Experimental Section

Synthesis of NiFe₂O₄/RGO

All the chemicals are of analytical grade and used as received. NiFe₂O₄/RGO was synthesized by a facile microwave-assisted hydrothermal method. Typically, 20 mg of GO was dispersed in 30 mL of deionized water under ultrasonic dispersion for 1 h. Then, 0.1 mmol of Ni(NO₃)₂·6H₂O and 0.2 mmol of Fe(NO₃)₃·9H₂O were co-added in the GO suspension under magnetic stirring to form a homogeneous solution. The mixture was sealed into a quartz vial, and irradiated in a microwave oven (2450 MHz) for 10 min, and then cooled to room temperature naturally. The product was collected by centrifugation and then washed several times with deionized water and then dried at 60°C for 12 h. The dried precipitates were placed into a horizontal quartz tube and heated to 600 °C for 2 h under Ar atmosphere to obtain NiFe₂O₄/RGO. For comparison, RGO were prepared by the same procedure without addition of Ni(NO₃)₂·6H₂O and 0.2 mmol of Fe(NO₃)₃·9H₂O. For comparison, pure NiFe₂O₄ and pure RGO were prepared by the same procedure as NiFe₂O₄/RGO without the addition of GO and Ni(NO₃)₂·6H₂O/Fe(NO₃)₃·9H₂O, respectively.

Electrochemical experiments

The electrochemical measurements were performed on a CHI-660 electrochemical workstation (CHI-660) in a three-electrode configuration, where carbon cloth (CC), Ag/AgCl electrode and graphite rod were used as working, reference and counter electrodes, respectively. The working electrode was prepared by the following process: 100 µl of the homogeneous ink prepared by dispersing 1 mg catalyst and 5 µL of Nafion (5 wt%) in 95 µL of ethyl alcohol. Then 20 µL of catalyst ink was loaded on a 1×1 cm² CC substrate and dried under ambient condition. All potentials were referenced to reversible hydrogen electrode (RHE) by following equation: E_{RHE} (V)= $E_{\text{Ag/AgCl}}$ +0.197+0.059×pH. Potentiostatic test was conducted in N₂-saturated 0.5 M LiClO₄ solution in a two-compartment cell, which was separated by Nafion 211 membrane. The Nafion membrane was pretreated by boiling it in 5% H₂O₂ solution for 1 h, 0.5 M H₂SO₄ for 1 h and deionized water for 1 h in turn. Prior

to electrolysis, the feeding gases were purified through 0.05 M H_2SO_4 solution to remove any possible contaminants (NH₃ and NO_x). During each electrolysis, ultrahigh-purity N₂ gas (99.999%) was continuously purged into the cathodic chamber at a flow rate of 20 mL min⁻¹. After each NRR electrolysis, the produced NH₃ and possible N₂H₄ were quantitatively determined by the indophenol blue method[1], and approach of Watt and Chrisp[2], respectively.

Determination of NH₃

4 mL of electrolyte was removed from the electrochemical reaction vessel. Then 50 μ L of solution containing NaOH (0.75 M) and NaClO ($\rho_{Cl} = ~4$), 500 μ L of solution containing 0.32 M NaOH, 0.4 M C₇H₆O₃, and 50 μ L of C₅FeN₆Na₂O solution (1 wt%) were respectively added into the electrolyte. After standing for 2 h, the UV-Vis absorption spectrum was measured and the concentration-absorbance curves were calibrated by the standard NH₄Cl solution with a series of concentrations.

NH₃ yield (
$$\mu$$
g h⁻¹ mg⁻¹_{cat}) = $\frac{c_{\rm NH_3} \times V}{t \times m}$ (1)

Faradaic efficiency was calculated by the following equation:

Faradaic efficiency (%) =
$$\frac{3 \times F \times c_{\text{NH}_3} \times V}{17 \times Q} \times 100\%$$
 (2)

where $c_{\rm NH3}$ (µg mL⁻¹) is the measured NH₃ concentration, V (mL) is the volume of the electrolyte, t (h) is the reduction time and m (mg) is the mass loading of the catalyst on CC. F (96500 C mol⁻¹) is the Faraday constant, Q (C) is the quantity of applied electricity.

