Supporting Information

1D-CoSe₂ nanoarray: A designed structure for efficient hydrogen evolution and

symmetric supercapacitor characteristics

Iqra Rabani,^{a,1} Sajjad Hussain,^{a, b,1} Dhanasekaran Vikraman,^c Young-Soo Seo,^a Jongwan Jung,^{a,b}

Jana Atanu,^d Nabeen K Shrestha,^d Mohammed Jalalah,^e Yong-Young Noh,^f Supriya A. Patil^{a,*}

^a Department of Nanotechnology and Advanced Materials Engineering, Sejong University, 209, Neung dong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.

^b Hybrid Materials Research Center (HMC), Sejong University, 209, Neung dong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.

^c Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.

^d Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea.

^ePromising Centre for Sensors and Electronic Devices (PCSED), Department of Electrical Engineering, Faculty of Engineering, Najran University, P.O. Box 1988, Najran, 11001, Saudi Arabia

^fDepartment of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea

¹These authors are contributed equally.

*Corresponding author: Dr. Supriya A.Patil; <u>supriyaapatil11@gmail.com</u>

S1. Characterization details of 1D-Co₃O₄ and 1D-CoSe₂ nanoarrays

The crystallinity of synthesized nanoarrays structures were analyzed by Raman spectroscopy (Renishaw invia RE04, 512 nm Ar laser) with a spot size of 1 μ m and a scan speed of 30 seconds. X-ray photoelectron spectroscopy (PHI 5000 Versa Probe, 25W Al K α , 6.7×10⁻⁸ Pa) was used to characterize the surface binding energy and composition. field emission-scanning electron microscopy (HITACHI S-4700) was used to examine the morphology and microstructure of the films. The atomic structure of 1D-CoSe₂ nanoarray was captured by a JEOL-2010F high resolution-transmission electron microscopy with an accelerating voltage of 200 keV. The 1D-Co₃O₄ and 1D-CoSe₂ nanoarray structures were analyzed by in-plane X-ray diffraction (Rigaku) with Cu-K α (λ = 1.5406 Å) radiation operated at 50 KV and 300mA.

Figure S1. (a-b) FE-SEM cross-sectional images and (c-d) EDS spectrum of 1D-CoSe₂ (t_{ex}-48h) nanoarrays with their composition ratio.

Figure S2. High magnification FESEM images of (a) 1D-Co₃O₄ and (b-f) 1D-CoSe₂ with different ion exchange time (b) 3, (c) 12, (d) 24, (e) 36 and (f) 48 h.

Figure S3. The CV profiles acquired at various scan rates in the non-Faradaic region of acidic medium for (a) $1D-CoSe_2(t_{ex}-12h)$, (b) $1D-CoSe_2(t_{ex}-24h)$, (c) $1D-CoSe_2(t_{ex}-36h)$ and (d) $1D-CoSe_2(t_{ex}-48h)$ nanoarrays electrocatalysts.

Figure S4. FESEM images of 1D-CoSe₂(t_{ex} -48h) electrocatalyst after 25h HER performance in acidic medium.

Figure S5. XRD spectrum for 1D-CoSe₂(t_{ex} -48h) electrocatalyst after 25h HER performance in acidic medium.

Figure S6. Cyclic voltammograms of 1D-Co₃O₄ electrode at different scan rates.

Figure S7. Galvanostatic charge-discharge profiles for 1D-Co₃O₄ electrode at various current densities.

Figure S8. Coulombic efficiency of SSC device (a) different current densities and (b) 5000 cycles at current density 3 A.g⁻¹.

Figure S9. Bode phase plot for 1D-CoSe₂(t_{ex} -48h) SSC electrode.

Catalyst	Onset potential (mV vs RHE) @10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Exchange current density (j ₀ , mA cm ⁻²)
1D-Co ₃ O ₄	377	98	1.25×10 ⁻³
$1D-CoSe_2(t_{ex}-3h)$	314	88	7.07×10 ⁻³
$1D-CoSe_2(t_{ex}-12h)$	265	78	1.62×10-2
$1D-CoSe_2(t_{ex}-24h)$	254	78	3.25×10 ⁻²
$1D-CoSe_2(t_{ex}-36h)$	241	73	4.57×10 ⁻²
$1D-CoSe_2(t_{ex}-48h)$	216	72	5.62×10-2
Pt	135	57	1.02×10 ⁻¹

