Supporting Information

Luminescent behaviour of Au(I)-Cu(I) heterobimetallic coordination polymers based on alkynyl-tris(2-pyridyl)phosphine Au(I) complexes

Stanislav K. Petrovskii^a, Aleksandra V. Paderina^a, Anastasia A. Sizova^a, Andrey Yu. Baranov^b, Alexander A. Artem'ev^b, Vladimir V. Sizov^{a*} and Elena V. Grachova^{a*}

^a Institute of Chemistry, St. Petersburg State University, Universitetskiy pr. 26, 198504

St. Petersburg, Russia

^b Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Acad. Lavrentiev Ave. 3, 630090 Novosibirsk, Russia

E-mail: <u>e.grachova@spbu.ru</u> <u>sizovvv@mail.ru</u>

Content of Supporting Information

Table S1.	Crystallographic data for 1, 2, and 4a.	S 3
Figure S1.	³¹ P{ ¹ H} NMR spectra of 1 , 2 , 3 , and 4 , r.t	S 4
Figure S2.	¹ H NMR spectra of 1 , 2 , 3 , and 4a , aromatic region, r.t.	S4
Figure S3.	Variable temperature ¹ H NMR spectra of 2 , CD ₂ Cl ₂ , aromatic region	S5
Figure S4.	Solid state structure of 4a	S5
Figure S5.	Variable temperature ¹ H NMR spectra of 4 , CD ₃ CN, aromatic region	S 6
Figure S6.	Variable temperature ¹ H NMR spectra of 5 , CD ₃ CN, aromatic region	S 6
Figure S7.	XRD powder patterns for 1, 2, 4a, and 5 (powder and single crystal)	S 7
Table S2.	Binding energies (eV) of peaks in XPS spectra of 1, 2, 4a and 5	S 8
Figure S8.	Core-level photoemission spectra of 1, 2, 4a, and 5	S 8
Table S3.	Optical properties of 1-5 , CH ₂ Cl ₂ , $c = 10^{-5}$ M, r.t.	S9
Figure S9.	UV-Vis absorption spectra of free PPy_3 and 1-3 .	S 9
Figure S10.	Emission spectra of 1 and 3 in the solid state, r.t	S 9
Table S4.	CIE 1931 Colour coordinates of 1, 3, 4a, and 5 emission at variable	
	temperature	S10
Table S5.	Photophysical properties of 4a and 5 , solid state	S10
Figure S11.	Temperature evolution of emission spectra of 5	S 10
Figure S12.	Natural transition orbitals (NTOs) describing UV-Vis absorption of the	
	[PhC ₂ Au(PPy ₃)] complex (1)	S 11
Figure S13.	Natural transition orbitals (NTOs) describing UV-Vis absorption of the	
	[Ph ₂ (OH)CC ₂ Au(PPy ₃)] complex (2)	S12
Figure S14.	Natural transition orbitals (NTOs) describing UV-Vis absorption of the	
	$[C_6H_3(C_2Au(PPy_3))_3]$ complex (3)	S13
Figure S15.	Natural transition orbitals (NTOs) describing UV-Vis absorption of the	
	$[PhC_2Au(PPy_3)Cu-PhC_2Au(PPy_3)Cu(CH_3CN)]^{2+} \ model \ complex \ (\textbf{4})$	S14
Figure S16.	Natural transition orbitals (NTOs) for the lowest excited states of the	
	$[Cu(PPy_3)(CH_3CN)]^+$ complex (Cu).	S15
Figure S17.	Natural transition orbitals (NTOs) for the lowest excited states of the	
	[PhC ₂ Au(PPy ₃)] complex (1)	S 16
Figure S18.	Natural transition orbitals (NTOs) for the lowest excited states of the	
	$[PhC_2Au(PPy_3)Cu-PhC_2Au(PPy_3)Cu(CH_3CN)]^{2+}\ complex\ (\textbf{4}).$	S18

