Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Co(I) complexes with a tetradentate phenanthroline-based PNNP ligand as a potent new metal-ligand cooperation platform

Nai-Yuan Jheng^{a,b}, Yusuke Ishizaka^{a,b}, Yuki Naganawa^b, Akira Sekiguchi^b, Yumiko Nakajima^{a,b*}

E-mail: yumiko-nakajima@aist.go.jp

^{a)} Graduate School of Pure and Applied Sciences, University of Tsukuba,

1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan

^{b)} Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST),

1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

Table of Contents

General Information	.S2
Experimental Details	.S2
X-ray Crystallographic Data	.S25
References	S26

General Information

All experiments were carried out under nitrogen atmosphere using Schlenk techniques or a glovebox. All organic solvents were dried with a solvent purification system (MBraun SPS-800 or Glass Contour Ultimate Solvent System). Benzene- d_6 was dried over sodium benzophenone ketyl and distilled. DMSO- d_6 was dried over CaH₂ and distilled. PNNP ligand (2,9-bis((diphenylphosphino)methyl)-1,10-phenanthroline) was synthesized according to the literature procedure.¹ TEMPO-H (1-hydroxy-2,2,6,6-tetramethylpiperidine)² and TEMPO-CH₂SiMe₃ (2,2,6,6tetramethyl-1-((trimethylsilyl)methoxy)piperidine)³ were synthesized according to the literature procedures. H₂ gas was passed through a Dryclean column (4A molecular sieves, Nikka Seiko Co.) and a Gasclean GC-XR column (Nikka Seiko Co.) prior to use. All other reagents were purchased from commercial suppliers and used without further purification unless otherwise mentioned. ¹H, ¹³C{¹H}, ²⁹Si{¹H}, and ³¹P{¹H} NMR spectra (¹H, 600 MHz; ¹³C, 150 MHz; ²⁹Si, 119 MHz; ³¹P, 243 MHz) were recorded on a Bruker AVANCE 600 spectrometer. Chemical shifts are reported in δ (ppm) and referenced to the residual solvent signals for ¹H and ¹³C, 85% H₃PO₄ for ³¹P, and 1,4bis(trimethylsilyl)benzene for ²⁹Si as external standards. The abbreviations designated for multiplicities are as follows: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad, vt = virtualtriplet, vq = virtual quartet. High-resolution ESI mass spectra were measured on a Bruker microTOF II. Elemental analyses were performed on a Yanaco CHN CORDER MT-6.

Experimental Details

Synthesis of [CoCl(PNNP)] (1)

 $[CoCl(PPh_3)_3]$ (198.1 mg, 0.225 mmol) and 2,9-bis((diphenylphosphaneyl)methyl)-1,10phenanthroline (PNNP) (129.6 mg, 0.225 mmol) were charged in a 50 mL Schlenk tube and dissolved in THF (10 mL). After stirring for 24 h at room temperature, green precipitates formed. The solution was concentrated to dryness in vacuo and the resulting residue was washed with diethyl ether (three times) to give **1** as a green solid (106.8 mg, 0.159 mmol, 71%). A slow diffusion of C₆H₆ to a saturated acetonitrile solution of **1** at room temperature gave single crystals of **1**.

¹H NMR (C₆D₆, 25 °C) δ 8.06 (d, 2H, Phen-*H*, ³*J*_{HH} = 7.3 Hz), 7.94 (br, 4H, P*Ph*₂), 7.37 (d, 2H, Phen-*H*, ³*J*_{HH} = 7.3 Hz), 7.08-7.14 (m, 4H, Phen-*H* (2H) + P*Ph*₂ (2H)), 7.05 (br, 4H, P*Ph*₂), 6.66 (m, 6H, P*Ph*₂), 6.48 (m, 4H, P*Ph*₂), 5.23 (m, 2H, PC*H*₂), 4.17 (m, 2H, PC*H*₂). ³¹P{¹H} NMR (C₆D₆, 25 °C) δ 55.57 (s). ¹³C{¹H} NMR could not be measured due to the extremely low solubility of **1** in organic solvents. Anal. Calcd for C₃₈H₃₀ N₂P₂Co·0.5 C₆H₆: C, 69.35; H, 4.68; N 3.95. Found: C, 69.40; H, 4.79; N, 4.08.

