Tuning of Spin Crossover Properties in a Series of Mononuclear Cobalt(II) Complexes Based on Macrocyclic Tetradentate Ligand and Pseudohalide Coligands

Subrata Ghosh,^a Subramani Selvamani,^a Sujit Kamilya,^a Sakshi Mehta^a and Abhishake Mondal^{*a} ^aSolid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.

Correspondence to: mondal@iisc.ac.in

Table of Content:

Experimental Section	4
Materials	4
Physical Methods	4
Magnetic Measurements	4
- X-ray Crystallography	5
Figures and Tables	6
Appendix: Checkcif	
References	

Fig. S1. Comparison of the room temperature experimental PXRD pattern and the 296 K simulated one for 1.

Fig. S2. Comparison of the room temperature experimental PXRD pattern and the 296 K simulated one for 2.

Fig. S3. Comparison of the room temperature experimental PXRD pattern and the 296 K simulated one for 3.

Fig. S4: TGA analysis for 1–3.

Fig. S5. Left: IR spectra of 1, 2 and 3 at room temperature; Right: ν (C=N) region of the IR spectra.

Fig. S6. IR spectrum of Na[C(CN)₃] at room temperature. Inset: ν (C=N) region of the spectrum.

Fig. S7. Variable temperature IR spectra of 1 and 2 in heating mode.

Fig. S8. Left: Variable temperature IR spectra of **1** in cooing mode. Right: Selected region of the spectra. Arrows indicate a change in intensities.

Fig. S9. Left: Variable temperature IR spectra of **2** in cooing mode. Right: Selected region of the spectra. Arrows indicate a change in intensities.

Fig. S10. Left: Variable temperature IR spectra of **3** in cooing mode. Right: Selected region of the spectra. Arrows indicate change in intensities.

Fig. S11. Left: Variable temperature IR spectra of **3** in cooing mode. Right: Selected region of the spectra. Arrows indicate a change in intensities.

Fig. S12. Packing diagrams of **1** at 100 K showing the 1D supramolecular arrangement (top) and the supramolecular double chain (bottom) connected by intermolecular $\pi \cdots \pi$, C-H \cdots C and C-H \cdots S (red dotted lines) interactions (Co: pink, C: gray, N: blue, S: orange, H: white).

Fig. S13. Packing diagrams of **2** at 100 K showing the 1D supramolecular arrangement (top) and the supramolecular double chain (bottom) connected by intermolecular $\pi \cdots \pi$, C-H \cdots C and C-H \cdots Se (red dotted lines) interactions (Co: pink, C: gray, N: blue, S: orange; Se: brown, H: white).

Fig. S14. Packing diagrams of **2** at 240 K showing the 1D supramolecular arrangement (top) and the supramolecular double chain (bottom) connected by intermolecular $\pi \cdots \pi$, C-H \cdots C and C-H \cdots Se (red dotted lines) interactions (Co: pink, C: gray, N: blue, S: orange; Se: brown, H: white).

Fig. S15. Perspective view of the packing diagrams of **2** at 296 K displaying supramolecular 1D (top) and double chain (bottom) arrangements produced by several intermolecular $\pi \cdots \pi$, C–H···C and C–H···Se (red dotted lines) interactions (Co, pink; C, gray; N, blue; Se, brown; H, white).

Fig. S16. Packing diagrams of **3** at 296 K showing the 1D supramolecular arrangement and the double layer supramolecular chain connected by intermolecular C-H····N and C-H····C (red dotted lines) interactions (Co: pink, C: gray, N: blue, H: white).

Fig. S17. Solid state UV-vis-NIR spectra of 1–3 at room temperature.

Fig. S18. UV-vis-NIR spectra of 1, 2 and 3 in DMF at room temperature (left: dilute solution, right: concentrated solution).

Fig. S19. Field dependence of the magnetization as M vs H plots for **1** (top, left), 2 (top, right) and **3** (bottom, left) at 100 K. The solid lines are the best fit. Bottom right: temperature dependence of χT for **1–3** at 2500 Oe

Fig. S20. Temperature dependence of χ T product for 1 in cooling (blue) and heating (red) modes.

Fig. S21. Temperature dependence of χ T product for 2 in cooling (blue) and heating (red) modes.

Fig. S22. Temperature dependence of χ T product for 3 in cooling (blue) and heating (red) modes.

Fig. S23. Field dependence of the magnetization as M vs H (left) and M vs H/T (right) plots for 1 at 4 and 8 K. The solid lines are guide for the eyes.

Fig. S24. Field dependence of the magnetization as M vs H (left) and M vs H/T (right) plots for 2 at 4 and 8 K. The solid lines are guide for the eyes.

Fig. S25. Field dependence of the magnetization as M vs H (left) and M vs H/T (right) plots for 3 at 4 and 8 K. The solid lines are guide for the eyes.

Fig. S26. $\chi T vs.$ T data fit using the ideal solution model of 1.

Fig. S27. $\chi T vs.$ T data fit using the ideal solution model of 2.

Fig. S28. $\chi T vs.$ T data fit using the ideal solution model of 3.

Fig. S29. Cyclic voltammograms for reduction (left) and oxidation (right) of the ligand L in 0.2 M ($^{n}Bu_{4}N$)PF₆/DMF with a scan rate of 100 mV/s.

Fig. S30. Square wave voltammograms of 1 in acetonitrile containing 0.2 M ("Bu₄N)PF₆ as an electrolyte. Arrows indicate open circuit potential along with the direction of the potential sweep.

Fig. S31. Cyclic voltammogram for oxidation of **2** in 0.2 M ($^{n}Bu_{4}N$)PF₆/DMF with a scan rate of 0.1 V s⁻¹. Arrows indicate open circuit potential along with the direction of the potential sweep.

Fig. S32. Cyclic voltammogram for oxidation of **3** in 0.2 M ($^{n}Bu_{4}N$)PF₆/DMF with a scan rate of 0.1 V s⁻¹. Arrows indicate open circuit potential along with the direction of the potential sweep.

Table S1. X-ray Crystallographic Data for Complexes 1–3.

Table S2. Selected bond lengths (Å) and bond angles (°) in 1–3.

Table S3: CShM analysis data for complexes 1–3.

 Table S4. Short intra-and inter molecular interactions in 1–3.

Table S5. Spin crossover behaviors of mononuclear cobalt(II) complexes

Appendix: Checkcif files for complexes 1–3.

Experimental Section

Materials

The reactions and manipulations presented herein were performed under an argon atmosphere using standard Schlenk techniques if not otherwise stated. Solvents were dried using conventional drying methods and freshly distilled before use. The reagents were used as commercially available without further purification. The Ligand L was prepared according to a literature procedure reported elsewhere.¹

Physical Methods

Physical methods including magnetic measurements and single-crystal X-ray diffraction studies (*vide infra*) were performed using a similar procedure described by Mondal *et.* al.² The elemental analyses of C, H, and N were studied with a Thermo Scientific Flash 2000 Organic Elemental Analyzer. Infrared (IR) spectra were recorded in the spectral range of 4000–400 cm⁻¹ on a Bruker Tensor 27 spectrometer. UV-vis-NIR spectra were studied from 250–2000 nm on a Lambda 750 UV-vis-NIR spectrometer. Solution–state UV-vis-NIR spectroscopic studies were recorded with 1 cm quartz cuvettes, while Solid–state spectra were recorded using *ca.* 5% sample by weight in KBr. Thermogravimetric analysis (TGA) was measured using a Mettler Toledo TGA/SDTA851 analyzer from 27°C to 300°C (10 °C min⁻¹) under nitrogen atmosphere. Powder X-ray diffraction (PXRD) studies were performed with a PANalytical Empyrean diffractometer at 45 kV and 30 mA, under Cu–K α radiation ($\lambda = 1.54059$ Å) and data analyses have been performed by PANalytical X'Pert HighScore Plus software.³ Electrochemical measurements were done using a Metrohm Autolab PGSTAT101, where platinum has been used as a working electrode in DMF with 0.2 M "Bu₄NPF₆ supporting electrolyte. The concentration of sample *ca.* 1 mM has been used. Ferrocene has been applied as an internal reference. To remove the adhering mother liquor from the crystalline complexes, it has been isolated from the mother liquor and soaked gently over filter paper, before any physical measurement.

