Bonded- and Discreted- Linqvist Hexatungstate-Based Copper hybrids as

Heterogeneous Catalysts for One-pot Synthesis of 2-Phenylquinoxalines

via 2-Haloanilines with Vinyl Azides or 3-Phenyl-2H-azirines

Guodong Shen,\*<sup>a</sup> Zeyou Wang<sup>a</sup>, Xianqiang Huang,\*<sup>a</sup> Shuwen Gong,<sup>a</sup> Jiangong Zhang,<sup>a</sup> Zhenfei Tang,<sup>a</sup> Manman Sun,<sup>b</sup> Xin Lv<sup>c</sup>

<sup>a</sup>School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, I Hunan Avenue, Liaocheng 252000, Shandong, P. R. China

<sup>b</sup>Advanced Research Institute and Department of Chemistry, Taizhou University,

1139 Shifu Avenue, Taizhou 318000, Zhejiang, P. R. China.

<sup>c</sup>Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China.

E-mail address: shenguodong33@163.com; hxqqxh2008@163.com; Tel. & Fax: 86-635-8239566

## List of Content

| 1. | Data of Cu-POMs 1 and Cu-POMs 2   | 2-10  |
|----|-----------------------------------|-------|
| 2. | Data of the products              | 10-13 |
| 3. | Copies of NMR spectra of products | 14-28 |

| Compound                              | 1                                  | 2                                | 2c                |
|---------------------------------------|------------------------------------|----------------------------------|-------------------|
| Formula                               | $C_{48} \\ H_{32}Cu_4N_8O_{29}W_6$ | $C_{48}H_{37}ClCu_2N_8O_{21}W_6$ | $C_{15}H_{12}N_2$ |
| $M_{ m r}$                            | 2542.08                            | 2327.48                          | 220.27            |
| Crystal system                        | Triclinic                          | monoclinic                       | monoclinic        |
| Space group                           | P-1                                | <i>C 2/c</i>                     | P 21              |
| T(K)                                  | 298(2)                             | 298(2)                           |                   |
| <i>a</i> (Å)                          | 10.6500(9)                         | 26.174(2)                        | 9.580(2)          |
| <i>b</i> (Å)                          | 12.1479(11)                        | 16.2204(14)                      | 4.8156(10)        |
| <i>c</i> (Å)                          | 13.1931(12)                        | 14.0404(12)                      | 12.595(3)         |
| $\alpha$ (deg)                        | 108.267(3)                         | 90                               | 90                |
| $\beta$ (deg)                         | 101.159(2)                         | 118.393(4)                       | 103.16(3)         |
| γ (deg)                               | 106.443(3)                         | 5243.9(8)                        | 90                |
| $V(Å^3)$                              | 1478.0(2)                          | 5243.9(8)                        | 565.8(2)          |
| Ζ                                     | 1                                  | 4                                | 2                 |
| $D_{\text{calc.}}(\text{mg/cm}^{-3})$ | 2.856                              | 2.948                            | 1.293             |
| <i>F</i> (000)                        | 1168                               | 4272                             | 232               |
| $R_1[I > 2\sigma(I)]$                 | 0.0567                             | 0.0551                           | 0.0716            |
| $wR_2[I \ge 2\sigma(I)]$              | 0.1833                             | 0.1587                           | 0.2276            |
| $R_1$ (all data)                      | 0.0677                             | 0.1045                           | 0.0910            |
| $wR_2(all data)$                      | 0.1910                             | 0.1894                           | 0.2693            |
| GOOF                                  | 1.070                              | 1.073                            | 1.139             |
| Highest peak                          | 4.18                               | 1.93                             |                   |
| Deepest hole                          | -4.10                              | -3.94                            |                   |
| CCDC No.                              | 1515325                            | 1918834                          | 2008846           |

### 1. Data of Cu-POMs 1 and Cu-POMs 2

 Table S1 Crystal data and structure refinement for compounds 1-2.

