis) reflectance spectra of the compounds were measured at room temperature using Hitachi U3900 spectrophotometer, and BaSO₄ as a reference in the wavelength range from 200 to 800 nm.

The photocatalytic activities of the as-synthesized samples were investigated by photodegradation of methylene blue (MB) in a CEL-LAB500 photochemical reactor (CEAULIGHT Co. Ltd., China). A 500 W Xe lamp equipped with a 420 nm cut-off filter employed as light source. In brief, 20 mg of catalyst was suspended in 40 mL of MB aqueous solution (20 mg/L) and magnetically stirred for 60 min to reach adsorption/desorption equilibrium before the photocatalytic degradation reaction. In the process of adsorption and light irradiation, 3 mL of the suspension was sampled at selected timespans and centrifuged to remove the catalyst. The residual concentration of MB was monitored by measuring the maximum absorbance with a UV-vis spectrophotometer at 554 nm.

The photoelectric response experiments were performed on a CHI660E electrochemical workstation using a standard three-electrode configuration. The sample was ground into powders and coated onto ITO glasses (about 2 cm² effective area) which employed as the working electrodes. A Pt sheet was used as the counter

electrodes. A saturated Hg/Hg_2Cl_2 was used as the reference electrodes. A 500 W Xe lamp equipped with a 420 nm cut-off filter was employed as light source. The light source located 25 cm away from the surface of the ITO electrode. 0.2 M Na_2SO_4 aqueous solution was chosen as the supporting electrolyte.

2. Synthetic procedures

Compounds 2-4 can also be synthesized by the following method.

 $K_2Ag_2SnS_4$ (2) can be synthesized at 200 °C by mixing Ag (6.0 mg), Sn (4.0 mg), S (15.0 mg), K_2CO_3 (8.0 mg), about 300 mg ethylenediamine, and 60 mg deionized water in a Pyrex-glass tube for 8 days.

 $Rb_2Ag_2SnS_4$ (3) can be synthesized using the same procedure with 2 except using 9.0 mg Rb_2CO_3 instead of K_2CO_3 .

 $Cs_2Ag_2SnS_4$ (4) can be synthesized at 200 °C by mixing Ag (6.0 mg), Sn (3.0 mg), S (19.0 mg), Cs_2CO_3 (9.0 mg), about 420 mg ethylenediamine, and 60 mg deionized water in a Pyrex-glass tube for 8 days.

3. PXRD Patterns

Figure S1. Experimental PXRD pattern of SnS.

Figure S2. Simulated and experimental PXRD pattern of compound 5.

4. Crystal Structures

Fig. S3. SnS_5 trigonal bipyramids in compound 5.

Fig. S4. $[SnS_3]_n^{2n}$ chain in compound 5.

Fig. S5. Crystal structure of compound 5 viewing along from the [101] direction.

Fig. S6. Coordination environment of Cs⁺ ions in compound 4.

5. Theoretical Calculation

The band gaps, total density of states (TDOS) and partial density of states (PDOS) were calculated by Density functional theory (DFT). The common generalized-gradient approximation (GGA) and local density approximation (LDA) methods usually underestimate the band gaps [3]. In this paper, we use the combination of Heyd-Scuseria-Ernzerhof (HSE) and Perdew-Burke-Ernzerhof (PBE) methods to obtain reliable band gap values [4-6]. By introducing a part of Hartree-Fock exchange, HSE can modify the short-range exchange interaction. The calculated band gaps of the two compounds can be obtained by the following equation [3].

$$E_{XC}^{HSE} = \alpha E_X^{\text{exact,}SR} \left(\mu\right) + \left(1 - \alpha\right) E_X^{PBE,SR} \left(\mu\right) + E_X^{PBE,LR} \left(\mu\right) + E_C^{PBE}$$
(1)

In equation (1), α represents the proportion of Hartree-Fock precise exchange interaction that introduced [51]. The parameter α is 0.25, which means 25% of Hartree-Fock in the short-range interaction. Monkhorst-Pack method was applied to calculate the single point energy. We calculated the single point energy when the singular value of *k*-point meshes increasing from $1 \times 1 \times 1$ to $21 \times 21 \times 21$. When the *k*-point mesh increases to $5 \times 5 \times 5$, the error of single point energy was less than 0.0001eV, which

can be considered as energy convergence. In consideration of lowering the calculation cost of hybrid functional HSE06, the $5 \times 5 \times 5$ *k*-point mesh was used to calculate the band gaps and the DOSs.

The configurations for generating pseudo potentials were K $3p^{6}4s^{1}$, Cs $5p^{6}6s^{1}$, Ag $4d^{10}5s^{1}$, Sn $5s^{2}5p^{2}$, and S $3s^{2}3p^{4}$. Vienna Ab initio Simulation Package (VASP) was used to calcaulate the DOSs [7]. In the calculation, the other calculating parameters and convergent criteria were set by the default values.

6. References

[1] G. M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallographica Section C: Struct Chem. 71 (2015) 3-8.

[2] G. Sheldrick, SHELXS-2017 and SHELXL-2017, University of Göttingen, Germany, (2017).

[3] P. Lou, Short-range exact exchange effects in ultra - narrow zigzag silicon carbide nanoribbons, Phys. Status. Solidi. B. 251 (2014) 423-434.

[4] J. Perdew, K. Burke, M. Ernzerhof, Perdew, burke, and ernzerhof reply, Phys. Rev. Lett. 80 (1998) 891.

[5] J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, J.G. Ángyán, Screened hybrid density functionals applied to solids, J. Chem. Phys. 124 (2006) 154709.

[6] A.J. Garza, G.E. Scuseria, Predicting band gaps with hybrid density functionals, J. Phys. Chem. Lett. 7 (2016) 4165-4170.

[7] Y. Meng, X.-W. Liu, C.-F. Huo, W.-P. Guo, D.-B. Cao, Q. Peng, A. Dearden, X. Gonze, Y. Yang, J. Wang, When density functional approximations meet iron oxides, J. Chem. Theory Comput. 12 (2016) 5132-5144.