Magnetic Measurements

The magnetic investigation was carried out with a Quantum Design MPMS–XL EverCool SQUID magnetometer, from 2–300 K, 2–375 K, and 2–400 K for 1–3, respectively, under an external dc applied fields in the range of -5 T to 5 T. Polycrystalline samples of 1–3 (14.40, 18.21 and 26.74 mg, respectively)

placed in a polypropylene bag $(2.8 \times 0.75 \times 0.02 \text{ cm})$ were subjected to measurements. The temperature dependence of magnetization was recorded under 2500 Oe and 10000 Oe external dc field. The isothermal magnetization was studied at 4 and 8 K. *M vs H* data were recorded at 100 K to examine the presence of ferromagnetic impurities which were observed to be absent. The magnetic data were corrected for the sample holder and the diamagnetic contribution.

X-ray Crystallography

Single–crystal X–ray structure diffraction studies of complexes 1–3 was performed with a Bruker SMART APEX CCD diffractometer equipped with graphite–monochromated Mo K α radiation (λ = 0.71073 Å). The single crystal was mounted on crystal mounting loops using Paratone oil at 296 K and collected the data. For variable temperature measurements, the single crystal was slowly cooled to measure temperature using a sweep rate of 2 K/min, and collected data at 240 K (2) and 100 K (1 and 2). Data integration and reduction were carried out using SAINT software, and empirical absorption corrections were performed using SADABS program.⁴ The structures were solved by direct methods and refined using full-matrix least-squares method on F2 with SHELXL-2014.⁵ All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were placed to ideal positions and refined isotopically with riding model.

Figures and Tables

Fig. S1. Comparison of the room temperature experimental PXRD pattern and the 296 K simulated one for 1.

Fig. S2. Comparison of the room temperature experimental PXRD pattern and the 296 K simulated one for 2.

Fig. S3. Comparison of the room temperature experimental PXRD pattern and the 296 K simulated one for 3.

Fig. S4: TGA analysis for 1–3.

Fig. S5. Left: IR spectra of 1, 2 and 3 at room temperature; Right: ν (C=N) region of the IR spectra.

Fig. S6. IR spectrum of Na[C(CN)₃] at room temperature. Inset: ν (C=N) region of the spectrum.

Fig. S7. Variable temperature IR spectra of 1 and 2 in heating mode.

Fig. S8. Left: Variable temperature IR spectra of 1 in cooing mode. Right: Selected region of the spectra. Arrows indicate a change in intensities.

Fig. S9. Left: Variable temperature IR spectra of 2 in cooing mode. Right: Selected region of the spectra. Arrows indicate a change in intensities.

Fig. S10. Left: Variable temperature IR spectra of 3 in cooing mode. Right: Selected region of the spectra. Arrows indicate change in intensities.

Fig. S11. Left: Variable temperature IR spectra of **3** in cooing mode. Right: Selected region of the spectra. Arrows indicate a change in intensities.

Fig. S12. Packing diagrams of 1 at 100 K showing the 1D supramolecular arrangement (top) and the supramolecular double chain (bottom) connected by intermolecular $\pi \cdots \pi$, C-H \cdots C and C-H \cdots S (red dotted lines) interactions (Co: pink, C: gray, N: blue, S: orange, H: white).

Fig. S13. Packing diagrams of **2** at 100 K showing the 1D supramolecular arrangement (top) and the supramolecular double chain (bottom) connected by intermolecular $\pi \cdots \pi$, C-H \cdots C and C-H \cdots Se (red dotted lines) interactions (Co: pink, C: gray, N: blue, S: orange; Se: brown, H: white).

Fig. S14. Packing diagrams of **2** at 240 K showing the 1D supramolecular arrangement (top) and the supramolecular double chain (bottom) connected by intermolecular $\pi \cdots \pi$, C-H \cdots C and C-H \cdots Se (red dotted lines) interactions (Co: pink, C: gray, N: blue, S: orange; Se: brown, H: white).

Fig. S15. Perspective view of the packing diagrams of 2 at 296 K displaying supramolecular 1D (top) and double chain (bottom) arrangements produced by several intermolecular $\pi \cdots \pi$, C–H···C and C–H···Se (red dotted lines) interactions (Co, pink; C, gray; N, blue; Se, brown; H, white).

Fig. S16. Packing diagrams of 3 at 296 K showing the 1D supramolecular arrangement and the double layer supramolecular chain connected by intermolecular C-H…N and C-H…C (red dotted lines) interactions (Co: pink, C: gray, N: blue, H: white).

Fig. S17. Solid state UV-vis-NIR spectra of 1–3 at room temperature.

Fig. S18. UV-vis-NIR spectra of 1, 2 and 3 in DMF at room temperature (left: dilute solution, right: concentrated solution).

Fig. S19. Field dependence of the magnetization as M vs H plots for 1 (top, left), 2 (top, right) and 3 (bottom, left) at 100 K. The solid lines are the best fit. Bottom right: temperature dependence of χT for

1–3 at 2500 Oe

Fig. S20. Temperature dependence of χ T product for 1 in cooling (blue) and heating (red) modes.

Fig. S21. Temperature dependence of χ T product for 2 in cooling (blue) and heating (red) modes.

Fig. S22. Temperature dependence of χ T product for 3 in cooling (blue) and heating (red) modes.

Fig. S23. Field dependence of the magnetization as M vs H (left) and M vs H/T (right) plots for 1 at 4 and 8 K. The solid lines are guide for the eyes.

Fig. S24. Field dependence of the magnetization as M vs H (left) and M vs H/T (right) plots for 2 at 4, and 8 K. The solid lines are guide for the eyes.

Fig. S25. Field dependence of the magnetization as M vs H (left) and M vs H/T (right) plots for 3 at 4 and 8 K. The solid lines are guide for the eyes.

The following equation deduced from the ideal solution model was applied to fit the spin crossover properties observed by magnetic studies.

$$X = X_{LS} + \frac{X_{HS} - X_{LS}}{1 + \exp \left[\triangle H/R (1/T - 1/T_{1/2}) \right]}$$

 $X = \chi T$ product

 $X_{LS} = \chi T$ product for pure low-spin

 $X_{HS} = \chi T$ product for pure high-spin

 ΔH = Enthalpy change associated to the spin crossover phenomenon

R = Ideal gas constant

Significant differences in the ΔH and ΔS values in 1-3 might be coming from the non-saturation nature of curves and/or presence of magnetic anisotropy (g > 2) in these systems.

Fig. S26. $\chi T vs.$ T data fit using the ideal solution model of 1.

Fig. S27. $\chi T vs.$ T data fit using the ideal solution model of 2.

Fig. S28. $\chi T vs.$ T data fit using the ideal solution model of 3.

Fig. S29. Cyclic voltammograms for reduction (left) and oxidation (right) of the ligand L in 0.2 M (^{*n*}Bu₄N)PF₆/DMF with a scan rate of 100 mV/s.

Fig. S30. Square wave voltammograms of **1** in acetonitrile containing 0.2 M ("Bu₄N)PF₆ as an electrolyte. Arrows indicate open circuit potential along with the direction of the potential sweep.

Fig. S31. Cyclic voltammogram for oxidation of **2** in 0.2 M (*ⁿ*Bu₄N)PF₆/DMF with a scan rate of 0.1 V s⁻¹. Arrows indicate open circuit potential along with the direction of the potential sweep.

Fig. S32. Cyclic voltammogram for oxidation of **3** in 0.2 M (^{*n*}Bu₄N)PF₆/DMF with a scan rate of 0.1 V s⁻¹. Arrows indicate open circuit potential along with the direction of the potential sweep.