# Table S2. Selected Bond lengths [Å] and angles [°] for compounds 1-2

| Compound 1  |            |                    |          |  |
|-------------|------------|--------------------|----------|--|
| W(1)-O(1)   | 1.701(9)   | O(9)-W(2)#1        | 1.889(9) |  |
| W(1)-O(8)#1 | 1.868(9)   | O(1)-W(1)-O(8)#1   | 103.0(4) |  |
| W(1)-O(3)   | 1.915(9)   | O(1)-W(1)-O(3)     | 102.3(4) |  |
| W(1)-O(5)#1 | 1.956(8)   | O(8)#1-W(1)-O(3)   | 90.2(4)  |  |
| W(1)-O(2)   | 1.999(8)   | O(1)-W(1)-O(5)#1   | 101.7(4) |  |
| W(1)-O(6)   | 2.2868(7)  | O(8)#1-W(1)-O(5)#1 | 89.3(4)  |  |
| W(1)-W(3)#1 | 3.2283(10) | O(3)-W(1)-O(5)#1   | 155.5(4) |  |
| W(2)-O(4)   | 1.702(9)   | O(1)-W(1)-O(2)     | 100.7(4) |  |
| W(2)-O(9)#1 | 1.889(9)   | O(8)#1-W(1)-O(2)   | 156.2(4) |  |
| W(2)-O(5)   | 1.926(9)   | O(3)-W(1)-O(2)     | 87.0(4)  |  |
| W(2)-O(3)   | 1.935(9)   | O(5)#1-W(1)-O(2)   | 83.6(4)  |  |
| W(2)-O(7)   | 1.956(9)   | O(1)-W(1)-O(6)     | 177.8(3) |  |
| W(2)-O(6)   | 2.3144(6)  | O(8)#1-W(1)-O(6)   | 79.1(3)  |  |
| W(3)-O(10)  | 1.684(9)   | O(3)-W(1)-O(6)     | 78.3(3)  |  |

