Supporting information

Surface sites assemble strategy on Pt-Ru nanowires for accelerated methanol oxidation

Mingxuan Li,[†] Yao Wang,[†] Jing Cai,[†] Yunrui Li,[†] Yujie Liu,[†] Yin Dong,[†] Shuna Li,[†] Xiaolin Yuan,[†] Xin Zhang ^{*,†} and Xiaoping Dai[†]

[†]State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China

Corresponding author: Xin Zhang*

Characterization Techniques.

Transmission electron microscopy (TEM) images were collected by JEM-2100 at 200 kV. The magnified images of the NWs were confirmed by a Tecnai G2 F20 S-Twin high resolutions transmission electron microscope (HRTEM) operating at 200 kV. The crystal structure of the NWs was evaluated by X-ray diffraction (XRD) patterns using a Brüker D8 Advance diffractometer at 40 kV and 40 mA for Cu K α radiation ($\lambda K_{\alpha 1}$ = 1.5406 Å; $\lambda K_{\alpha 2}$ = 1.5443 Å), with a scan speed of 5 °/min and a step size of 0.02 in 20, instrument broadening: 0.12°. The valence states of Pt and Ru was carried out on X-ray photoelectron spectrum (XPS) test using PHI 5000 Versaprobe system with monochromatic Al K α radiation (1486.6 eV), all the values of binding energy were calibrated by the C1s peak at 284.6 eV. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was performed on IRIS Intrepid II XSP (Thermo Fisher), working parameters: RF power, 1150 W; nebulizer flow, 26.0 PSI; auxiliary gas, 1.0 LPM.

Catalysts	Mass ratio (Pt: Ru)
Ru/Pt NWs	100:0.45
Ru@Pt NWs	100:0.42
0.09%Ru/Pt NWs	100:0.09
1.9%Ru/Pt NWs	100:1.92
Ru/Pt NWs after stability test	100:0.40

 Table S1. The compositions of RuPt NWs and Ru@Pt NWs catalysts determined by ICP-OES.

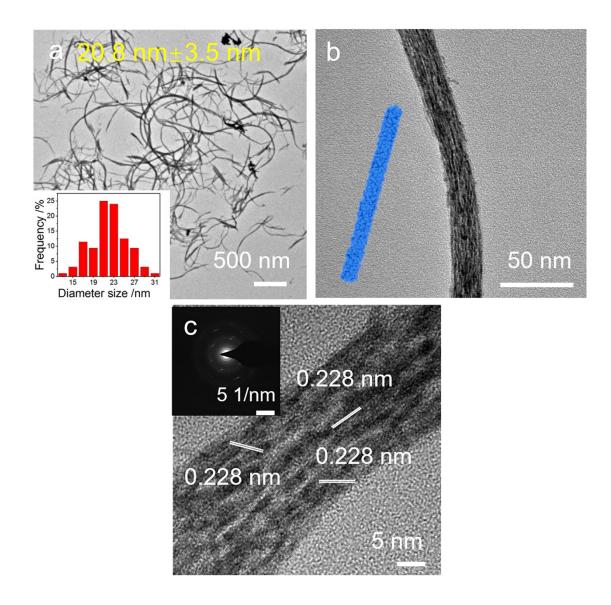
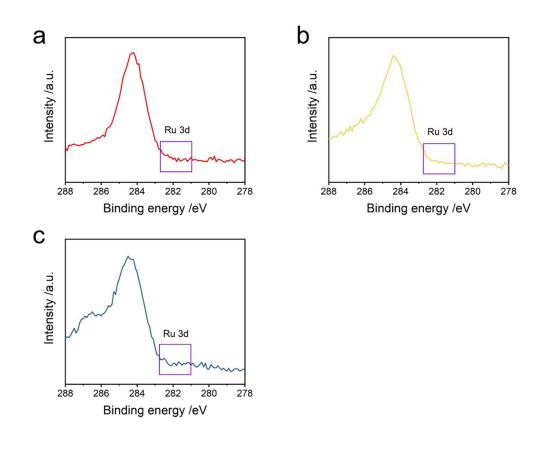



Fig. S1. (a) (b) TEM and (c) HRTEM images of pure Pt NWs.

materials	2θ /degree (111)	lattice parameter (Å)	strain (%)
Pt crystal (PDF#04-0802)	39.76	0.2538	-
Ru/Pt NWs	40.124	0.2519	0.75
Ru@Pt NWs	40.068	0.2522	0.63

 Table S2 The XRD data of different materials.