		1		2		3
CCDC no	2004092	2004093	2004095	2004096	2004097	2004098
temp (K)	296	100	296	240	100	296
empirical formula	$C_{24}H_{32}CoN_6S_2$	$C_{24}H_{32}CoN_6S_2 \\$	$C_{24}H_{32}CoN_6Se_2$	$C_{24}H_{32}CoN_6Se_2$	$C_{24}H_{32}CoN_6Se_2$	$C_{30}H_{32}CoN_{10}$
formula wt	527.61	527.61	621.41	621.42	621.42	591.59
cryst syst	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
space group	$P2_1/n$	$P2_l/n$	$P2_{1}/n$	$P2_1/n$	$P2_l/n$	$P2_l/c$
<i>a</i> (Å)	11.801(3)	11.6028(9)	11.725(4)	11.6923(6)	11.6185(15)	13.3379(2)
<i>b</i> (Å)	14.041(3)	13.9245(11)	14.041(4)	13.9860(7)	13.8515(19)	12.6230(2)
<i>c</i> (Å)	15.332(4)	15.2779(12)	15.673(4)	15.6498(8)	15.550(2)	18.7965(4)
α (deg)	90	90	90	90	90	90
β (deg)	90.076(10)	90.056(4)	90.133(14)	90.018(2)	90.276(7)	110.087(1)
$\gamma(\text{deg})$	90	90	90	90	90	90
$V, Å^3$	2540.5(11)	2468.4(3)	2580.3(13)	2559.2(2)	2502.5(6)	2972.16(9)
Z	4	4	4	4	4	4
d_{calcd} (g cm ⁻³)	1.379	1.420	1.600	1.613	1.649	1.322
μ (mm ⁻¹)	0.864	0.889	3.510	3.539	3.619	0.615
F(000)	1108	1108	1252	1252	1252	1236
$\theta_{\rm max}$ (deg)	31.196	30.634	30.681	30.541	30.672	30.599
completeness (%)	97.0	99.8	99.2	90.1	99.8	98.5
no of rflns collected	8227	7612	8008	7814	7743	9147
no of Indep rflps	4665	5246	3235	3272	5904	5288
goodness of fit on F^2	1.017	1.09	0.976	0.974	1.014	0.999
final R indices $(I > 2\sigma(I))$	R1 = 0.0462	R1 = 0.0419	R1 = 0.0564	R1 = 0.0569	R1 = 0.0335	R1 = 0.0447
	wR2 = 0.1019	wR2 = 0.0864	wR2 = 0.1194	wR2 = 0.0937	wR2 = 0.0682	wR2 = 0.1035
final R indices (all data)	R1 = 0.0988	R1 = 0.0787	R1 = 0.1815	R1 = 0.1674	R1 = 0.0556	R1 = 0.0938
linal K indices (all data)	wR2 = 0.1218	wR2 = 0.1026	wR2 = 0.1666	wR2 = 0.1239	wR2 = 0.0756	wR2 = 0.1247

Table S1.	X-rav	Crystall	ographic	Data for	Complexes	1-3.
	5	2	0 1		1	

 $R1 = \sum ||Fo| - |Fc|| / \sum |Fo|$ and $wR2 = |\sum w(|Fo|^2 - |Fc|^2) | / \sum |w(Fo)^2|^{1/2}$

Complex]	l		2		3
	296 K	100 K	296 K	240 K	100 K	296 K
Co(1)-N(1)	2.409(2)	2.373(2)	2.385(5)	2.374(2)	2.363(2)	2.335(2)
Co(1)-N(2)	2.063(2)	1.987(2)	2.022(5)	1.991(3)	1.923(2)	1.925(1)
Co(1)-N(3)	2.345(2)	2.328(2)	2.316(5)	2.328(3)	2.330(2)	2.324(2)
Co(1)-N(4)	2.067(2)	1.988(2)	2.021(5)	1.993(3)	1.920(2)	1.919(2)
Co(1)-N(5)	2.029(2)	1.975(2)	2.013(6)	1.976(3)	1.917(2)	1.922(2)
Co(1)-N(6)	2.024(2)	1.971(2)	2.002(6)	1.979(3)	1.928(2)	1.937(2)
N(1)-Co(1)-N(2)	77.11(8)	77.78(6)	77.8(2)	78.3(1)	80.20(7)	81.03(7)
N(1)-Co(1)-N(3)	145.43(7)	149.20(6)	147.1(2)	148.73(9)	152.31(7)	150.78(6)
N(1)-Co(1)-N(4)	78.07(8)	78.80(6)	76.6(2)	79.5(1)	79.15(7)	78.82(7)
N(1)-Co(1)-N(5)	105.13(9)	97.29(7)	101.9(2)	99.7(1)	99.87(7)	102.51(7)
N(1)-Co(1)-N(6)	100.32(9)	100.32(9)	97.5(2)	104.2(1)	96.42(7)	96.62(8)
N(2)-Co(1)-N(3)	76.69(8)	79.30(7)	77.9(2)	78.6(1)	79.55(7)	77.97(7)
N(2)-Co(1)-N(4)	81.16(8)	83.32(7)	83.3(2)	84.0(1)	85.40(8)	89.14(7)
N(2)-Co(1)-N(5)	172.39(9)	91.59(8)	90.6(2)	90.7(1)	90.34(8)	89.57(8)
N(2)-Co(1)-N(6)	90.64(9)	173.85(8)	173.5(2)	174.1(1)	175.47(8)	177.60(8)
N(3)-Co(1)-N(4)	75.96(8)	78.34(7)	78.8(2)	77.4(1)	80.59(7)	80.76(7)
N(3)-Co(1)-N(5)	98.29(9)	103.66(7)	100.2(2)	101.4(1)	98.93(7)	97.44(7)
N(3)-Co(1)-N(6)	102.14(8)	99.68(7)	104.7(2)	97.1(1)	102.63(7)	104.40(8)
N(4)-Co(1)-N(5)	92.13(9)	174.12(8)	173.9(2)	174.7(1)	175.73(8)	177.97(8)
N(4)-Co(1)-N(6)	171.80(9)	90.53(8)	91.3(2)	91.1(1)	91.03(8)	90.87(8)
N(5)-Co(1)-N(6)	96.01(1)	94.54(8)	94.8(2)	94.2(1)	93.21(8)	90.49(8)
Co(1)-N(5)-C(1)	165.9(2)	167.0(2)	169.6(6)	169.2(3)	169.8(2)	173.1(1)
Co(1)-N(6)-C(2)	168.6(2)	169.0(2)	166.9(6)	167.2(3)	168.3(2)	171.4(1)
N(5)-C(A)-X(Y)	179.2(3) ^a	179.5(2) ^a	177.3(6) ^c	178.2(3) ^c	177.9(2) ^c	177.4(2) ^e
N(6)-C(B)-X(Z)	178.8(3) ^b	178.8(2) ^b	178.1(6) ^d	$178.2(4)^{d}$	$178.1(2)^{d}$	179.5(3) ^f

Table S2. Selected bond lengths (Å) and bond angles (°) in 1-3.

a: N(5)-C(1)-S(1); b: N(6)-C(2)-S(2); c: N(5)-C(1)-Se(1); d: N(6)-C(2)-Se(2); e: N(5)-C(1)-C(2); f: N(6)-C(5)-C(6)

Continuous Shape Measures (CShM) Analysis:

Continuous Shape Measures (CShM) analysis was carried out to determine the geometry around Co atom. Based on the values obtained, the idealized polyhedron was matched with the actual coordination spheres. The smallest value is symbolic of the proximity of the actual coordination sphere and idealized polyhedron.