Table S1	Comparison	of catalytic	parameters	of different	HER	catalysts

Electrocatalyst	Electrolyte	η (mV)	Tafel Slope (mV·dec ⁻¹)	j ₀ (mA·cm ⁻²)	Ref.
1D-CoSe ₂ (t _{ex} -48h) nanoarray	0.5 M H ₂ SO ₄	41 and 216 @ 1 and 10 mA/cm ²	78	5.62×10 ⁻²	This work
CoS ₂ /CoSe ₂ hybrid	0.5 M H ₂ SO ₄	80 @ 10 mA/cm ²	33.6	37.8µA.cm ⁻¹	1
CoSe ₂ NW/CC	0.5 M H ₂ SO ₄	130 @ 10 mA/cm ²	32	-	2
CoSe ₂ nanorods	0.5 M H ₂ SO ₄	205 @ 100 mA/cm ²	35	-	3
CoSe ₂ Nanocrystals	0.5 M H ₂ SO ₄	160 @ 10 mA/cm ²	40	-	4
CoS2/CoSe@C	0.5 M H ₂ SO ₄	164 @ 10 mA/cm ²	42	-	5
CoSe ₂ nanoparticles	0.5 M H ₂ SO ₄	137 @ 10 mA/cm ²	40	-	6
CoP nanowire arrays	1.0 M KOH	209 @ 10 mA/cm ²	129	-	7
CoSe ₂ @GO	0.5 M H ₂ SO ₄	210 @ 10 mA/cm ²	42	-	8
Cubic pyrite-type CoSe ₂	$0.5 \text{ M H}_2\text{SO}_4$	193 @ 10 mA/cm ²	40	-	9
Co ₃ O ₄ @Ni	0.5 M H ₂ SO ₄	220 @ 10 mA/cm ²	53	-	10
WS ₂ /CoSe ₂ heterostructure	$0.5 \text{ M H}_2\text{SO}_4$	160 @ 10 mA/cm ²	44	1.44 ×10 ⁻ ² mA cm ⁻²	11

Table S2. HER catalytic performances TMDs-based electrocatalysts

Electrode materials	Electrolyte	Specific capacitance	Energy density	Power density	Capacitance retention (%)/cycles	Ref.
1D-CoSe ₂ (t _{ex} - 48h) nanoarray	PVA/KOH	$\begin{array}{c} 152 \text{ F} \cdot \text{g}^{-1} @ \\ 0.5 \text{ A} \cdot \text{g}^{-1} \end{array}$	21.1 Wh kg ⁻¹	0.5 kW kg ⁻¹	95.8/5000	In this study
MoS ₂ /CNS	1 M Na ₂ SO ₄	108 F g ⁻¹ at 1 A g ⁻¹	74 Wh/kg	3700 W/Kg	-	12
Co ₃ O ₄ /VAGN /carbon	PVA/KOH	580 F g ⁻¹ @1 A g ⁻¹	80 Wh/kg	27 Wh/kg	86.2/20000	13
Ni _{0.85} Se@MoSe ₂ / graphene	2 М КОН		25.5 Wh/kg	420 W/kg	95/20000	14
PEDOT/CNTs	PVA/H ₂ SO ₄ / H ₂ O	147 F. g ⁻¹ at 0.5 A. g ⁻¹	12.6 Wh. kg ⁻¹	1 kW. Kg ⁻¹	95/3000	15
WS ₂ nanosheets	PVA/LiCl	0.93 F cm ⁻²	0.97 m Wh cm ⁻³	0.7 W cm ⁻³	82/10000	16
MoS ₂ -NH ₂ /PANI nanosheets	1 M H ₂ SO ₄	58.6 F g ⁻¹	4.0 Wh/kg	175W/kg	96.5/10000	17
Ni _{0.6} Co _{0.4} Se ₂	PVA-KOH	402 F g ⁻¹ at 0.5 A g ⁻¹	42.1 Wh/kg		91.0/ 5000	18
(Mo ₂ C/NCF)	PVA-KOH	75 F g ⁻¹ @0.5 A g ⁻¹	54 Wh/kg	1080 W/Kg	100/ 5000	19
WTe ₂ Nanosheets	H ₃ PO ₄ /PVA	74 F cm ⁻³	0.01 Wh cm ⁻³	83.6 W cm ⁻³	91/5500	20
VSL-MoS2@3D- Ni foam	Na ₂ SO ₄ /PVA	34.1 F g ⁻¹ @ 1.3 A g ⁻¹	4.7 W h/kg	650 W/kg	82.5/10000	21
MoS ₂ /G nanobelts	1 M Na ₂ SO ₄	$\begin{array}{c} 278.2 \text{ F g}^{-1} @ \\ 0.8 \text{ A g}^{-1} \end{array}$	38.6 Wh/kg	0.4 kW/Kg	-	22
MoS ₂ NSs @PANI nanoneedle arrays	0.5 M H ₂ SO ₄	853 F g-1 @1 A g-1	106 Wh/kg	106 KW/kg	91/4000	23