| W(3)-O(7)         | 1.895(9)   | O(5)#1-W(1)-O(6)   | 77.6(3)    |
|-------------------|------------|--------------------|------------|
| W(3)-O(2)         | 1.907(8)   | O(2)-W(1)-O(6)     | 77.2(3)    |
| W(3)-O(9)         | 1.961(8)   | O(1)-W(1)-W(3)#1   | 136.5(3)   |
| W(3)-O(8)         | 1.964(8)   | O(8)#1-W(1)-W(3)#1 | 33.5(3)    |
| W(3)-O(6)         | 2.3064(7)  | O(3)-W(1)-W(3)#1   | 84.2(3)    |
| W(3)-W(1)#1       | 3.2283(10) | O(5)#1-W(1)-W(3)#1 | 82.0(3)    |
| Cu(1)-O(11)       | 1.948(9)   | O(2)-W(1)-W(3)#1   | 122.7(3)   |
| Cu(1)-O(12)       | 1.957(9)   | O(6)-W(1)-W(3)#1   | 45.592(18) |
| Cu(1)-N(1)        | 2.026(11)  | O(4)-W(2)-O(9)#1   | 103.8(4)   |
| Cu(1)-N(2)        | 2.032(11)  | O(4)-W(2)-O(5)     | 102.0(4)   |
| Cu(1)-O(2)        | 2.467(9)   | O(9)#1-W(2)-O(5)   | 88.6(4)    |
| Cu(2)-O(12)       | 1.943(9)   | O(4)-W(2)-O(3)     | 103.3(4)   |
| Cu(2)-O(11)       | 1.953(9)   | O(9)#1-W(2)-O(3)   | 87.9(4)    |
| Cu(2)-N(4)        | 2.018(11)  | O(5)-W(2)-O(3)     | 154.6(4)   |
| Cu(2)-N(3)        | 2.035(11)  | O(4)-W(2)-O(7)     | 102.5(4)   |
| Cu(2)-O(1)        | 2.280(10)  | O(9)#1-W(2)-O(7)   | 153.7(4)   |
| N(1)-C(1)         | 1.333(18)  | O(5)-W(2)-O(7)     | 87.0(4)    |
| N(1)-C(5)         | 1.352(18)  | O(3)-W(2)-O(7)     | 85.1(4)    |
| N(2)-C(12)        | 1.348(18)  | O(4)-W(2)-O(6)     | 178.8(3)   |
| N(2)-C(6)         | 1.356(18)  | O(9)#1-W(2)-O(6)   | 77.3(3)    |
| N(3)-C(13)        | 1.340(18)  | O(5)-W(2)-O(6)     | 77.5(2)    |
| N(3)-C(17)        | 1.371(17)  | O(3)-W(2)-O(6)     | 77.2(2)    |
| N(4)-C(24)        | 1.344(17)  | O(7)-W(2)-O(6)     | 76.4(3)    |
| N(4)-C(18)        | 1.356(16)  | O(10)-W(3)-O(7)    | 104.0(4)   |
| O(5)-W(1)#1       | 1.956(8)   | O(10)-W(3)-O(2)    | 103.9(4)   |
| O(6)-W(1)#1       | 2.2868(7)  | O(7)-W(3)-O(2)     | 90.5(4)    |
| O(6)-W(3)#1       | 2.3064(7)  | O(10)-W(3)-O(9)    | 102.0(4)   |
| O(6)-W(2)#1       | 2.3144(6)  | O(7)-W(3)-O(9)     | 153.8(4)   |
| O(8)-W(1)#1       | 1.868(9)   | O(2)-W(3)-O(9)     | 86.4(4)    |
| O(10)-W(3)-O(8)   | 100.7(4)   | C(17)-N(3)-Cu(2)   | 111.9(8)   |
| O(7)-W(3)-O(8)    | 87.9(4)    | C(24)-N(4)-C(18)   | 118.1(11)  |
| O(2)-W(3)-O(8)    | 154.9(4)   | C(24)-N(4)-Cu(2)   | 128.1(9)   |
| O(9)-W(3)-O(8)    | 84.1(4)    | C(18)-N(4)-Cu(2)   | 113.6(8)   |
| O(10)-W(3)-O(6)   | 177.0(3)   | W(1)-O(1)-Cu(2)    | 131.0(5)   |
| O(7)-W(3)-O(6)    | 77.7(3)    | W(3)-O(2)-W(1)     | 113.5(4)   |
| O(2)-W(3)-O(6)    | 78.4(3)    | W(3)-O(2)-Cu(1)    | 120.2(4)   |
| O(9)-W(3)-O(6)    | 76.2(3)    | W(1)-O(2)-Cu(1)    | 119.6(4)   |
| O(8)-W(3)-O(6)    | 76.8(3)    | W(1)-O(3)-W(2)     | 114.7(4)   |
| O(10)-W(3)-W(1)#1 | 132.4(3)   | W(2)-O(5)-W(1)#1   | 114.6(4)   |
| O(7)-W(3)-W(1)#1  | 81.3(3)    | W(1)-O(6)-W(1)#1   | 180.0      |
| O(2)-W(3)-W(1)#1  | 123.5(3)   | W(1)-O(6)-W(3)     | 90.69(3)   |
| O(9)-W(3)-W(1)#1  | 78.8(3)    | W(1)#1-O(6)-W(3)   | 89.31(3)   |
| O(8)-W(3)-W(1)#1  | 31.7(3)    | W(1)-O(6)-W(3)#1   | 89.31(3)   |
| O(6)-W(3)-W(1)#1  | 45.097(18) | W(1)#1-O(6)-W(3)#1 | 90.69(3)   |