Determination of N₂H₄

5 mL of electrolyte was removed from the electrochemical reaction vessel. The 330 mL of color reagent containing 300 mL of ethyl alcohol, 5.99 g of $C_9H_{11}NO$ and 30 mL of HCl were prepared, and 5 mL of color reagent was added into the electrolyte. After stirring for 10 min, the UV-Vis absorption spectrum was measured and the concentration-absorbance curves were calibrated by the standard N_2H_4 solution with a series of concentrations.

Nuclear magnetic resonance measurement

¹H nuclear magnetic resonance (NMR) measurement was carried out using ¹⁵N₂ (99 % isotopic purity) as the feed gas. Prior to NMR measurement, ¹⁵N₂ was purified by an acid trap (0.05 M H₂SO₄) to eliminate the NO_x and NH₃ contaminants [4]. The NRR experiment using ¹⁵N₂ was conducted for 2 h. After NRR electrolysis, 4 mL of electrolyte was removed from the electrochemical reaction vessel, which was concentrated to ~1 mL and further acidized to pH ~2. The obtained electrolyte was mixed with 0.1 mL of deuterium oxide (D₂O) containing 100 ppm of dimethyl sulphoxide (DMSO) and 70 µL of D₂O for NMR spectroscopy measurement (500 MHz Bruker superconducting-magnet NMR spectrometer).

Characterizations

X-ray diffraction (XRD) pattern was tested on a Rigaku D/max 2400 diffractometer. Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy (STEM) were performed on a Tecnai G² F20 microscope. Raman spectra were recorded on a JY-HR800 Raman spectroscope. The UV-vis absorbance measurements were performed on a MAPADA P5 spectrophotometer.

Calculation details

Density functional theory (DFT) calculations were carried out using the Cambridge sequential total energy package (CASTEP) code. The exchangecorrelation interaction was described by generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional. An effective U parameter of 5.0 eV was applied for Fe 3d states, while 6.5 eV was used for Ni 3d states. During the geometry optimization, the Monkhorst-Pack k-point mesh and energy cutoff were set to be $2\times2\times1$ k-points and 400 eV. The NiFe₂O₄ (311) surface was modeled by a (2×2) supercell. For the construction of surface models, a vacuum of 15 Å was used to eliminate interactions between periodic images.

The adsorption energy (ΔE) was calculated by the following equation[4]:

$$\Delta E = E_{\rm ads/s\,lab} - E_{\rm ads} - E_{\rm slab} \tag{3}$$

where $E_{ads/slab}$, E_{ads} and E_{slab} are the total energies for adsorbed species on slab,

adsorbed species and isolated slab, respectively.

The Gibbs free energy (ΔG) of the NRR intermediates is calculated as [4]:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S \tag{4}$$

where ΔE is the adsorption energy, ΔZPE is the zero point energy difference and $T\Delta S$ is the entropy difference between the gas phase and adsorbed state.

Fig. S2. LSV curves of NiFe $_2O_4/RGO$ in Ar- and N $_2$ - saturated solutions.

Fig. S3. (a) UV-Vis absorption spectra of indophenol assays with NH_4Cl after incubated for 2 h at ambient conditions. (b) Calibration curve used for calculation of NH_3 concentrations.

Fig. S4. (a) UV-Vis absorption spectra of N_2H_4 assays after incubated for 20 min at ambient conditions. (b) Calibration curve used for calculation of N_2H_4 concentrations.

Fig.S5. NH_3 yieldsof $NiFe_2O_4/RGO$, $NiFe_2O_4$ andRGOafter2hofNRRelectrolysisat-0.5V.Thepure $NiFe_2O_4$ andpureRGOwerepreparedbythesameprocedureas $NiFe_2O_4/RGO$ withouttheadditionofGOand $Ni(NO_3)_2 \cdot 6H_2O/Fe(NO_3)_3 \cdot 9H_2O$, respectively. $ViFe_2O_4$ $ViFe_2O_4/RGO$ $ViFe_2O_4/RGO$ $ViFe_2O_4/RGO$ $ViFe_2O_4/RGO$ $ViFe_2O_4/RGO$

Fig. S6. Electrochemical impendence spectra of NiFe₂O₄/RGO, NiFe₂O₄ and RGO.