Complex	Temp.	Structure					
		HP - 6	PPY - 6	OC - 6	TPR - 6	JPPY - 6	
[Co(L)(NCS) ₂] (1)	296 K	33.304	24.436	2.428	12.549	29.346	
	100 K	33.363	24.915	2.263	12.705	29.803	
$[Co(L)(NCSe)_2] (2)$	296 K	33.362	24.258	2.365	12.305	29.207	
	240 K	33.329	24.601	2.317	12.389	29.604	
	100 K	33.487	25.480	2.277	12.837	29.794	
$[Co(L)((C(CN)_3)_2](3)$	296 K	33.047	24.002	2.551	11.356	28.737	

Table S3: CShM analysis data for complexes 1–3.

HP - 6: Hexagon (D6h), PPY - 6 = Pentagonal pyramid, OC - 6: Octahedron (Oh), TPR - 6: Trigonal prism (D3h), JPPY - 6 = Johnson pentagonal pyramid J2 (C5v);

	T / K	D-H···A	D-H / Å	H···A / Å	D…A / Å	∠D-H…A / °
	296	С6-Н6…С2	0.930	2.826	3.680	153.1
		C6-H6S2	0.930	2.958	3.769	146.5
		C13-H13-C1	0.930	2.761	3.647	159.6
		C10-H10B…S2	0.970	2.950	3.520	118.7
		C22-H22B…C13	0.960	2.889	3.730	146.9
I	100	С6-Н6…С1	0.93	2.719	3.600	158.5
		C13-H13-C2	0.93	2.773	3.621	152.1
		C13-H13S2	0.93	2.9157	3.714	144.8
		C20-H20C…C6	0.960	2.846	3.676	145.4
		C19-H19B…C5	0.960	2.880	3.801	161.0
		C9-H9A…S2	0.970	2.8322	3.710	120.3
		С9-Н9А…С2	0.970	2.0/1	5.555	147.9
	296	С6-Н6…С1	0.93	2.844	3.696	152.9
		C6-H6…Se1	0.93	3.002	3.799	144.8
		C10-H10B…Se1	0.97	2.9865	3.800	151.5
		C16-H16BSe1	0.97	5.040	5.579	110.4
	240	C6-H6…C1	0.93	2.834	3.687	153.0
		C6-H6…Sel	0.93	2.995	3./82 2.712	143.3
		C13-H13C2	0.93	2.030	3.712	137.0
		CIO-HIOA···Sel	0.97	3 2678	3 558	99.4
2	100	CIO-HI0B···Sel	0.07	2 201	2 6 4 9	151 5
	100	С6-Н6-СТ	0.95	2.804	5.048 2.727	131.3
		Co-Ho…Sel	0.93	2.904	3.665	141.5
		C13-H13C2	0.97	2.9236	3,797	150.4
		$C10-\Pi 10D$ Sel	0.97	3.002	3.500	113.22
		C10A-H10DSel	0.960	2.866	3.703	146.2
		C10 H10A = C14	0.960	2.891	3.815	161.9
		C164Sel	-	-	3.500	-
	296	C16-H16N8	0.970	2.629	3.321	136.31
	_>0	C9-H9BN7	0.970	2.512	3.430	157.9
3		C26-H26BN7	0.960	2.705	3.605	156.3
		C15-H15B…C4	0.970	2.894	3.847	167.7
		C3C11	-	-	3.382	-
		C17N8	-	-	3.150	-

Table S4. Short intra–and inter molecular interactions in 1–3.

Complex	T _{1/2} (K) ^a	Т (К) ^ь	Co–N (Å)	Spin State	Ref.
[Co(L)(NCS) ₂]	168 K	296	2.063(2)-2.409(2)	HS	This
	Gradual and complete	100	1.987(2)-2.373(2)	HS/LS	work
$[Co(L)(NCSe)_2]$	255 K	296	2.013(6)-2.385(5)	HS/LS	This
	Gradual and	240	1.999(3)-2.374(2)	HS/LS	work
	incomplete	100	1.920(2)-2.363(2)	LS	
$[Co(L)(C(CN)_3)_2]$	Incomplete	296	1.919(2)-2.335(3)	LS	This
	Mainly LS				work
$[Co(L)(N(CN)_2)_2]$	238 K	280	1.998(3)-2.349(3)	HS	1a
	Gradual and complete	100	1.907(2)-2.341(2)	LS	
[Co ^{II} (L1)]	~ 250	295	1.9533(17)-2.0440(18)	HS	6
	Gradual and		1.0050(10) 0.1450(10)		
	incomplete	30	1.8850(13)-2.1472(12)	LS	
$[Co^{II}(L2)]$	>300	140	1.881(2)-2.042(2)	LS	6
	Gradual and				
	incomplete				
$[Co^{II}(L3)]$	~265, incomplete.	300	1.939(2)-2.080(3)	HS	7
	~220, incomplete.				
	~175, almost	30	1.8965(8)-2.1435(8)	LS	
	complete				
$[Co^{II}(dpzca)_2]$	$T^{1/2}\downarrow = 168$	298	2.049(3)-2.145(3)	HS	8
	$T^{1/2} \uparrow = 179$				
	$\Delta T^{1/2} = 11 \text{ K},$	90	1.91(1)–2.20(1) Å	LS	
	Abrupt and hysteretic				
$[Co^{II}(L4)_2](ClO_4)_2.$	>200	298	2.015(7)-2.123(5)	HS	9
MeOH	Gradual and				
	incomplete	123	1.883(9)-2.252(6)	LS	
[Co ^{II} (L5)(dbsq)](B(>200	100	1.931(2)-2.368(2)	HS	10
p-PhCl) ₄)	Gradual and				
	incomplete	400	1.986(4)-2.371(3)	LS	
$[Co^{II}(L6)_2](NO_3)_2$	>218	123	1.959(3)-1.986(3)	LS	10
	Gradual and				
	incomplete, and	273	2.040(2)-2.056(2)	HS/LS	
	ferromagnetic			HS	
	coupling	353	2.056(3)-2.073(4)		
$[Co^{II}(L7)_2](B(C_6F_5))$	>200.	123	1.977(2)-1.992(2)	LS	11
4)2.CH2Cl2	Gradual and				
	incomplete, anti- and	273	2.078(4)-2.093(3)	HS	
	ferromagnetic				
	coupling				
[Co ^{II} (papl) ₂]	~150	147	1.865(2)-2.048(2)	LS	12
	Gradual				
		325	1.909(2)-2.042(1)	HS	

 Table S5. Spin crossover behaviors for mononuclear cobalt(II) complexes

$[Co(tppz)_2](dca)_2$	400	125	1.855(5)-2.155(4)	quasi LS	13
	Incomplete				
		330	1.870(3)-2.128(2)		
$[Co^{II}(L8)_2][BDS] \cdot 2$	Abrupt, hysteretic,	300	1.887(4)-2.132(4)	LS	14
H ₂ O	$T_{1/2}\downarrow$ = 226 K, $T_{1/2}\uparrow$ = 260 K, ΔT ¹ / ₂ = 20 K	260	1.883(2)- 2.140(2)	LS	
		230	1.874(2)- 2.143(3)	LS	
		200	1.874(3)-2.147(3)	LS	
Co ^{II} (L8) ₂][BDS]	abrupt and complete SCO transition with a	300	1.981(5)-2.134(5)	HS	14
	wide thermal hysteresis	260	1.950(5)-2.130(5)	HS	
	loop $T_{1/2}\downarrow = 235 \text{ K}, T_{1/2}\uparrow =$	230	1.858(5)-2.136(5)	LS	
	$267 \text{ K}, \Delta T^{1/2} = 35 \text{ K}$	200	1.871(3)-2.143(3)	LS	
$[Co(terpy)_2](ClO_4)_2$	$T_{1/2} \approx 180 \text{ K}$	243	$Co-N_{central} = 2.02$	HS	15
·0.5H ₂ O			$Co-N_{distal} = 2.14$		
[Co(terpy) ₂](BF ₄) ₂	$T_{1/2} = 270 \text{ K}$	375	2.030(4)-2.160(3)	HS	16
		30	1.907(3)- 2.132(2)	LS	
[Co(4- terpyridone) ₂](ClO ₄) ₂ .H ₂ O	172.4 K almost complete and relatively cooperative spin conversion	293	2.106(5)-2.153(6)	HS	17
[Co(4-	152 K	293	1.892(6)-2.036(7)	HS:LS	18
terpyridone) ₂](BF ₄) ₂ ·H ₂ O (2 Polymorphs)	Poorly cooperative	293	1.949(4)- 2.158(5)	HS:LS	
[Co(4- terpyridone)a]Xa:aS	Incomplete at high	293	1.894(2)- 2.171(2)	HS:LS	18
$X = [BF4]^{-}(p = 1)$ and $[SiF_6]^{2-}(p = 0.5)$ and $S = CH_3OH$		105	1.871(3)- 2.183(3)	LS	
[Co(OH-	Tc↓ = 155.6 K; Tc↑ =	293	1.991(13)-2.165(14)	HS	19
$terny$ $(CF_{2}O_{1})$	188.5 K				
H_2O				HS	
[Co(C5C12C10-	$T_{1/2}\uparrow=288 \text{ K}; T_{1/2}\downarrow$	-	-	-	20
terpy) ₂](BF ₄) ₂	$= 284 \text{ K}; \Delta T = 4 \text{ K}$				