| O(11)-Cu(1)-O(12) | 83.3(4)   | W(3)-O(6)-W(3)#1   | 180.000(1) |
|-------------------|-----------|--------------------|------------|
| O(11)-Cu(1)-N(1)  | 95.1(4)   | W(1)-O(6)-W(2)     | 89.59(2)   |
| O(12)-Cu(1)-N(1)  | 170.6(5)  | W(1)#1-O(6)-W(2)   | 90.41(2)   |
| O(11)-Cu(1)-N(2)  | 170.6(5)  | W(3)-O(6)-W(2)     | 89.90(2)   |
| O(12)-Cu(1)-N(2)  | 98.1(4)   | W(3)#1-O(6)-W(2)   | 90.10(2)   |
| N(1)-Cu(1)-N(2)   | 82.0(4)   | W(1)-O(6)-W(2)#1   | 90.41(2)   |
| O(11)-Cu(1)-O(2)  | 91.5(4)   | W(1)#1-O(6)-W(2)#1 | 89.59(2)   |
| O(12)-Cu(1)-O(2)  | 91.5(4)   | W(3)-O(6)-W(2)#1   | 90.10(2)   |
| N(1)-Cu(1)-O(2)   | 97.8(4)   | W(3)#1-O(6)-W(2)#1 | 89.90(2)   |
| N(2)-Cu(1)-O(2)   | 97.8(4)   | W(2)-O(6)-W(2)#1   | 180.00(3)  |
| O(12)-Cu(2)-O(11) | 83.5(4)   | W(3)-O(7)-W(2)     | 115.9(4)   |
| O(12)-Cu(2)-N(4)  | 97.6(4)   | W(1)#1-O(8)-W(3)   | 114.8(4)   |
| O(11)-Cu(2)-N(4)  | 173.4(4)  | W(2)#1-O(9)-W(3)   | 116.3(4)   |
| O(12)-Cu(2)-N(3)  | 174.8(5)  | Cu(1)-O(11)-Cu(2)  | 96.3(4)    |
| O(11)-Cu(2)-N(3)  | 96.4(4)   | Cu(2)-O(12)-Cu(1)  | 96.3(4)    |
| N(4)-Cu(2)-N(3)   | 81.9(4)   | N(1)-C(1)-C(2)     | 120.4(13)  |
| O(12)-Cu(2)-O(1)  | 94.2(4)   | N(1)-C(5)-C(4)     | 124.3(12)  |
| O(11)-Cu(2)-O(1)  | 92.6(4)   | N(1)-C(5)-C(6)     | 116.1(12)  |
| N(4)-Cu(2)-O(1)   | 93.8(4)   | N(2)-C(6)-C(7)     | 123.4(12)  |
| N(3)-Cu(2)-O(1)   | 91.0(4)   | N(2)-C(6)-C(5)     | 116.9(12)  |
| C(1)-N(1)-C(5)    | 119.0(12) | N(2)-C(12)-C(11)   | 120.8(13)  |
| C(1)-N(1)-Cu(1)   | 128.1(9)  | N(3)-C(13)-C(14)   | 121.7(13)  |
| C(5)-N(1)-Cu(1)   | 112.8(9)  | N(3)-C(17)-C(16)   | 123.8(12)  |
| C(12)-N(2)-C(6)   | 119.1(12) | N(3)-C(17)-C(18)   | 116.7(11)  |
| C(12)-N(2)-Cu(1)  | 128.8(10) | N(4)-C(18)-C(19)   | 124.6(12)  |
| C(6)-N(2)-Cu(1)   | 112.0(8)  | N(4)-C(18)-C(17)   | 115.7(11)  |
| C(13)-N(3)-C(17)  | 117.6(12) | N(4)-C(24)-C(23)   | 122.0(12)  |
| C(13)-N(3)-Cu(2)  | 130.4(10) | C(17)-N(3)-Cu(2)   | 111.9(8)   |
| O(10)-W(3)-O(8)   | 100.7(4)  | C(24)-N(4)-C(18)   | 118.1(11)  |
|                   |           |                    |            |

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1

| Compound 2 |           |           |          |
|------------|-----------|-----------|----------|
| W1-O1      | 1.686(12) | O4-W2-O10 | 88.1(5)  |
| W1-O2      | 1.902(11) | O7-W2-O2  | 104.6(5) |
| W1-O4      | 1.906(12) | O8-W2-O2  | 86.2(5)  |
| W1-O3      | 1.917(10) | O4-W2-O2  | 152.9(5) |
| W1-O5      | 1.928(11) | O10-W2-O2 | 86.7(4)  |
| W1-O6      | 2.3096(7) | O7-W2-O6  | 178.1(7) |
| W2-O7      | 1.690(15) | O8-W2-O6  | 76.3(4)  |
| W2-O8      | 1.902(14) | O4-W2-O6  | 76.1(3)  |
| W2-O4      | 1.913(12) | O10-W2-O6 | 76.5(4)  |
| W2-O10     | 1.935(13) | O2-W2-O6  | 76.8(3)  |
| W2-O2      | 1.941(12) | O9-W3-O10 | 103.8(8) |
| W2-O6      | 2.3046(8) | O9-W3-O3  | 104.3(5) |