Fig. S7. UV-Vis absorption spectra of the electrolytes stained with indophenol indicator after 2 h electrolysis on NiFe₂O₄/RGO at -0.5 V in N₂-saturated solution, Ar-saturated solutions, N₂-saturated solution at open circuit and N₂-saturated solution on pristine CC.

Fig. S8. $^1\!\mathrm{H}$ NMR measurements by using $^{15}\mathrm{N}_2$ as feeding gas and $^{15}\mathrm{NH_4Cl}$ standard sample.

Fig. S9. (a) ¹H NMR spectra of ${}^{15}NH_4{}^+$ standard samples with different concentrations, and (b) corresponding calibration curve of ${}^{15}NH_4{}^+$ concentration vs. peak area. The pink star represents the ${}^{15}NH_4{}^+$ concentration derived from the NRR over NiFe₂O₄/RGO for 2 h at -0.5 V. (c) Comparison of the NH₃ yield of NiFe₂O₄/RGO obtained from UV-vis and NMR methods.

Fig. S10. Mass of produced NH_3 after NRR electrolysis at various times (1-8 h) on $NiFe_2O_4/RGO$ at -0.5 V.

Fig. S11. TEM image of NiFe $_2O_4$ /RGO after stability test.

Fig. S12. XRD pattern of NiFe₂O₄/RGO after stability test.

Fig. S13. XRD patterns of (a) Fe_2O_3/RGO (synthesis using the same route as $NiFe_2O_4/RGO$ but without addition of $Ni(NO_3)_2 \cdot 6H_2O$) and (b) NiO/RGO (synthesis using the same route as $NiFe_2O_4/RGO$ but without addition of $Fe(NO_3)_3 \cdot 9H_2O$). (c) NH_3 yields of $NiFe_2O_4/RGO$, Fe_2O_3/RGO and NiO/RGO after 2 h of NRR electrolysis at -0.5 V.

Catalyst	Electrolyte	Determination method	Optimum Potential (V Vs RHE)	NH3 yield (μg h ⁻¹ mg ⁻¹)	FE (%)	Ref.
Defect-rich MoS ₂ nanoflower	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.4	$\begin{array}{c} 29.28 \\ \mu g \ h^{-1} \ m g^{-1} \end{array}$	8.34	[5]
Nb ₂ O ₅ nanofibers	0.1 M HCl	Indophenol blue method	-0.55	43.6 $\mu g h^{-1} m g^{-1}$	9.26	[6]
Hollow Cr ₂ O ₃ microspheres	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.9	25.3 $\mu g h^{-1} m g^{-1}$	6.78	[7]
Cubic sub-micron SnO ₂ particles	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.7	$4.03 \ \mu g \ h^{-1} \ m g^{-1}$	2.17	[8]
Au@CeO ₂	0.01 M H2SO4	Indophenol blue method	-0.4	$28.2 \\ \mu g \ h^{-1} \ m g^{-1}$	9.5	[9]
Au/CeO _x -RGO	0.1 M KOH	Salicylate method	-0.2	$8.31 \ \mu g \ h^{-1} \ m g^{-1}$	10.1	[10]
Au-TiO ₂ sub- nanocluster	0.1 M HCl	Indophenol blue method	-0.2	21.4 $\mu g h^{-1} m g^{-1}$	8.11	[11]
Mo ₂ C/C	0.5 M Li ₂ SO ₄	Nessler's reagent method	-0.3	$11.3 \ \mu g \ h^{-1} \ m g^{-1}$	7.8	[12]
MXene	0.5 M Li ₂ SO ₄	Nessler's reagent method	-0.1	4.7 μg cm ⁻² h ⁻¹	5.78	[13]
Fe/Fe ₃ O ₄	0.1 M PBS	Indophenol blue method	-0.3	0.19 μg cm ⁻² h ⁻¹	8.29	[14]
Spinel Fe ₃ O ₄ nanorods	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.4	5.6×10^{-11} mol s ⁻¹ cm ⁻²	2.6	[15]
Bi ₄ V ₂ O ₁₁ -CeO ₂ nanofibers	0.1 M HCl	Indophenol blue method	-0.2	$23.21 \\ \mu g \ h^{-1} \ m g^{-1}$	10.16	[16]
CoP hollow nanocage	1.0 M KOH	Indophenol blue method	-0.4	$10.78\ \mu g\ h^{-1}\ mg^{-1}$	7.36	[17]
Mosaic Bi nanosheets	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.8	13.23 µg h ⁻¹ mg ⁻¹	10.46	[18]
Mo single atoms	0.1 М КОН	Indophenol blue method (NMR)	-0.3	$34 \ \mu g \ h^{-1} \ m g^{-1}$	14.6	[19]
NiFe ₂ O ₄ /RGO	0.5 M LiClO ₄	Indophenol blue method	-0.5	32.2 μg h ⁻¹ mg ⁻¹	9.8	This work