$[Co(C16-terpy)_2](BF_4)_2 \cdot MeO$	260 K	130	1.99-2.13	LS: HS	21
Н					
[Co(C16-	$T_{1/2}\downarrow = 217 \text{ K}; T_{1/2}\uparrow$	-	-	-	21
terpy) ₂](BF ₄) ₂	$= 260 \text{ K}; \Delta \text{T} = 43 \text{ K}$				
[Co(C14-	$T_1 = 50 \text{ K (steep)};$	190	2.020(4)-2.167(4)	HS	22
terpy)2](BF4)2·MeO	$T_2\uparrow = 206 \text{ K}; T_2\downarrow =$				
Н	184 K; $T_{1/2} = 175$ K	190	1.945(3)-2.144(4)	IS	
	(Gradual)				
		10	1.8443(3)-2.137(4)	LS	
[Co(C14-	$T_{1/2}\downarrow = 250 \text{ K}; T_{1/2}\uparrow$	-	-	-	22
terpy) ₂](BF ₄) ₂	$= 307 \text{ K}; \Delta \text{T} = 57 \text{ K}$				
[Co(C12-terpy) ₂]	$T_{1/2} = 49 \text{ K}; T_{1/2} = 128$	180	1.99-2.11	HS	23
$(BF_4)_2 \cdot EtOH \cdot 0.5H_2$	K				
0					
[Co ^{II} (Ar)	229 K	90	1.875(3)	LS	24
(NHAr')]					
		240	1.880(2)	HS	
[Co ^{II} (3,4-lut) ₄ Br]Br	$T^{1/2} \approx 210 \text{ K}$	296	2.110(4)-2.136(4)	HS	25
	Gradual				
		123	1.9686(18)-1.9677(18)	LS	
1					

a: spin crossover temperature; b: structure analyses temperature; HS: high-spin; LS: low-spin $L = N,N^{\circ}$ -di-tert-butyl-2,11-diaza[3,3](2,6)pyridinophane, L1= Hexachlorine tris-dioximate Butyl capped boron derivative; L2= Hexathiol tris-dioximate phenyl capped boron derivative; L3= Hexachlorine tris-dioximate methyl capped boron derivative; dpzca = dipyrazine-imide analogue; L4= 2,5-bis[1-[2-nitro-2-(pyridin-2-yl)-hydrazono]ethyl]pyrazine; L5 = 3,5-di-tert-butylcatechol; L6= 3,5-di-tert-butylsemiquinol; L7= 4,4-dimethyl-2,2-bis(2-pyridyl)oxazolidine N-oxide; papl= 1-(2-pyridylazo)-2-phenanthrol; tppz= 2,3,5,6-tetrakis(2-pyridyl)pyrazine ; L8= 4'-(4-bromophenyl)-2,2':6',2''-terpyridine ; terpy = 2,2':6',2''-terpyridine; 4-terpyridone = 2,6-bis(2-pyridyl)-4(1H)-pyridone; C5C12C10-terpy = 4'-5'''-decyl-1'''-heptadecyloxy-2,2':6',2''-terpyridine; C16-terpy= 4'-hexadecyloxy-2,2':6',2''-terpyridine; C16-terpy= 4'-hexadecyloxy-2,2':6',2''-terpyridine; Ar = C₆H₃-2,6-(C₆H₃-2,6-(C₆H₃-2,6-(C₆H₂-2,4,6-Me₃)₂; 3,4-lut = 3,4-dimethylpyridine;

Appendix: Checkcif

Complex 1

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) Complex1_296K

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: Complex1_296K

Bond precision.	C - C = 0 0032 A	Wavelength=	0 71073
bolia precision.	C C = 0.0052 A	Waverengen-	
Cell:	a=11.801(3) alpha=90	b=14.041(3) beta=90.076(10)	c=15.332(4) gamma=90
Temperature:	296 K		
	Calculated	Reported	
Volume	2540.5(11)	2540.5(10)	
Space group	P 21/n	P 21/n	
Hall group	-P 2yn	-P 2yn	
Moiety formula (C24 H32 Co N6 S2	?	
Sum formula	C24 H32 Co N6 S2	C24 H32 Cc	N6 S2
Mr	527.61	527.60	
Dx,g cm-3	1.379	1.379	
Ζ	4	4	
Mu (mm-1)	0.864	0.864	
F000	1108.0	1108.0	
F000′	1110.61		
h,k,lmax	17,20,22	16,20,22	
Nref	8227	7983	
Tmin,Tmax Tmin'	0.667,0.772 0.590	0.845,0.94	3
Correction metho	od= # Reported T	Limits: Tmin=0.845 T	max=0.943
AbsCorr = MULTI-	-SCAN		
Data completenes	ss= 0.970	Theta(max)= 31.196	5
R(reflections)=	0.0462(4665)	wR2(reflections)=	0.1218(7983)
· · · · · · · · · · · · · · · · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · /
S = 1.017	Npar=	298	

The following ALERTS were generated. Each ALERT has the format name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

🎽 Alert level C

PLAT242_ALERT_2_C Low'MainMol' Ueq as Compared to Neighbors ofC1 CheckPLAT242_ALERT_2_C Low'MainMol' Ueq as Compared to Neighbors ofC2 CheckPLAT412_ALERT_2_C Short Intra XH3 .. XHnH9B..H24A1.81 Ang.x,y,z=1_555 Check PLAT412_ALERT_2_C Short Intra XH3 .. XHnH16B..H20A.1.89 Ang.x,y,z=1_555 Check PLAT905_ALERT_3_C Negative K value in the Analysis of Variance...1.087 Report----