Figure S1. ¹H NMR spectrum of **1** in C_6D_6 .

Figure S2. ${}^{31}P{}^{1}H$ NMR spectrum of 1 in C₆D₆.

Synthesis of [CoMe(PNNP)] (2)

[CoCl(PNNP)] (1) (50.0 mg, 0.074 mmol) was dissolved in benzene (5 mL) and stored in a 30 mL Schlenk tube. Methylmagnesium bromide (29 μ L of 3.0 M Et₂O solution, 0.090 mmol) was added dropwise at room temperature. The mixture was stirred at room temperature for 1 h. The resulting solution was dried under vacuum, and the residue was extracted with ether. The solution was filtered using a Celite pad, and the filtrate was concentrated to dryness under vacuo to afford **2** as a purple solid (23.2 mg, 0.036 mmol, 49 %).

¹H NMR (C₆D₆, 25 °C) δ 7.69 (br, 2H), 7.29 (br, 4H, PP*h*₂), 7.12 (m, 2H, Phen-*H*), 7.08 (s, 2H, Phen-*H*), 7.02 (brm, 4H, PP*h*₂), 6.91 (m, 6H, PP*h*₂), 6.73 (t, 2H, PP*h*₂, ³*J*_{HH} = 7.0 Hz), 6.61 (t, 4H, PP*h*₂, ³*J*_{HH} = 7.3 Hz), 4.42 (d, 2H, PC*H*₂, ³*J*_{HH} = 16.3 Hz), 3.93 (m, 2H, PC*H*₂), -0.36 (t, 3H, CoC*H*₃, ³*J*_{PH} = 3.3 Hz). ¹³C{¹H} NMR (C₆D₆, 25 °C) 156.4, 140.8, 138.0, 133.7, 133.4, 131.9, 131.8, 129.3, 128.6, 126.3, 116.3, 112.5, 45.4, -15.2. Two Ar signals were obscured in a residual benzene signal. ³¹P{¹H} NMR (C₆D₆, 25 °C) δ 76.92. HRMS (ESI) Calculated: (C₃₉H₃₃CoN₂P₂) 651.1524 ([M+H]⁺), Found: 651.1511.

Figure S3. ¹H NMR spectrum of **2** in C_6D_6 .

Figure S4. ${}^{13}C{}^{1}H$ NMR spectrum of 2 in C₆D₆.

Figure S5. ${}^{31}P{}^{1}H$ NMR spectrum of 2 in C₆D₆.

Synthesis of [Co(CH₂SiMe₃)(PNNP)] (3)

- 60.12 - 59.92 - 51.30 - 51.09

- 76.92

[CoCl(PNNP)] (1) (19.9 mg, 0.030 mmol) was dissolved in benzene (35 mL) and stored in a 50 mL Schlenk tube. Trimethylsilylmethylmagnesium chloride (30.0 μ L of 1 M THF solution, 0.030 mmol) was added dropwise. The mixture was stirred at room temperature for 1 h. The resulting solution was dried under vacuum. The residue was extracted with Et₂O and filtered using a Celite pad. The filtrate was concentrated to dryness under vacuo to afford **3** as a purple solid (18.7 mg, 0.026 mmol, 87 %).

¹H NMR (C₆D₆, 25 °C) δ 7.35 (d, 2H, Phen-*H*, ³*J*_{HH} = 7.0 Hz), 7.32 (m, 4H, P*Ph*₂), 7.13 (vt, 4H, Phen-*H* (2H) + P*Ph*₂ (2H)), 7.04 (vq, 6H, Phen-*H* (2H) + P*Ph*₂ (4H)), 6.75 (m, 4H, P*Ph*₂), 6.64 (t, 2H, P*Ph*₂, ³*J*_{HH} = 7.4 Hz), 6.49 (t, 4H, P*Ph*₂, ³*J*_{HH} = 7.7 Hz), 4.81 (d, 2H, PC*H*₂, ³*J*_{HH} = 15.8 Hz), 3.95 (m, 2H, PC*H*₂), -0.57 (s, 9H, CH₂Si*Me*₃), -0.60 (t, 2H, C*H*₂SiMe₃, ³*J*_{PH} = 4.4 Hz). ¹³C{¹H} NMR (C₆D₆, 25 °C) 157.0, 140.0, 138.7, 134.2, 133.5, 131.7, 131.4, 129.5, 128.6 (×2), 128.3, 126.3, 117.2, 113.7, 45.4, 2.9, -22.2. ³¹P{¹H} NMR (C₆D₆, 25 °C) δ 75.72. ²⁹Si{¹H} NMR (C₆D₆, 25 °C) δ 7.46 (t, ³*J*_{SiP} = 3.6 Hz). HRMS (ESI) Calculated: (C₄₂H₄₂CoN₂P₂Si) 723.1919 ([M+H]⁺), Found: 723.1907.