Table S1. Comparison of optimum NH₃ yield and Faradic efficiency (FE) for recently reported state-of-the-art NRR electrocatalysts at ambient conditions

Supplementary references

- [1]. D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, Nat. Mater., 2013, 12, 836.
- [2]. G. W. Watt and J. D. Chrisp, Anal. Chem., 1952, 24, 2006-2008.
- [3]. B. Hu, M. Hu, L. C. Seefeldt and T. L. Liu, ACS Energy Lett., 2019, 4, 1053-1054.
- [4]. A. A. Peterson, *Energy Environ. Sci.*, 2010, **3**, 1311-1315.
- [5]. X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. M. Asiri and L. Chen, Adv. Energy. Mater., 2018, 8, 1801357.
- [6]. J. Han, Z. Liu, Y. Ma, G. Cui, F. Xie, F. Wang, Y. Wu, S. Gao, Y. Xu and X. Sun, Nano Energy, 2018, 52, 264-270.
- [7]. Y. Zhang, W. Qiu, Y. Ma, Y. Luo, Z. Tian, G. Cui, F. Xie, L. Chen, T. Li and X. Sun, ACS Catal., 2018, 8, 8540-8544.
- [8]. L. Zhang, X. Ren, Y. Luo, X. Shi, A. M. Asiri, T. S. Li and X.-P. Sun, Chem. Commun., 2018.
- [9]. G. Liu, Z. Cui, M. Han, S. Zhang, C. Zhao, C. Chen, G. Wang and H. Zhang, *Chem. Eur. J.*, 2019, 25, 5904-5911.
- [10]. S. J. Li, D. Bao, M. M. Shi, B. R. Wulan, J. M. Yan and Q. Jiang, Adv. Mater., 2017, 29, 1700001.
- [11]. M. M. Shi, D. Bao, B. R. Wulan, Y. H. Li, Y. F. Zhang, J. M. Yan and Q. Jiang, *Adv. Mater.*, 2017, 29, 1606550.
- [12]. H. Cheng, L. X. Ding, G. F. Chen, L. Zhang, J. Xue and H. Wang, Adv. Mater., 2018, 30, 1803694.
- [13]. Y. R. Luo, G. F. Chen, L. Ding, X. Z. Chen, L. X. Ding and H. H. Wang, *Joule*, 2019, 3, 279-289.
- [14]. L. Hu, A. Khaniya, J. Wang, G. Chen, W. E. Kaden and X. Feng, ACS Catal., 2018, 8, 9312-9319.
- [15]. Q. Liu, X. Zhang, B. Zhang, Y. Luo, G. Cui, F. Xie and X. Sun, *Nanoscale*, 2018, 10, 14386-14389.
- [16]. C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou and G. Yu, Angew. Chem. Int. Edit., 2018, 130, 6181-6184.
- [17]. W. Guo, Z. Liang, J. Zhao, B. Zhu, K. Cai, R. Zou and Q. Xu, Small Methods, 2018, 2, 1800204.
- [18]. L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng and S.-Z. Qiao, ACS Catal., 2019, 9, 2902-2908.
- [19]. L. Han, X. Liu, J. Chen, R. Lin, H. Liu, F. Lu, S. Bak, Z. Liang, S. Zhao and E. Stavitski, *Angew. Chem. Int. Edit.*, 2018, 58, 2321-2325.