Fig. S2. XPS patterns of the Ru 3d of the as-prepared (a) Pt NWs (b) Ru/Pt NWs and (d) Ru@Pt NWs catalysts.

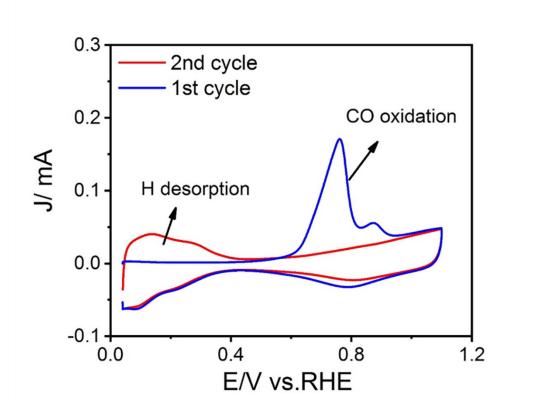
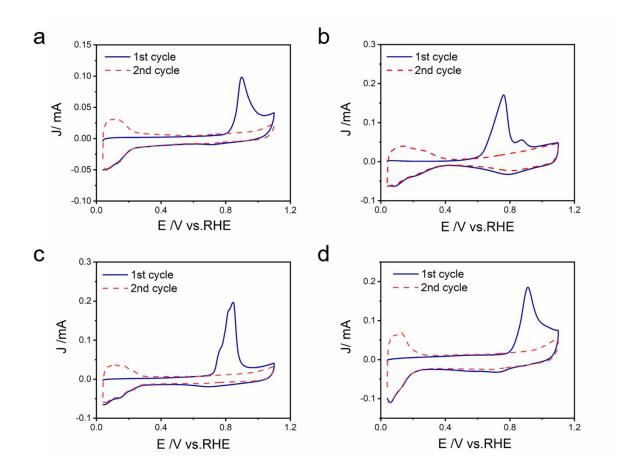
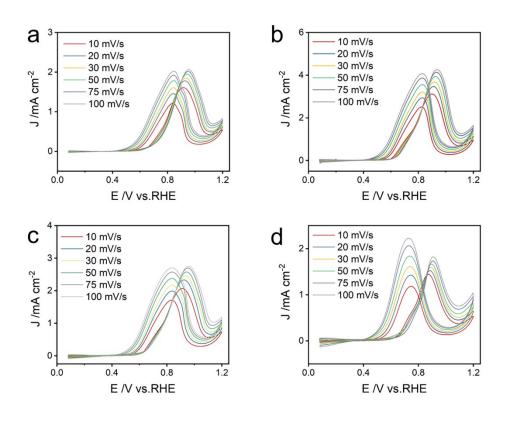



Fig. S3. Illustration of CO-stripping curves of Ru/Pt NWs.


Fig S4. The whole CO stripping curves of (a) Pt NWs, (b) Ru/Pt NWs, (c) Ru@Pt NWs and (d) Pt/C modified electrodes.

sanples	$\mathrm{ECSA}_{\mathrm{H}} \left(\mathrm{m}^2 \mathrm{g}^{-1}_{\mathrm{pt}}\right)$	ECSA _H / ECSA _{CO}	ECSA _{CO} of first peak (m ² g ⁻¹ _{pt})	ECSA _{CO} (m ² g ⁻¹ _{pt})	First peak area/total peak area
Pt NWs	9.39	1.00: 1.08	-	10.14	-
Ru/Pt NWs	19.75	1.00: 0.99	18.64	19.55	95.37%
Ru@Pt NWs	13.54	1.00: 1.14	3.59	15.44	23.23%
Pt/C	23.93	1.00: 1.11	-	26.56	-
0.09%Ru/Pt NWs	17.47	1.00: 1.16	19.20	20.26	94.74%
1.9%Ru/Pt NWs	13.55	1.00: 1.09	14.24	14.76	96.49%

Table S3. Summaries of $ECSA_{H}$, $ECSA_{CO}$ and their ratios; the two peak areas of CO oxidation and their ratios in 0.1 M HClO₄ solution at a sweep rate of 50 mV s⁻¹.