7.7.35 7.7.16 7.7.16 7.7.16 7.7.11 7.7.11 7.7.11 7.7.11 7.7.11 7.7.05 7.7.05 6.7.7 6.6.74 6.6.74 6.6.74 6.6.73 6.6.73 6.6.73 6.6.73 6.6.73 6.6.73 6.6.73 6.6.73 6.6.73 6.6.73 6.6.73 6.6.73 7.7.05 6.6.73 7.7.05 6.6.74 7.7.05 6.6.73 7.7.05 6.6.73 7.7.05 6.6.73 7.7.05 6.6.74 7.7.15 7.7.05 7.7

-0.00 < -0.58 < -0.60

Figure S6. ¹H spectrum of 3 in C₆D₆.

Figure S7. ${}^{13}C{}^{1}H$ spectrum of **3** in C₆D₆.

- 75.72

Figure S8. ${}^{31}P{}^{1}H$ spectrum of 3 in C₆D₆.

Figure S9. ²⁹Si{¹H} spectrum of 3 in C_6D_6 .

Synthesis of [Co(PNNP')] (4)

Method 1: $[Co(CH_2SiMe_3)(PNNP)]$ (3) (24.3 mg, 0.034 mmol) was charged in a 50 mL Schlenk tube and dissolved in benzene (10 mL). The solution was stirred at 60 °C for 16 h to form a deep green crystalline precipitate. After filtration, 4 was obtained as an analytically pure form (14.2 mg, 0.029 mmol, 86%). Single crystals of 4 was obtained by slow evaporation of saturated C₆H₆ solution of 4 at room temperature.

Method 2: To a benzene solution (10 mL) of [CoCl(PNNP)] (1) (15.2 mg, 0.023 mmol), was added sodium *tert*-butoxide (2.2 mg, 0.023 mmol). The solution was stirred at room temperature for a few minutes. The solution was filtered with a Celite pad to give **3** as a deep green solid (13.8 mg, 0.022 mmol, 96%).

¹H NMR (C₆D₆, 25 °C) δ 7.60 (t, 4H, PPh₂, ³J_{HH} = 8.6 Hz), 7.56 (d, 1H, Phen-*H*, ³J_{HH} = 8.3 Hz), 7.41 (t, 4H, PPh₂, ³J_{HH} = 8.6 Hz), 7.00 (m, 4H, PPh₂), 6.88-6.93 (m, 9H, Phen-*H* (1H) + PPh₂ (8H)), 6.65 (m, 2H, Phen-*H*), 6.55 (d, 1H, Phen-*H*, ³J_{HH} = 8.0 Hz), 6.28 (d, 1H, Phen-*H*, ³J_{HH} = 8.5 Hz), 4.33 (brs, 1H, PCH), 3.08 (d, 2H, PCH₂, ²J_{PH} = 12.0 Hz). ¹³C{¹H} NMR (DMSO-*d*₆, 25 °C) δ δ 165.8, 151.3, 146.0, 143.6, 139.4, 133.9, 132.6, 130.8, 130.7, 129.4, 127.9, 127.7, 127.6, 127.2, 126.1, 124.0, 121.6, 117.1, 114.2, 111.2, 70.9, 46.7. ³¹P{¹H} NMR (C₆D₆, 25 °C) δ 52.8 (br), 38.2 (br). HRMS (ESI) Calculated: (C₃₈H₂₉CoN₂P₂) 634.1132 ([M+H]⁺), Found: 634.1148.