Table S3. Solid-state supercapacitors performances of TMDs-based electrodes

References

- 1. Y. Guo, C. Shang and E. Wang, *Journal of Materials Chemistry A*, 2017, **5**, 2504-2507.
- 2. Q. Liu, J. Shi, J. Hu, A. M. Asiri, Y. Luo and X. Sun, *ACS applied materials & interfaces*, 2015, 7, 3877-3881.
- 3. Y. Deng, C. Ye, G. Chen, B. Tao, H. Luo and N. Li, *Journal of Energy Chemistry*, 2019, **28**, 95-100.
- 4. I. H. Kwak, H. S. Im, D. M. Jang, Y. W. Kim, K. Park, Y. R. Lim, E. H. Cha and J. Park, *ACS applied materials & interfaces*, 2016, **8**, 5327-5334.

- K. Karuppasamy, R. Bose, V. R. Jothi, D. Vikraman, Y.-T. Jeong, P. Arunkumar, D. B. Velusamy, T. Maiyalagan, A. Alfantazi and H.-S. Kim, *Journal of Alloys and Compounds*, 2020, 155537.
- 6. D. Kong, H. Wang, Z. Lu and Y. Cui, *Journal of the American Chemical Society*, 2014, **136**, 4897-4900.
- J. Tian, Q. Liu, A. M. Asiri and X. Sun, *Journal of the American Chemical Society*, 2014, 136, 7587-7590.
- 8. C. Dai, X. Tian, Y. Nie, C. Tian, C. Yang, Z. Zhou, Y. Li and X. Gao, *Chemical Engineering Journal*, 2017, **321**, 105-112.
- 9. H. Zhang, L. Lei and X. Zhang, *RSC advances*, 2014, 4, 54344-54348.
- R. Li, D. Zhou, J. Luo, W. Xu, J. Li, S. Li, P. Cheng and D. Yuan, *Journal of Power Sources*, 2017, **341**, 250-256.
- 11. S. Hussain, K. Akbar, D. Vikraman, H. Liu, S.-H. Chun and J. Jung, *Journal of industrial and engineering chemistry*, 2018, **65**, 167-174.
- 12. T. N. Khawula, K. Raju, P. J. Franklyn, I. Sigalas and K. I. Ozoemena, *Journal of Materials Chemistry A*, 2016, **4**, 6411-6425.
- 13. Q. Liao, N. Li, S. Jin, G. Yang and C. Wang, ACS nano, 2015, 9, 5310-5317.
- 14. H. Peng, C. Wei, K. Wang, T. Meng, G. Ma, Z. Lei and X. Gong, *ACS applied materials & interfaces*, 2017, **9**, 17067-17075.
- S. Alipoori, S. Mazinani, S. H. Aboutalebi and F. Sharif, *Journal of Energy Storage*, 2020, 27, 101072.
- S. Liu, Y. Zeng, M. Zhang, S. Xie, Y. Tong, F. Cheng and X. Lu, *Journal of Materials Chemistry A*, 2017, 5, 21460-21466.
- 17. R. Zeng, Z. Li, L. Li, Y. Li, J. Huang, Y. Xiao, K. Yuan and Y. Chen, ACS Sustainable Chemistry & Engineering, 2019, 7, 11540-11549.
- Y. Wang, R. Liu, S. Sun and X. Wu, *Journal of colloid and interface science*, 2019, 549, 16-21.
- K. J. Samdani, D. W. Joh and K. T. Lee, *Journal of Alloys and Compounds*, 2018, 748, 134-144.
- P. Yu, W. Fu, Q. Zeng, J. Lin, C. Yan, Z. Lai, B. Tang, K. Suenaga, H. Zhang and Z. Liu, Advanced Materials, 2017, 29, 1701909.

- R. K. Mishra, A. K. Kushwaha, S. Kim, S. G. Seo and S. H. Jin, *Current Applied Physics*, 2019, 19, 1-7.
- 22. Y. Jia, H. Wan, L. Chen, H. Zhou and J. Chen, Journal of Power Sources, 2017, 354, 1-9.
- J. Zhu, W. Sun, D. Yang, Y. Zhang, H. H. Hoon, H. Zhang and Q. Yan, *Small*, 2015, 11, 4123-4129.