| W3-O9      | 1.688(13) | O10-W3-O3   | 87.3(5)   |
|------------|-----------|-------------|-----------|
| W3-O10     | 1.901(13) | O9-W3-O8    | 102.7(8)  |
| W3-O3      | 1.901(11) | O10-W3-O8   | 153.5(5)  |
| W3-O8      | 1.907(14) | O3-W3-O8    | 88.2(5)   |
| W3-O5      | 1.927(11) | O9-W3-O5    | 101.7(5)  |
| W3-O6      | 2.3004(9) | O10-W3-O5   | 86.6(5)   |
| Cu1-N2     | 1.967(13) | O3-W3-O5    | 154.0(5)  |
| Cu1-N4     | 2.000(13) | O8-W3-O5    | 86.0(5)   |
| Cu1-N1     | 2.053(12) | O9-W3-O6    | 178.2(6)  |
| Cu1-N3     | 2.069(14) | O10-W3-O6   | 77.2(4)   |
| Cu1-Cl1    | 2.551(4)  | O3-W3-O6    | 77.1(3)   |
| O1-W1-O2   | 101.9(5)  | O8-W3-O6    | 76.3(4)   |
| O1-W1-O4   | 104.6(5)  | O5-W3-O6    | 76.9(3)   |
| O2-W1-O4   | 153.5(5)  | N2-Cu1-N4   | 177.0(6)  |
| O1-W1-O3   | 103.6(5)  | N2-Cu1-N1   | 82.1(5)   |
| O2-W1-O3   | 87.7(5)   | N4-Cu1-N1   | 99.7(5)   |
| O4-W1-O3   | 86.2(5)   | N2-Cu1-N3   | 98.8(6)   |
| O1-W1-O5   | 103.1(5)  | N-Cu1-N3    | 81.7(6)   |
| O2-W1-O5   | 88.4(5)   | N1-Cu1-N3   | 134.3(5)  |
| O4-W1-O5   | 85.5(5)   | N2-Cu1-Cl1  | 89.9(4)   |
| O3-W1-O5   | 153.2(5)  | N4-Cu1-Cl1  | 87.3(4)   |
| O1-W1-O6   | 179.3(4)  | N1-Cu1-Cl1  | 105.8(3)  |
| O2-W1-O6   | 77.4(3)   | N3-Cu1-Cl1  | 119.8(4)  |
| O4-W1-O6   | 76.1(3)   | Cu1-Cl1-Cu1 | 128.6(3)  |
| O3-W1-O6   | 76.6(3)   | C1-N1-C5    | 117.4(13) |
| O5-W1-O6   | 76.6(3)   | C1-N1-Cu1   | 134.0(11) |
| O7-W2-O8   | 105.1(9)  | C5-N1-Cu1   | 108.5(10) |
| O7-W2-O4   | 102.6(6)  | C6-N2-C12   | 115.2(15) |
| O8-W2-O4   | 86.4(5)   | C6-N2-Cu1   | 115.9(11) |
| O7-W2-O10  | 102.2(9)  | C12-N2-Cu1  | 128.5(12) |
| O8-W2-O10  | 152.7(5)  | C13-N3-C17  | 117.6(15) |
| C13-N3-Cu1 | 131.6(13) | W2- O6- W2  | 180.0     |
| C17-N3-Cu1 | 110.7(11) | W3-O6-W1    | 89.62(3)  |
| C24-N4-C18 | 118.3(15) | W3-O6-W1    | 90.38(3)  |
| C24-N4-Cu1 | 128.4(12) | W2-O6-W1    | 89.86(3)  |
| C18-N4-Cu1 | 113.0(11) | W2-O6-W1    | 90.14(3)  |
| W1-O2-W2   | 116.0(5)  | W3-O6-W1    | 90.38(3)  |
| W3-O3- W1  | 116.6(5)  | W3-O6-W1    | 89.62(3)  |
| W1-O4-W2   | 117.6(6)  | W2-O6-W1    | 90.14(3)  |
| W3-O5-W1   | 116.1(5)  | W2-O6-W1    | 89.86(3)  |
| W3-O6-W3   | 180.0     | W1-O6-W1    | 180.0     |
| W3-O6-W2   | 89.98(3)  | W2-O8-W3    | 117.5(6)  |
| N1-C5-C4   | 120.4(14) | W3-O9-H9    | 109.5     |
| C7-C6-N2   | 126.3(17) | W2-O6-W2    | 180.0     |

| N2-C6-C5   | 114.0(14) | W3-O10-W2  | 116.2(6)  |
|------------|-----------|------------|-----------|
| N3-C13-C14 | 120.9(19) | N1-C5-C6   | 119.3(13) |
| N3-C17-C16 | 125.4(18) | N4-C18-C17 | 117.2(14) |
| N3-C17-C18 | 117.2(14) | N4-C18-C19 | 120.7(17) |