Anal. Calcd for CoN₂P₂C₃₈H₂₉: C, 71.93; H, 4.61; N 4.41. Found: C, 72.24; H, 4.96; N, 4.58.

Figure S10. ¹H spectrum of **4** in C_6D_6 .

Figure S11. ${}^{13}C{}^{1}H$ spectrum of **4** in DMSO-*d*₆.

Figure S12. ${}^{31}P{}^{1}H{}$ spectrum of 4 in C₆D₆.

Reaction of 3 with TEMPO

A C₆D₆ solution (0.4 mL) of [Co(PNNP)(CH₂SiMe₃)] (**3**) (5.5 mg, 0.0076 mmol) was charged in a J-Young NMR tube, and TEMPO (2,2,6,6-tetramethylpiperidin-1-yl)oxyl) (4.9 mg, 0.031mmol) was then added to the solution. The solution was left to stand at 60 °C for 1 h, and the resulting solution was analyzed by ¹H NMR. TEMPO-H² and TEMPO-CH₂SiMe₃³ were identified by comparison of their spectral data with those of authentic samples. The molar ratio of the formed TEMPO-H, TEMPO-CH₂SiMe₃ and **5** was determined by ¹H NMR to be 7 : 1 : 1. After removal of all the volatiles, the resultant was extracted with hexane. The extract was concentrated to dryness to give **5** (trace amount).

TEMPO-H: ¹H NMR (C₆D₆, 25 °C) δ 3.74 (br, 1H, O*H*), 1.39 (m, 4H, C*H*₂), 1.30 (m, 2H, C*H*₂), 1.15 (s, 12H, C*H*₃).

TEMPO-CH₂SiMe₃: ¹H NMR (C₆D₆, 25 °C) δ 3.54 (s, 2H, OCH₂), 1.48 (m, 4H, CH₂), 1.33 (m, 2H, CH₂), 1.16 (br, 6H, CH₃), 1.08 (br, 6H, CH₃), 0.06 (s, 9H, Si(CH₃)₃).

5: ¹H NMR (C₆D₆, 25 °C) δ 7.44 (m, 4H, PPh₂), 7.40 (m, 4H, PPh₂), 7.07 (t, 2H, PPh₂, ³J_{HH} = 7.3 Hz), 7.00 (t, 4H, PPh₂, ³J_{HH} = 7.4 Hz), 6.89 (t, 2H, PPh₂, ³J_{HH} = 7.3 Hz), 6.72 (d, 2H, Phen-*H*, ³J_{HH} = 9.2 Hz), 6.67-6.63 (m, 6H, Phen-*H* (2H) + PPh₂ (4H)), 6.62 (d, 2H, Phen-*H*, ³J_{HH} = 9.2 Hz), 4.68 (s, 2H, PC*H*), -0.17 (s, 9H, Si*Me*₃), -0.29 (t, 2H, C*H*₂SiMe₃, ³J_{PH} = 9.2 Hz). ¹³C{¹H} NMR (C₆D₆, 25 °C) δ 167.5, 146.8, 133.7, 132.7, 132.1, 132.0, 131.9, 131.7, 129.9, 129.4, 128.5, 121.1, 121.0, 117.7, 82.7, 0.60 (×2). HSQC (C₆D₆, 25 °C) δ _H- δ _C -0.17 (δ _H), -0.29 (δ _H) - 0.60 (δ _C). ³¹P{¹H} NMR (C₆D₆, 25 °C) δ 33.9 (br). ²⁹Si{¹H} NMR (C₆D₆, 25 °C) δ 9.24 (t, ³J_{SiP} = 1.2 Hz). HRMS (ESI) Calculated: (C₄₂H₃₉CoN₂P₂Si) 721.1763 ([M]⁺), Found: 721.1764. Single crystal of **5** was obtained from cold hexane solution at -35 °C.

Figure S13. ¹H NMR spectrum of the reaction mixture in C_6D_6 ; \blacksquare : **5**; \bullet : TEMPO-CH₂SiMe₃; \blacktriangle : TMS; *: TEMPO-H.