🎽 Alert level G

PLAT230_ALERT_2_G	Hirshfeld	Test Diff	for	S2	C2		5.2	s.u.
PLAT232_ALERT_2_G	Hirshfeld	Test Diff	(M-X)	Col	N5		9.6	s.u.
PLAT232_ALERT_2_G	Hirshfeld	Test Diff	(M-X)	Col	N6		7.5	s.u.
PLAT793_ALERT_4_G	Model has	Chirality	at N1		(Centro	SPGR)	R	Verify
PLAT793_ALERT_4_G	Model has	Chirality	at N3		(Centro	SPGR)	R	Verify
PLAT794_ALERT_5_G	Tentative	Bond Vale	ency for	Col	(II)) .		2.01 Info
PLAT883_ALERT_1_G	No Info/Va	lue for _	atom_si	tes_solu	tion_prin	nary .	Please	Do !
PLAT912_ALERT_4_G	Missing #	of FCF Re	flection	ns Above	STh/L=	0.600	228	Note
PLAT941_ALERT_3_G	Average HK	L Measure	ement Mu	ltiplici	ty	• • • • • •	4.9	Low
PLAT978_ALERT_2_G	Number C-C	Bonds wi	th Posi	tive Res	idual Der	nsity.	2	Info

```
0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
5 ALERT level C = Check. Ensure it is not caused by an omission or oversight
10 ALERT level G = General information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
8 ALERT type 2 Indicator that the structure model may be wrong or deficient
2 ALERT type 3 Indicator that the structure quality may be low
3 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

test-

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 22/04/2020; check.def file version of 09/03/2020

Datablock Complex1_296K - ellipsoid plot

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) Complex1 100K

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: Complex1_100K

Bond precision:	C-C = 0.0030 A	W	avelength	n=0.71073
Cell:	a=11.6028(9) alpha=90	b=13.9245(beta=90.05	11) 6(4)	c=15.2779(12) gamma=90
Temperature:	100 K			
	Calculated		Reported	
Volume	2468.4(3)		2468.3(3))
Space group	P 21/n		P 21/n	
Hall group	-P 2yn		-P 2yn	
Moiety formula (C24 H32 Co N6 S2		?	
Sum formula	C24 H32 Co N6 S2		С24 Н32 (Co N6 S2
Mr	527.61		527.60	
Dx,g cm-3	1.420		1.420	
Z	4		4	
Mu (mm-1)	0.889		0.889	
F000	1108.0		1108.0	
F000′	1110.61			
h,k,lmax	16,19,21		16,19,21	
Nref	7612		7597	
Tmin,Tmax	0.659,0.766		0.845,0.9	943
Tmin'	0.581			
Correction metho	od= # Reported T	Limits: Tm	in=0.845	Tmax=0.943
AbsCorr = MULTI-	-SCAN			
Data completenes	ss= 0.998	Theta(ma	(x)= 30.63	34
R(reflections)=	0.0419(5246)	wR2(refl	ections)=	= 0.1026(7597)
S = 1.009	Npar=	426		

The following ALERTS were generated. Each ALERT has the format name_ALERT_alert-type_alert-level.

test-

Click on the hyperlinks for more details of the test.

🎽 Alert level C

RINTA01_ALERT_3_C The value of Rint is greater than 0.12 Rint given 0.133 PLAT222_ALERT_3_C NonSolvent Resd 1 H Uiso(max)/Uiso(min) Range 4.2 Ratio

🎽 Alert level G

PLAT020_ALERT_3_G The Value of Rint is Gr	reater Than 0.	.12		0.133	Report
PLAT164_ALERT_4_G Nr. of Refined C-H H-At	toms in Heavy-	-Atom St	ruct.	32	Note
PLAT230_ALERT_2_G Hirshfeld Test Diff for	r Sl	C1		7.6	s.u.
PLAT230_ALERT_2_G Hirshfeld Test Diff for	r S2	C2		7.5	s.u.
PLAT230_ALERT_2_G Hirshfeld Test Diff for	r N5	C1		5.7	s.u.
PLAT232_ALERT_2_G Hirshfeld Test Diff (M-	-X) Col	N4		5.3	s.u.
PLAT232_ALERT_2_G Hirshfeld Test Diff (M-	-X) Col	N5		16.2	s.u.
PLAT232_ALERT_2_G Hirshfeld Test Diff (M-	-X) Col	N6		14.3	s.u.
PLAT793_ALERT_4_G Model has Chirality at	Nl	(Centro	SPGR)	S	Verify
PLAT793_ALERT_4_G Model has Chirality at	N3	(Centro	SPGR)	S	Verify
PLAT794_ALERT_5_G Tentative Bond Valency	for Col	(II)		2.34	Info
PLAT883_ALERT_1_G No Info/Value for _ator	m_sites_soluti	ion_prim	nary .	Please	Do !
PLAT912_ALERT_4_G Missing # of FCF Reflect	ctions Above S	STh/L=	0.600	15	Note
PLAT978_ALERT_2_G Number C-C Bonds with B	Positive Resid	dual Den	sity.	11	Info

```
0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
2 ALERT level C = Check. Ensure it is not caused by an omission or oversight
14 ALERT level G = General information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
7 ALERT type 2 Indicator that the structure model may be wrong or deficient
3 ALERT type 3 Indicator that the structure quality may be low
4 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta*

Crystallographica Section C or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 22/04/2020; check.def file version of 09/03/2020

Datablock Complex1_100K - ellipsoid plot

Complex 2 checkCIF/PLATON report

Structure factors have been supplied for datablock(s) Complex2_296K

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: Complex2_296K

Bond precision: C-C = 0.0069 A			Wavelength=0.71073			
Cell: a=11	.725(4) b=14.0 beta=90.133(14	41(4)) gamma=9	c=15.673(4) 0	alpha=90		
Temperature:	296 K					
	Calculated		Reported			
Volume	2580.3(13)		2580.3(12)			
Space group	P 21/n		P 21/n			
Hall group	-P 2yn		-P 2yn			
Moiety formula	C24 H32 Co N6 Se	2	?			
Sum formula	C24 H32 Co N6 S	e2	C24 H32 Co N	6 Se2		
Mr	621.41		621.40			
Dx,g cm-3	1.600		1.600			
Z	4		4			
Mu (mm-1)	3.510		3.510			
F000	1252.0		1252.0			
F000′	1252.96					
h,k,lmax	16,20,22		16,20,22			
Nref	8008		7940			
Tmin,Tmax	0.186,0.361		0.763,0.821			
Tmin'	0.133					
Correction met	hod= # Reported T	Limits:	Tmin=0.763 Tma	x=0.821		
AbsCorr = MULT	I-SCAN					
Data completen	ess= 0.992	Theta(max)= 30.681			
R(reflections)	= 0.0559(3235)	wR2(re	eflections)= 0.	1559(7940)		
S = 0.982	Npar=	= 298				

The following ALERTS were generated. Each ALERT has the format name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

뽁 Alert level B

RINTA01_ALERT_3_B The value of Rint is greater than 0.18 Rint given 0.198

Response: This alert is generated might be due to thermal disorder in the molecule at high temperature.

🎽 Alert level C

PLAT026_ALERT_3_C Ratio Observed / Unique Reflections (too) Low ..41% CheckPLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors ofC1 CheckPLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors ofC2 CheckPLAT341_ALERT_3_C Low Bond Precision on C-C Bonds0.00689 Ang.PLAT412_ALERT_2_C Short Intra XH3 .. XHnH3B..H20Cx,y,z =1_555 Check PLAT412_ALERT_2_C Short Intra XH3 .. XHnH10B...1.89 Ang.x,y,z =1_555 Check PLAT905_ALERT_3_C Negative K value in the Analysis of Variance ...-2.585 Report