	1	2	4 a
Formula	$C_{23}H_{17}AuN_3P$	$C_{30}H_{24}AuN_3OP$	$C_{144}H_{111}Au_6B_6Cu_6F_{24}N_{21}P_6$
Crystal System	Monoclinic	Triclinic	Hexagonal
<i>a</i> (Å)	8.5575(3)	10.4121(5)	15.2140(2)
<i>b</i> (Å)	10.8642(5)	11.9530(5)	15.2140(2)
<i>c</i> (Å)	21.2885(8)	12.0119(5)	19.3663(2)
α (°)	90	109.897(4)	90
$\beta(^{\circ})$	91.365(4)	111.317(4)	90
γ (°)	90	100.110(4)	120
$V(Å^3)$	1978.64(14)	1230.74(11)	3882.07(11)
Molecular weight	563.33	669.46	4405.34
Space group	$P2_1/c$	P-1	P3 ₂ 21
μ (mm ⁻¹)	7.529	6.071	12.535
Temperature (K)	100(11)	100(11)	100.00(11)
Ζ	4	2	6
D_{calc} (g/cm ³)	1.891	1.809	1.901
Crystal size (mm ³)	0.412 imes 0.348 imes	0.302 imes 0.254 imes	$0.365 \times 0.306 \times 0.237$
	0.231	0.037	
Diffractometer	Xcalibur Eos	Xcalibur Eos	XtaLAB HyPix-3000
Radiation	ΜοΚα	ΜοΚα	CuKα
Total reflections	9326	11477	36133
Unique reflections	4529	6807	5133
Angle range $2\theta(^{\circ})$	5.358-54.996	5.72–61.784	6.708–144.996
Reflections with $ F_{\rm o} \ge 4\sigma_F$	3617	6282	5008
$R_{ m int}$	0.0518	0.0330	0.0391
R_{σ}	0.0767	0.0602	0.0198
$R_1 (F_o \ge 4\sigma_F)$	0.0398	0.0300	0.0340
$wR_2(F_o \ge 4\sigma_F)$	0.0690	0.0596	0.0902
R_1 (all data)	0.0552	0.0341	0.0349
wR_2 (all data)	0.0767	0.0620	0.0922
S	1.018	1.051	1.154
$ ho_{ m min}, ho_{ m max}, e/{ m \AA}^3$	-1.67, 2.14	-1.38, 1.75	-1.08, 2.42
CCDC	2012566	2012565	2012567

Table S1. Crystallographic data for 1, 2, and 4a.

 $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; \ wR_2 = \{ \Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2] \}^{1/2}; \ w = 1 / [\sigma^2 (F_0^2) + (\mathbf{a}P)^2 + \mathbf{b}P], \ \text{where} \ P = (F_0^2 + 2F_c^2) / 3; \ s = 1 / [\sigma^2 (F_0^2) + (\mathbf{a}P)^2 + \mathbf{b}P] \}$

= $\{\Sigma[w(F_0^2 - F_c^2)]/(n-p)\}^{1/2}$ where *n* is the number of reflections and *p* is the number of refinement parameters.

Figure S1. ${}^{31}P{}^{1}H$ NMR spectra of 1, 2 ((CD₃)₂CO), 3 (CDCl₃), and 4 (CD₃CN), r.t.

Figure S2. ¹H NMR spectra of **1**, **2** ((CD₃)₂CO), **3** (CDCl₃), and **4a** (CD₃CN), aromatic region, r.t.

Figure S3. Variable temperature ¹H NMR spectra of **2**, CD₂Cl₂, aromatic region. The temperature is indicated in K.

Figure S4. Solid state structure of **4a** (BF_4^- anions are omitted for clarity). Colour legend: coper is indigo, phosphorous is red, nitrogen is light blue, all other atoms are orange.

Figure S5. Variable temperature ¹H NMR spectra of **4**, CD₃CN, aromatic region. The temperature is indicated in K.

Figure S6. Variable temperature ¹H NMR spectra of **5**, CD₃CN, aromatic region. The temperature is indicated in K.

Figure S7. XRD powder patterns for 1, 2, 4a, and 5 (powder and single crystal).

Element	Level	1	2	4 a	5
С	1s	284.4	284.4	284.7	284.5
Ν	1s	398.7	398.8	399.6	399.5
Р	2p*	131.0	131.4	131.8	131.8
Au	$4f_{5/2}, 4f_{7/2}$	88.3, 84.6	88.5, 84.8	88.8, 85.1	88.8, 85.1
Cu	2p _{1/2} , 2p _{3/2}	_	_	952.4, 932.5	952.3, 932.5
В	1s	_	_	189.3	189.4
F	1s	-	-	685.3	685.2

Table S2. Binding energies (eV) of peaks in XPS spectra of 1, 2, 4a, and 5.

 \ast Unresolved combination of $2p_{1/2}$ and $2p_{3/2}$ components.

Figure S8. Core-level photoemission spectra of 1, 2, 4a, and 5.