Figure S14. ¹H spectrum of TEMPO-CH₂SiMe₃ in C₆D₆.

Figure S15. ¹H spectrum of **5** in C_6D_6 .

Figure S16. ${}^{13}C{}^{1}H$ spectrum of 5 in C₆D₆.

Figure S17. $^{31}P\{^{1}H\}$ spectrum of 5 in C₆D₆.

Figure S18. ²⁹Si $\{^{1}H\}$ spectrum of 5 in C₆D₆.

Reaction of 4 with H_2

A C₆D₆ solution (0.5 mL) of [Co(PNNP')] (4) (4.1 mg, 0.0065 mmol) was charged in a J-Young NMR tube. H₂ (1 atm) was introduced to the NMR tube. The solution was kept at room temperature overnight. Full conversion of 4 and clean formation of 6 were confirmed by NMR analysis. The solution was concentrated to dryness under vacuum and washed with hexane to give 6 as a brown solid (2.2 mg, 0.0035 mmol, 53%). Single crystals of 6 was obtained by slow evaporation of saturated C₆H₆ solution of 6 at room temperature.

6: ¹H NMR (C₆D₆, 25 °C) δ 7.74 (d, 1H, Phen-*H*, ³*J*_{HH} = 8.3 Hz), 7.62 (m, 4H, P*Ph*₂), 7.49 (m, 4H, P*Ph*₂), 7.10 (d, 1H, Phen-*H*, ³*J*_{HH} = 7.9 Hz), 7.00 (m, 2H×2, P*Ph*₂), 6.96 (m, 4H, P*Ph*₂), 6.92 (m, 4H, P*Ph*₂), 6.84 (d, 1H, Phen-*H*, ³*J*_{HH} = 7.9 Hz), 6.48 (d, 1H, Phen-*H*, ³*J*_{HH} = 8.3 Hz), 4.64 (m, 1H, P*CH*), 3.25 (d, 2H, P*CH*₂, ²*J*_{PH} = 9.4 Hz), 2.89 (t, 2H, C*H*₂, ³*J*_{HH} = 7.0 Hz), 2.67 (t, 2H, C*H*₂, ³*J*_{HH} = 7.2 Hz). ¹³C{¹H} NMR (C₆D₆, 25 °C) δ 166.0, 155.7, 149.9, 143.0, 138.8, 137.1, 132.9, 132.8, 130.0, 128.6, 128.3* (×2), 128.2*, 127.9*, 119.6, 118.7, 110.5, 89.7, 49.4, 26.9, 25.5. One ipso-carbon was obscured due to low intensity. * signals were determined based on HSQC. HSQC (C₆D₆, 25 °C) $\delta_{\text{H-}}\delta_{\text{C}}$ 7.00 (δ_{H}) - 128.2 (δ_{C}), 128.3(δ_{C}); 6.96 (δ_{H}) - 128.3 (δ_{C}); 6.92 (δ_{H}) - 127.9 (δ_{C}). ³¹P{¹H} NMR (C₆D₆, 25 °C) $\delta_{\text{H-}}\delta_{\text{C}}$ 7.00 (δ_{H}) - 128.2 (br). Anal. Calcd for CoN₂P₂C₃₈H₃₁: C, 71.70; H, 4.91; N 4.40. Found: C, 72.13; H, 4.87; N, 4.28.

Figure S19. ¹H spectrum of 6 in C_6D_6 .

Figure S20. ${}^{13}C{}^{1}H{}$ spectrum of 6 in C₆D₆.

Figure S21. ${}^{31}P{}^{1}H{}$ spectrum of 6 in C₆D₆.