🎽 Alert level G

PLAT020_ALERT_3_GThe Value of Rint is Greater Than 0.120.198 ReportPLAT232_ALERT_2_GHirshfeld Test Diff (M-X)Col--N56.0 s.u.PLAT232_ALERT_2_GHirshfeld Test Diff (M-X)Col--N67.5 s.u.PLAT793_ALERT_4_GModel has Chirality at N1(Centro SPGR)S VerifyPLAT794_ALERT_5_GTentative Bond Valency for Col(II)2.15 InfoPLAT912_ALERT_4_GNo Info/Value for _atom_sites_solution_primaryPlease Do !PLAT912_ALERT_4_GMissing # of FCF Reflections Above STh/L=0.60071 NotePLAT978_ALERT_2_GNumber C-C Bonds with Positive Residual Density.0 Info

```
0 ALERT level A = Most likely a serious problem - resolve or explain
1 ALERT level B = A potentially serious problem, consider carefully
7 ALERT level C = Check. Ensure it is not caused by an omission or oversight
9 ALERT level G = General information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
7 ALERT type 2 Indicator that the structure model may be wrong or deficient
5 ALERT type 3 Indicator that the structure quality may be low
3 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing

attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 22/04/2020; check.def file version of 09/03/2020

Datablock Complex2_296K - ellipsoid plot

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) Complex2 240K

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: Complex2_240K

Bond precision:	C-C = 0.0052 A		Wavelength=	=0.71073
Cell:	a=11.6923(6) alpha=90	b=13.986 beta=90.	0(7) 018(2)	c=15.6498(8) gamma=90
Temperature:	240 К			
	Calculated		Reported	
Volume	2559.2(2)		2559.2(2)	
Space group	P 21/n		P 21/n	
Hall group	-P 2yn		-P 2yn	
Moiety formula (C24 H32 Co N6 Se2		?	
Sum formula	C24 H32 Co N6 Se	2	C24 H32 Co	o N6 Se2
Mr	621.41		621.40	
Dx,g cm-3	1.613		1.613	
Z	4		4	
Mu (mm-1)	3.539		3.539	
F000	1252.0		1252.0	
F000′	1252.96			
h,k,lmax	16,19,22		16,19,22	
Nref	7814		7040	
Tmin,Tmax	0.183,0.358		0.751,0.81	10
Tmin'	0.131			
Correction metho	od= # Reported T	Limits: Th	min=0.751 I	'max=0.810
AbsCorr = MULTI	-SCAN			
Data completene:	ss= 0.901	Theta(m	ax)= 30.541	1
R(reflections)=	0.0568(3272)	wR2(ref	lections)=	0.1126(7040)
S = 1.002	Npar=	304		

The following ALERTS were generated. Each ALERT has the format name_ALERT_alert-type_alert-level.

test-

Click on the hyperlinks for more details of the test.

🎽 Alert level	C		
PLAT026_ALERT_3_C	Ratio Observed / Unique Reflections (too) Low	46%	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	C1	Check
PLAT480_ALERT_4_C	Long HA H-Bond Reported H23AN6 .	2.90	Ang.
PLAT480_ALERT_4_C	Long HA H-Bond Reported H23AN6 .	2.90	Ang.
PLAT906_ALERT_3_C	Large K Value in the Analysis of Variance	3.485	Check
PLAT911_ALERT_3_C	Missing FCF Refl Between Thmin & STh/L= 0.600	85	Report
Alert level	G		
PLAT230_ALERT_2_G	Hirshfeld Test Diff for SelCl .	6.5	s.u.
PLAT232_ALERT_2_G	Hirshfeld Test Diff (M-X) ColN5 .	8.0	s.u.
PLAT232_ALERT_2_G	Hirshfeld Test Diff (M-X) ColN6 .	8.5	s.u.
PLAT793_ALERT_4_G	Model has Chirality at N1 (Centro SPGR)	S	Verify
PLAT793_ALERT_4_G	Model has Chirality at N3 (Centro SPGR)	S	Verify
PLAT794_ALERT_5_G	Tentative Bond Valency for Col (II) .	2.32	Info
PLAT883_ALERT_1_G	No Info/Value for _atom_sites_solution_primary .	Please	Do !
PLAT912_ALERT_4_G	Missing # of FCF Reflections Above STh/L= 0.600	690	Note
PLAT941_ALERT_3_G	Average HKL Measurement Multiplicity	3.5	Low
PLAT978_ALERT_2_G	Number C-C Bonds with Positive Residual Density.	1	Info

```
0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
6 ALERT level C = Check. Ensure it is not caused by an omission or oversight
10 ALERT level G = General information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
5 ALERT type 2 Indicator that the structure model may be wrong or deficient
4 ALERT type 3 Indicator that the structure quality may be low
5 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 22/04/2020; check.def file version of 09/03/2020

Datablock Complex2_240K - ellipsoid plot

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) Complex2 100K

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: Complex2_100K

Bond precision:	C-C = 0.0030 A	V	Navelength=0	.71073
Cell:	a=11.6185(15) alpha=90	b=13.851 beta=90.	L5(19) .276(7)	c=15.550(2) gamma=90
Temperature:	100 K			
	Calculated		Reported	
Volume	2502.5(6)		2502.5(6)	
Space group	P 21/n		P 21/n	
Hall group	-P 2yn		-P 2yn	
Moiety formula (C24 H32 Co N6 Se2		?	
Sum formula	C24 H32 Co N6 Se2		С24 Н32 Со	N6 Se2
Mr	621.41		621.40	
Dx,g cm-3	1.649		1.649	
Z	4		4	
Mu (mm-1)	3.619		3.619	
F000	1252.0		1252.0	
F000′	1252.96			
h,k,lmax	16,19,22		16,19,22	
Nref	7743		7730	
Tmin,Tmax	0.176,0.350		0.801,0.920)
Tmin'	0.125			
Correction metho	od= # Reported T I	.imits: Tm	in=0.801 Tm	ax=0.920
AbsCorr = MULTI-	-SCAN			
Data completenes	ss= 0.998	Theta(ma	ax) = 30.672	
R(reflections)=	0.0335(5904)	wR2(ref]	lections)= ().0756(7730)
S = 1.014	Npar=	426		

The following ALERTS were generated. Each ALERT has the format name_ALERT_alert-type_alert-level.

S44

test-

Click on the hyperlinks for more details of the test.

🎽 Alert level C

PLAT222_ALERT_3_C NonSolvent Resd 1 H Uiso(max)/Uiso(min) Range 6.8 Ratio

Alert level G

PLAT164_ALERT_4_G Ni	r. of Refined C-H H-	-Atoms in Heav	y-Atom Stru	uct.	32	Note
PLAT230_ALERT_2_G H:	irshfeld Test Diff d	for Sel	C1	•	6.0	s.u.
PLAT230_ALERT_2_G H:	irshfeld Test Diff f	for Se2	C2		6.2	s.u.
PLAT232_ALERT_2_G H:	irshfeld Test Diff	(M-X) Col	N5		6.6	s.u.
PLAT232_ALERT_2_G H:	irshfeld Test Diff	(M-X) Col	N6		5.8	s.u.
PLAT793_ALERT_4_G M	odel has Chirality a	at N1	(Centro SI	PGR)	S	Verify
PLAT793_ALERT_4_G M	odel has Chirality a	at N3	(Centro SI	PGR)	S	Verify
PLAT794_ALERT_5_G Te	entative Bond Valend	cy for Col	(III)		2.91	Info
PLAT883_ALERT_1_G No	o Info/Value for _at	tom_sites_solu	tion_prima:	ry.	Please	Do !
PLAT912 ALERT 4 G M	issing # of FCF Refl	lections Above	STh/L= 0.	.600	15	Note
PLAT978 ALERT 2 G Nu	umber C-C Bonds with	h Positive Res	idual Densi	ity.	11	Info

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 1 ALERT level C = Check. Ensure it is not caused by an omission or oversight 11 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 22/04/2020; check.def file version of 09/03/2020

Complex 3

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) Complex3

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: Complex3

Bond precision:	C-C = 0.003	7 A	Wavelength=0.71073			
Cell:	a=13.3379(2 alpha=90	2) b= be	=12.6230(eta=110.0	(2))87(1)	c=18.7965(4) gamma=90	
Temperature:	296 K					
	Calculated			Reported		
Volume	2972.16(9)			2972.16(9)	
Space group	P 21/c			P 21/c		
Hall group	-P 2ybc			-P 2ybc		
Moiety formula (C30 H32 Co N	10		?		
Sum formula	C30 H32 Co	N10		C30 H32 C	o N10	
Mr	591.59			591.58		
Dx,g cm-3	1.322			1.322		
Ζ	4			4		
Mu (mm-1)	0.615			0.615		
F000	1236.0			1236.0		
F000′	1237.68					
h,k,lmax	19,18,26			19,18,26		
Nref	9147			9010		
Tmin,Tmax	0.741,0.814			0.875,0.9	43	
Tmin'	0.644					
Correction metho	od= # Report	ed T Li	mits: Tm	in=0.875 5	[max=0.943	
AbsCorr = MULTI-	-SCAN					
Data completenes	ss= 0.985		Theta(ma	ax)= 30.59	9	
R(reflections)=	0.0447(528	8)	wR2(refl	lections)=	0.1247(9010)	
S = 0.999	1	Npar= 4	98			