 Table S3. Bond valance sum calculations for compound 1-2.

|   | W site        | W1   | W2   | W3   |
|---|---------------|------|------|------|
| 1 | BVS           | 6.03 | 6.05 | 6.11 |
|   | assigned O.S. | 6    | 6    | 6    |
|   | Cu site       | Cu1  | Cu2  |      |
|   | BVS           | 1.72 | 1.82 |      |
|   | assigned O.S. | 2    | 2    |      |
|   | O site        | O11  |      |      |
|   | BVS           | 2.06 |      |      |
|   | assigned O.S. | 2    |      |      |
|   | W site        | W1   | W2   | W3   |
| 2 | BVS           | 6.26 | 6.14 | 6.30 |
|   | assigned O.S. | 6    | 6    | 6    |
|   | Cu site       | Cul  |      |      |
|   | BVS           | 1.41 |      |      |
|   | assigned O.S. | 1    |      |      |

c b a



Fig. S1 The supramolecular structure of compound 1.



Fig. S2 The supramolecular structure of compound 2



Fig. S3. The FT-IR spectra of compound 1.



Fig. S5. The simulated (black) and experimental (red) PXRD patterns of compound 1. Simulation based on the SXRD data.



**Fig. S6.** The simulated (black) and experimental (red) PXRD patterns of compound **2**. Simulation based on the SXRD data.



Fig. S7. The Gc-Ms and HPLC-Ms data of intermediates 3-phenyl-1,2dihydroquinoxaline 1c



Fig. S8. The Electronic absorption spectra of compounds 1 and 2

**S9**. Atomic absorption analysis of product solution after reaction

The detection limit of the inductivelyvcoupledvplasma (ICP) analyzer (ICP-6000) is 1 mg/L and the analysis results of copper and tungsate ions are both below the detection limit.

### 2. Data of the products



2-phenylquinoxaline (**1c**). Yield 84% (83%, 3-phenyl-2H-azirine **1d** was used); white solid; Mp: 67-69 °C; <sup>1</sup>H NMR (500M Hz, CDCl<sub>3</sub>/TMS):  $\delta$  9.33 (s, 1H), 8.21-8.10 (m, 4H), 7.80-7.75 (m, 2H), 7.59-7.52 (m, 3H). <sup>13</sup>C NMR (125M Hz, CDCl<sub>3</sub>/TMS): 151.97, 143.33, 142.41, 141.50, 136.80, 130.49, 130.36, 129.75, 129.72, 129.29, 129.14, 127.68. HRMS (ESI): *m*/*z* calcd for C<sub>14</sub>H<sub>11</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 207.0917, found: 207.0911.



6-methyl-2-phenylquinoxaline (2c). Yield 82%; light yellow solid, Mp: 120-123 °C;

<sup>1</sup>H NMR (400M Hz, CDCl<sub>3</sub>/TMS):  $\delta$  9.29 (s, 1H), 8.18 (d, *J* = 8.0 Hz, 2H), 8.05 (d, *J* = 8.0 Hz, 1H), 7.89 (s, 1H), 7.63-7.51 (m, 4H), 2.62 (s, 3H). <sup>13</sup>C NMR (100M Hz, CDCl<sub>3</sub>/TMS): 151.17, 143.36, 141.77, 140.89, 140.22, 137.08, 132.70, 130.06, 129.25, 129.22, 128.09, 127.54, 21.95. HRMS (ESI): *m*/*z* calcd for C<sub>15</sub>H<sub>13</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 221.1073, found: 221.1064.