Compound	λ_{abs} , nm (ϵ , 10 ⁴ cm ⁻¹ M ⁻¹)
1	241(2.33), 260 ^{sh} (2.54), 269(2.90), 283(2.43), 294 ^{sh} (1.35)
2	259(1.71), 267 ^{sh} (1.52), 274 ^{sh} (0.89)
3	242(4.97), 265 ^{sh} (6.70), 274(7.40), 288(7.00), 295 ^{sh} (6.15), 335(0.24)
4 [#]	237(2.85), 257 ^{sh} (2.67), 267(3.32), 282(2.75), 291 ^{sh} (1.49), 379(0.04)
4	$245^{\text{sh}}(2.66), 262(3.17), 270^{\text{sh}}(3.05), 290^{\text{sh}}(1.39), 300^{\text{sh}}(1.28), 385(0.23)$
5#	$257(1.95), 263^{sh}(1.79), 272^{sh}(1.17), 373(0.05)$
5	261(2.40), 270 ^{sh} (1.91), 301(0.48), 386(0.22)

Table S3. Optical properties of **1-5**, CH_2Cl_2 solution, $c = 10^{-5}$ M, r.t.

[#] NCMe solution.

Figure S9. UV-Vis absorption spectra of free PPy₃ and **1-3**, CH₂Cl₂, $c = 10^{-5}$ M, r.t.

Figure S10. Emission spectra of 1 and 3 in the solid state, r.t.

	1	3	4	a	5	5
	-	·	r.t.	77 K	r.t.	77 K
Х	0.1447	0.2084	0.4170	0.4213	0.3926	0.4283
Y	0.1213	0.6574	0.5294	0.5592	0.5617	0.5570

Table S4. CIE 1931 Colour coordinates of 1, 3, 4a, and 5 emission in solid state.

* Colour coordinates were calculated using Osram LED ColorCalculator software:

https://www.osram.us/cb/tools-and-resources/applications/led-colorcalculator/index.jsp

Table S5. Photophysical properties of **4a** and **5**, solid state, $\lambda_{exct} = 380$ nm.

	λ_{em}, nm	λexct, nm [‡]	$\Phi, \%^{\ddagger}$	$\tau_{\rm i}$, ns $(f_i)^*$		τ_{av} ,	τ_{av}, ns^{**}	
				RT	77 K	RT	77 K	
4 a	554	335	2	93(0.1),	107(0.12),	521	542	
				527(0.9)	604(0.88)	521	572	
5	548	548 332, 402	< 0.1	101(0.12),	94.3(0.15),	512	524	
				568(0.88)	599(0.85)	512		

[‡] Ambient temperature. ^{*} Fractional intensity $f_i = a_i \tau_i / \sum (a_i \tau_i)$.

** Average for the double exponential decay $\tau_{av} = (A_1\tau_1^2 + A_2\tau_2^2)/(A_1\tau_1 + A_2\tau_2)$, A_i is weight of the *i* exponent.

Figure S11. Temperature evolution of emission spectra of 5 in the solid state during unprompted heating after treatment by liquid nitrogen, $\lambda_{exct} = 380$ nm.

Figure S12. Natural transition orbitals (NTOs) describing UV-Vis absorption of the $[PhC_2Au(PPy_3)]$ complex (1) as obtained from DFT calculations. The calculated wavelength and oscillator strength (f) are provided for each transition together with the most important pair of NTOs.

Figure S13. Natural transition orbitals (NTOs) describing UV-Vis absorption of the $[Ph_2(OH)CC_2Au(PPy_3)]$ complex (2) as obtained from DFT calculations. The calculated wavelength and oscillator strength (f) are provided for each transition together with the most important pair of NTOs.

Figure S14. Natural transition orbitals (NTOs) describing UV-Vis absorption of the $[C_6H_3(C_2Au(PPy_3))_3]$ complex (**3**) as obtained from DFT calculations. The calculated wavelength and oscillator strength (f) are provided for each transition together with the most important pair of NTOs.

Figure S15. Natural transition orbitals (NTOs) describing UV-Vis absorption of the $[PhC_2Au(PPy_3)Cu-PhC_2Au(PPy_3)Cu(CH_3CN)]^{2+}$ model complex (4) as obtained from DFT calculations. The calculated wavelength and oscillator strength (f) are provided for each transition together with the most important pair of NTOs.

NTO

Figure S16. Natural transition orbitals (NTOs) for the lowest excited states of the $[Cu(PPy_3)(CH_3CN)]^+$ complex (**Cu**) as obtained from TDDFT calculations. Only the most important pair of NTOs is shown for each state.

NTO

Figure S17. Natural transition orbitals (NTOs) for the lowest excited states of the $[PhC_2Au(PPy_3)]$ complex (1) as obtained from TDDFT calculations. Only the most important pair of NTOs is shown for each state.

Figure S17, continued.

Figure S18. Natural transition orbitals (NTOs) for the lowest excited states of the $[PhC_2Au(PPy_3)Cu-PhC_2Au(PPy_3)Cu(CH_3CN)]^{2+}$ complex (4) as obtained from TDDFT calculations. Only the most important pair of NTOs is shown for each state.

Figure S18, continued.