The following ALERTS were generated. Each ALERT has the format	test-	
name ALERT alert-type alert-level.		
Click on the hyperlinks for more details of the test.		
Alert level C		
ABSTY02 ALERT 1 C An exptl absorpt correction type has been given w	ithout	
a literature citation. This should be contained in the	renoue	
evit absorpt process details field		
Absorption_correction_given_as_multi-scan		
PLAT220 ALERT 2 C NonSolvent Resd 1 N Heg(max) / Heg(min) Range	3 2	Ratio
PLAT242 ALERT 2 C Low /MainMol/ Heg as Compared to Neighbors of	C8	Check
TIMIZ42_ADDRT_2_C_DOWMathmot_beq as compared to weighbors of	0	CHECK
Alart lovel C		
ALEIL LEVEL G	0 70	mm
PLATOOS_ALERT_4_G Crystal Size FOSSIBLY too Large for Beam Size	0.70	Noto
PLATIO4_ALERT_4_G NI. OI Relined C-n n-Acous in neavy-Acom Sciucc.	5 1	NOLE
PLAT230_ALERT_2_G HIISHIELd lest Dill IOI C2C4 .	J.1 0 1	s.u.
$PLAI252_ALERT_2_G$ HIISHIELD lest DIII (M-X) COI =-N5 .	9.1	5.u.
PLATZOZ_ALERT_Z_G HIISHIEIU Test DITI (M-A) COTNO .	9.0	Vorifu
PLAT795_ALERT_4_G Model has chirality at N1 (Centro SPGR)	3	Verify
PLAI/95_ALERI_4_G Model has childling at No (centro SPGR)	2 00	verily
PLAT/94_ALERT_5_G Tentative Bond Valency for con (111)	2.90 Dloggo	
PLATOS_ALERT_I_G NO THIO/Value TOT _alom_sites_solution_primary .	riease	DO : Noto
PLAISIO_ALERI_5_G MISSING # of FCF Reflection(S) Below Ineta(MIN).	∠ ۱२۸	Note
PLAISIZ_ALERI_4_G MISSING # OI FCF Reflections Above Sin/L- 0.000	1.54	Note
PLAT9/0_ALERT_Z_G Number C-C Bonds with Positive Residual Density.	1	Chook
PLA1992_ALERI_5_G Repu & Accual _relins_number_gt values biller by	T	Check
0 ALERT level A = Most likely a serious problem - resolve or expla	in	
0 ALERT level B = A potentially serious problem, consider carefull	У	
3 ALERT level C = Check. Ensure it is not caused by an omission or	oversigh	nt
13 ALERT level G = General information/check it is not something un	expected	

```
2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
6 ALERT type 2 Indicator that the structure model may be wrong or deficient
1 ALERT type 3 Indicator that the structure quality may be low
5 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 22/04/2020; check.def file version of 09/03/2020

Datablock Complex3 - ellipsoid plot

References

- 1. a) S. P. Meneghetti, P. J. Lutz, J. Fischer and J. Kress, *Polyhedron*, 2001, **20**, 2705-2710; b) S. Ghosh, S. Selvamani, S. Mehta and A. Mondal, *Dalton Trans.*, 2020, **49**, 9208-9212.
- 2. S. Ghosh, S. Kamilya, M. Das, S. Mehta, M. E. Boulon, I. Nemec, M. Rouzieres, R. Herchel and A. Mondal, *Inorg. Chem.*, 2020, **59**, 7067-7081.
- 3. T. Degen, M. Sadki, E. Bron, U. König and G. Nénert, *Powder Diffr.*, 2014, **29**, S13-S18.
- 4. G. M. Sheldrick, SADABS Version 2.03, Bruker Analytical X-Ray Systems, Madison, WI, USA, 2000.
- 5. G. Sheldrick, *Acta Crystallogr., Sect. C: Struct. Chem*, 2015, **71**, 3-8.
- Y.Z. Voloshin, O.A. Varzatskii, V.V. Novikov, N.G. Strizhakova, I.I. Vorontsov, A.V. Vologzhanina, K.A. Lyssenko, G.V. Romanenko, M.V. Fedin, V.I. Ovcharenko and Y.N. Bubnov, *Eur. J. Inorg. Chem.*, 2010, **34**, 5401–5415.
- 7. V.V. Novikov, I.V. Ananyev, A.A. Pavlov, M.V. Fedin, K.A. Lyssenko and Y.Z. Voloshin, *J. Phys. Chem. Lett.*, 2014, **5**, 496–500.
- 8. M.G. Cowan, J. Olguín, S. Narayanaswamy, J.L. Tallon and S. Brooker, *J. Am. Chem. Soc.*, 2012, **134**, 2892–2894.
- 9. W. Huang, Y. Li, J. Yong, Y. Liu and D. Wu, *RSC Adv.*, 2018, **8**, 17159–17167.
- 10. M. Graf, G. Wolmershäuser, H. Kelm, S. Demeschko, F. Meyer and H.-J. Krüger, *Angew. Chem. Int. Ed.*, 2010, **49**, 950–953.
- 11. I.A. Gass, S. Tewary, G. Rajaraman, M. Asadi, D.W. Lupton, B. Moubaraki, G. Chastanet, J.-F. Létard and K.S. Murray, *Inorg. Chem.*, 2014, **53**, 5055–5066.
- 12. R.A. Taylor, A.J. Lough and M.T. Lemaire, *J. Mater. Chem. C.*, 2016, **4**, 455–459.
- 13. J. Palion-Gazda, B. Machura, R. Kruszynski, T. Grancha, N. Moliner, F. Lloret, and M. Julve, *Inorg. Chem.*, 2017, **56**, 6281–6296.
- 14. D. Shao, L. Shi, F.-X. Shen, X.-Q. Wei, O. Sato and X.-Y Wang, *Inorg. Chem.*, 2019, **58**, 11589–11598.
- 15. H. Oshio, H. Spiering, V. Ksenofontov, F. Renz and P. Gütlich, *Inorg. Chem.*, 2001, **40**, 1143-1150.
- 16. C.A. Kilner and M.A. Halcrow, *Dalton Trans.*, 2010, **39**, 9008-9012.
- 17. A.B. Gaspar, M.C. Munoz, V. Niel and J.A. Real, *Inorg. Chem.*, 2001, **40**, 9-10.
- 18. A. Galet, A.B. Gaspar, M.C. Munoz and J.A. Real, *Inorg. Chem.*, 2006, **45**, 4413-4422.
- 19. G. Agustí, C. Bartual, V. Martínez, F.J. Munoz-Lara, A.B. Gaspar, M.C. Munoz and J.A. Real, *N. J. Chem.*, 2009, **33**, 1262-1267.
- 20. S. Hayami, R. Moriyama, A. Shuto, Y. Maeda, K. Ohta and K. Inoue, *Inorg. Chem.*, 2007, **46**, 7692-7694.
- 21. S. Hayami, Y. Shigeyoshi, M. Akita, K. Inoue, K. Kato, K. Osaka, M. Takata, R. Kawajiri, T. Mitani and Y. Maeda, *Angew. Chem. Int. Ed.*, 2005, **44**, 4899-4903.
- 22. S. Hayami, K. Murata, D. Urakami, Y. Kojima, M. Akita and K. Inoue, *Chem. Commun.*, 2008, **48**, 6510-6512.
- 23. S. Hayami, K. Kato, Y. Komatsu, A. Fuyuhiro and M. Ohba, *Dalton Trans.*, 2011, **40**, 2167-2169.
- 24. C. Ni, J.C. Fettinger, G.J. Long and P.P. Power, *Inorg. Chem.*, 2009, **48**, 2443–2448.
- 25. L. Chen, J. Song, W. Zhao, G. Yi, Z. Zhou, A. Yuan, Y. Song, Z. Wang and Z.-W. Ouyang, *Dalton Trans.*, 2018, **47**, 16596–16602.