6-(*tert*-butyl)-2-phenylquinoxaline (**3c**). Yield 82%; yellow solid, Mp: 88-90 °C; <sup>1</sup>H NMR (500M Hz, CDCl<sub>3</sub>/TMS):  $\delta$  9.30 (s, 1H), 8.18 (d, *J*=7.5 Hz, 2H), 8.12-8.09 (m, 2H), 7.90 (d, *J*=9.0 Hz, 1H), 7.59-7.51 (m, 3H), 1.47 (s, 9H). <sup>13</sup>C NMR (125M Hz, CDCl<sub>3</sub>/TMS): 153.55, 151.53, 142.90, 141.15, 140.90, 136.95, 130.22, 129.65, 129.30, 129,04, 127.61, 124.16, 35.44, 31.22. HRMS (ESI): *m/z* calcd for C<sub>18</sub>H<sub>19</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 263.1543, found: 263.1550.



6-fluoro-2-phenylquinoxaline (**4c**). Yield 78%; light yellow solid, Mp: 96-98 °C; <sup>1</sup>H NMR (400M Hz, CDCl<sub>3</sub>/TMS): δ 9.33 (s, 1H), 8.19-8.15 (m, 3H), 7.76 (dd,  $J_I$ =2.0 Hz,  $J_2$ =8.0 Hz, 1H), 7.59-7.52 (m, 4H). <sup>13</sup>C NMR (100M Hz, CDCl<sub>3</sub>/TMS): 162.64 (d, J=1000 Hz), 151.42, 144.20, 142.34 (d, J=52 Hz), 139.65, 136.64, 131.79 (d, J=40 Hz), 130.39, 129.33, 127.56, 120.81 (d, J=104 Hz), 112.84 (d, J=88 Hz). HRMS (ESI): m/z calcd for C<sub>14</sub>H<sub>10</sub>FN<sub>2</sub> [M+H]<sup>+</sup>: 225.0823, found: 225.0820.



6-chloro-2-phenylquinoxaline (**5c**). Yield 79%, yellow solid, Mp: 140-141 °C; <sup>1</sup>H NMR (400M Hz, CDCl<sub>3</sub>/TMS):  $\delta$  9.33 (s, 1H), 8.20-8.08 (m, 4H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.58-7.56 (m, 3H). <sup>13</sup>C NMR (100M Hz, CDCl<sub>3</sub>/TMS): 152.11, 144.29, 141.98, 141.01, 136.53, 135.41, 131.47, 130.99, 130.58, 129.37, 128.23, 127.67. HRMS (ESI): *m/z* calcd for C<sub>14</sub>H<sub>10</sub>ClN<sub>2</sub> [M+H]<sup>+</sup>: 241.0527, found: 241.0529.



5,7-dichloro-2-phenylquinoxaline (**6c**). Yield 75%, light yellow solid, Mp: 185-187 °C; <sup>1</sup>H NMR (400M Hz, CDCl<sub>3</sub>/TMS):  $\delta$  9.39 (s, 1H), 8.28 (d, *J* = 8.0 Hz, 2H), 8.05 (d, *J* = 2.0 Hz, 1H), 7.87 (d, *J* = 2.0 Hz, 1H), 7.61-7.55 (m, 3H). <sup>13</sup>C NMR (100M Hz, CDCl<sub>3</sub>/TMS): 152.02, 144.68, 143.65, 142.47, 137.97, 136.03, 134.72, 131.09, 131.01, 129.44, 127.86, 127.37. HRMS (ESI): *m/z* calcd for C<sub>14</sub>H<sub>9</sub>Cl<sub>2</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 275.0137, found: 275.0129.



2-(2-chlorophenyl)quinoxaline (7c). Yield 71%, yellow solid; Mp: 133-135 °C; <sup>1</sup>H NMR (400M Hz, CDCl<sub>3</sub>/TMS):  $\delta$  9.21 (s, 1H), 8.19-8.17 (m, 2H), 7.83-7.80 (m, 2H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.47-7.45 (m, 2H). <sup>13</sup>C NMR (100M Hz, CDCl<sub>3</sub>/TMS): 152.56, 146.19, 142.48, 141.38, 136.67, 132.79, 132.13, 131.00, 130.47, 130.44, 130.35, 129.79, 129.34, 127.64. HRMS (ESI): *m/z* calcd for C<sub>14</sub>H<sub>10</sub>ClN<sub>2</sub> [M+H]<sup>+</sup>: 241.0527, found: 241.0536.