X-ray Crystallographic Data

All single-crystal X-ray diffraction measurements of 1, 4, 5, and 6 were performed under a cold nitrogen stream on a Rigaku XtaLAB P200 diffractometer with a Pilatus 200K detector using multilayer mirror monochromated Mo-K α radiation ($\lambda = 0.71073$ Å, 50 kV/24 mA). The determination of crystal systems and unit cell parameters were performed with the CrystalClear program package. Data processing was performed with the CrystalClear program package or CrysAlisPro program package. All structures were solved by direct methods using SIR2014 program⁴, and refined by full-matrix least squares calculations on F2 for all reflections (SHELXL-2014/7)⁵, using Yadokari-XG 2009 program⁶. The X-ray crystallographic data for 1, 4, 5, and 6 have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition no. CCDC 2013566, 2013567, 2013568, be obtained free of 2013569. These data can charge from the CCDC (www.ccdc.cam.ac.uk/data_request/cif

	1	4	5	6	
Empirical formula	L CasHasClCoNaPa:	- С ₃₈ Н ₂₉ CoN ₂ P ₂	C ₄₂ H ₃₉ CoN ₂ P ₂ Si	0	
				$C_{38}H_{31}CoN_2P_2$	
		<i></i>			
Formula weight	671.00	634.50	720.71	636.52	
Temperature	93(2) K	93(2) K	93(2) K	93(2)	
Crystal system	triclinic	monoclinic	monoclinic	orthorhombic	
Space group	<i>P</i> –1	$P2_{1}/n$	$P2_{1}/c$	$P2_{1}2_{1}2_{1}$	
a/Å	10.996(5)	9.6072(16) Å	15.4631(12) Å	9.1277(13)	
b/Å	12.777(5)	17.588(3) Å	12.4153(11) Å	12.3182(18)	
c/Å	13.167(5)	17.717(3) Å	18.8980(12) Å	26.862(4)	
a/deg	80.538(5) °	90 °	90 °	90 °	
β/deg	72.079(5) °	101.736(3) °	103.596(8) °	90 °	
γ/deg	71.390(5) °	90 °	90 °	90 °	
Volume	1663.6(12) Å ³	2931.1(9) Å ³	3526.3(5) Å ³	3020.3(8) Å ³	
Z	2	4	4	4	
Density	1.421	1.438	1.358	1.400	
$Goodness\text{-of-fit} \text{ on } F^2$	1.142	1.073	1.038	0.843	
Final R indices	R1 = 0.0954,	R1 = 0.0279,	<i>R</i> 1 =0.0577,	R1 = 0.0488,	
[I>2sigma(I)]	wR2 = 0.2659	wR2 = 0.0709	wR2 = 0.1107	wR2 = 0.1203	
R indices (all data)	R1 = 0.1191,	R1 = 0.0323,	R1 = 0.1227,	R1 = 0.0734,	
	wR2 = 0.2808	wR2 = 0.0731	wR2 = 0.1564	wR2 = 0.1373	

Table S1. Crystallographic parameters

Figure S22. ORTEP drawing of **1** with 50% probability ellipsoids. Hydrogen atoms and CH₃CN molecule are omitted for clarity. Selected bond distances (Å) and angles (deg): Co1–P1, 2.164(2); Co1–P2, 2.164(2); Co1–N1, 1.907(5); Co1–N2, 1.901(5); P1–C1, 1.847(8); P2–C7, 1.856(7); C1-C2, 1.491(10); C2–C3, 1.405(10); C3–C4, 1.397(11); C4–C5, 1.404(12); C7–C8, 1.461(11); P1–Co1–P2, 104.79(8); P1–Co1–N1, 84.3(2); N1–Co1–N2, 82.4(3); N2–Co1–P2 83.79(19).

References

- 1. T. Takeshita, K. Sato and Y. Nakajima, Dalton Trans., 2018, 47, 17004-17010.
- 2. H. Henry-Riyad and T. T. Tidwell, J. Phys. Org. Chem., 2003, 16, 559-563.
- 3. D. Kurandina, M. Parasram and V. Gevorgyan, Angew. Chem. Int. Ed., 2017, 56, 14212–14216.

4. M.C. Burla, R. Caliandro, B. Carrozzini, G. L. Cascarano, C. Cuocci, C. Giacovazzo, M. Mallamo, A. Mazzone and G. Polidori, *J. Appl. Cryst.*, 2015, **48**, 306.

5. G. M.Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr., 2008, 64, 112–122.

6. C. Kabuto, S. Akine, T. Nemoto and E. Kwon, Release of software (Yadokari-XG 2009) for crystal structure analyses. *Nippon Kessho Gakkaishi*, 2009, **51**, 218.