Table S4. Summaries of MOR activity of the prepare NWs and commercial Pt/C in 0.1 M
HClO ₄ +1 M CH ₃ OH solution at 30 °C.

	Based on H _{upd}		Based on CO stripping	
Sample	Specific activity	Mass activity	Specific activity	
	$(mA cm^{-2})$	(mA mg ⁻¹ _{Pt})	(mA cm ⁻²²)	
Pt NWs	1.94	219.51	1.80	
Ru/Pt NWs	3.93	568.40	3.97	
Ru@Pt NWs	2.58	292.89	0.77	
Commercial Pt/C	1.68	280.00	1.51	
0.09%Ru/Pt NWs	2.60	244.62	2.24	
1.9%Ru/Pt NWs	3.25	337.44	2.98	

Fig. S5. CV plots of methanol electrooxidation on (a) Pt NWs, (b) Ru/Pt NWs, (c) Ru@Pt NWs and (d) Pt/C modified electrodes at different scan rates.

 Sanples	Slope value	Pearson correlation coefficient
 Pt NWs	0.063	0.96845
Ru/Pt NWs	0.1642	0.98223
Ru@Pt NWs	0.104	0.97599

0.054

0.1403

0.1144

0.99683

0.98153

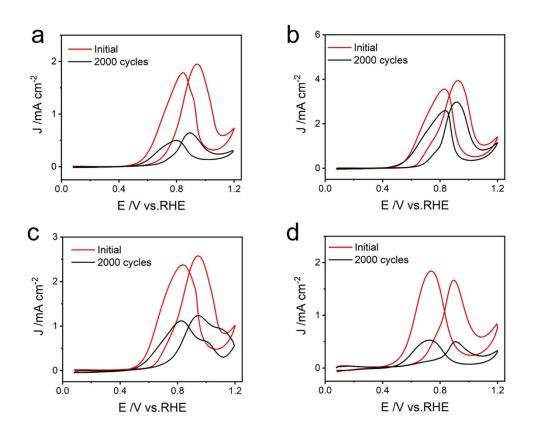

0.99005

Table S5. The slope values of catalysts in this work

Pt/C

0.09%Ru/Pt NWs

1.9%Ru/Pt NWs

Fig. S6. The initial and after 2000 cycles of MOR for (a) Pt NWs, (b) Ru/Pt NWs, (c) Ru@Pt NWs and (d) Pt/C in 0.1M HClO₄ and 1 M methanol solution at a scan rate of 50 mV s⁻¹.

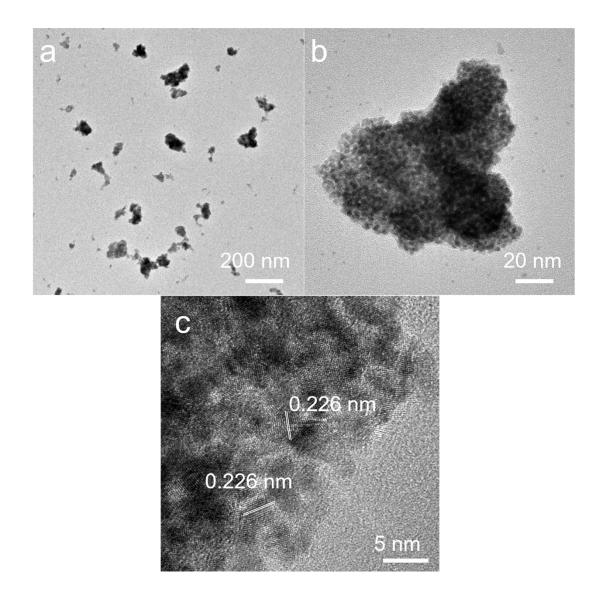


Fig. S7. TEM images of Pt₃Ru₁ clusters.

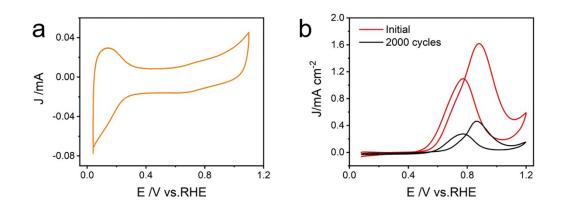


Fig. S8. A) CV curves, B) the initial and after 2000 cycles of MOR of Pt_3Ru_1 catalyst in 0.1 M HClO₄ and 1 M methanol solution at a sweep rate of 50 mV s⁻¹.

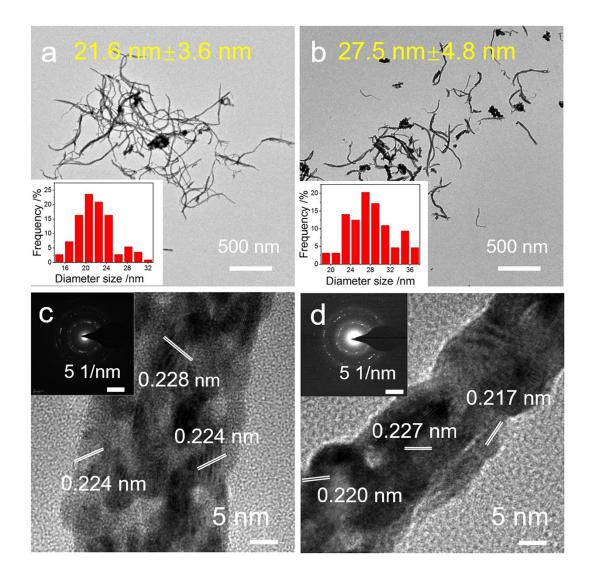
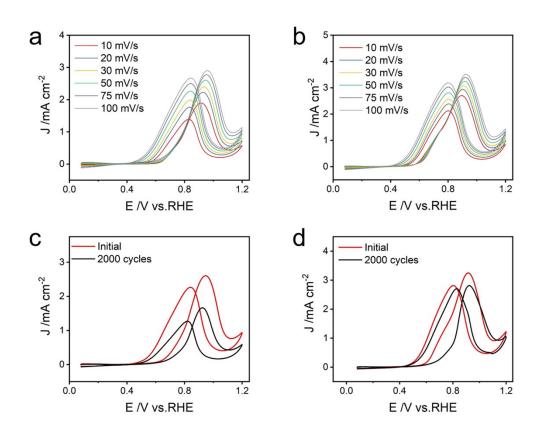
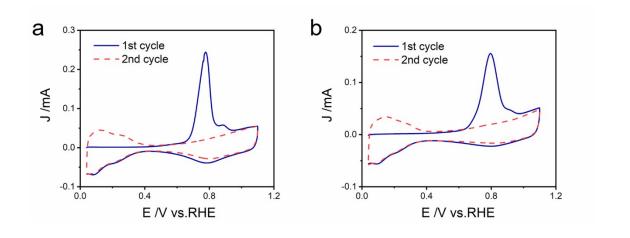




Fig. S9. (a) (b) TEM and (c) (d) HRTEM images of 0.09% Ru/Pt NWs and 1.9%Ru/Pt NWs.

Fig. S10. (a-b) CV plots of methanol electrooxidation on (a) 0.09%Pt NWs and (b) 1.9%Ru/Pt NWs modified electrodes at different scan rates. (c-d) The initial and after 2000 cycles of MOR for (c) 0.09%Ru/Pt NWs and (d) 1.9%Ru/Pt NWs in 0.1M HClO₄ and 1 M methanol solution at a sweep rate of 50 mV s⁻¹.

Fig S11. The whole CO stripping curves of (a) 0.09% Ru/Pt NWs and (b) 1.9% Ru/Pt NWs modified electrodes.