2-(3-chlorophenyl)quinoxaline (**8**c). Yield 79%, light yellow solid, Mp: 128-130 °C; <sup>1</sup>H NMR (400M Hz, CDCl<sub>3</sub>/TMS):  $\delta$  9.29 (s, 1H), 8.23 (s, 1H), 8.18-8.14 (m, 2H), 8.06 (t, *J* = 6.0 Hz, 1H), 7.83-7.76 (m, 2H), 7.50-7.49 (m, 2H). <sup>13</sup>C NMR (100M Hz, CDCl<sub>3</sub>/TMS): 150.53, 142.76, 142.44, 141.65, 138.61, 135.56, 130.76, 130.51, 130.40, 130.23, 129.84, 129.14, 127.84, 125.66. HRMS (ESI): *m/z* calcd for C<sub>14</sub>H<sub>10</sub>ClN<sub>2</sub> [M+H]<sup>+</sup>: 241.0527, found: 241.0520.



3-(4-chlorophenyl)quinoxaline (**9c**). Yield 80%, light yellow solid, Mp: 132-134 °C; <sup>1</sup>H NMR (500M Hz, CDCl<sub>3</sub>/TMS):  $\delta$  9.31 (s, 1H), 8.15-8.17 (m, 4H), 7.76-7.83 (m, 2H), 7.55 (d, *J* = 8.0 Hz, 2H). <sup>13</sup>C NMR (125M Hz, CDCl<sub>3</sub>/TMS): 150.7, 142.52, 142.37, 141.19, 136.83, 35.06, 130.79, 130.13, 129.68, 129.54, 28.96, 128.89. HRMS (ESI): *m/z* calcd for C<sub>14</sub>H<sub>10</sub>ClN<sub>2</sub> [M+H]<sup>+</sup>: 241.0527, found: 241.0522.



2-(4-fluorophenyl)quinoxaline (**10c**). Yield 83%, light yellow solid, Mp: 120-122 °C; <sup>1</sup>H NMR (400M Hz, CDCl<sub>3</sub>/TMS):  $\delta$  9.30 (s, 1H), 8.23-8.19 (m, 2H), 8.13 (t, *J* = 8.0 Hz, 2H), 7.81-7.74 (m, 2H), 7.26 (t, *J* =8.0 Hz, 2H). <sup>13</sup>C NMR (100M Hz, CDCl<sub>3</sub>/TMS): 164.37 (d, *J* = 996 Hz), 150.84, 143.02, 142.31, 141.62, 133.06 (d, *J* = 12 Hz), 130.50, 129.68, 129.65, 129.56, 129.26, 116.33 (d, *J* = 84 Hz). HRMS (ESI): *m/z* calcd for C<sub>14</sub>H<sub>10</sub>FN<sub>2</sub> [M+H]<sup>+</sup>: 225.0823, found: 225.0810.



2-(4-(*tert*-buty)phenyl)quinoxaline (**11c**). Yield 81%, brown oil; <sup>1</sup>H NMR (400M Hz, CDCl<sub>3</sub>/TMS):  $\delta$  9.32 (s, 1H), 8.16-8.10 (m, 4H), 7.79-7.71(m, 2H), 7.59 (d, *J* = 8.0 Hz, 2H) 1.39 (s, 9H). <sup>13</sup>C NMR (100M Hz, CDCl<sub>3</sub>/TMS):  $\delta$  153.75, 152.02, 143.51, 142.53, 141.62, 134.16, 130.29, 129.73, 129.42, 129.24, 127.45, 126.29, 35.01, 31.38. HRMS (ESI): m/z calcd forC<sub>18</sub>H<sub>19</sub>N<sub>2</sub> [M+H]+: 263.1543, found: 263.1552.



2-(4-(*tert*-butyl)phenyl)-6-methylquinoxaline (**12c**). Yield 82% (80%, 3-(4-(tert-butyl)phenyl)-2*H*-azirine **3d** was used), yellow solid, Mp: 115-116 °C; <sup>1</sup>H NMR (400M Hz, CDCl<sub>3</sub>/TMS):  $\delta$  9.27 (s, 1H), 8.11 (d, *J*=8.0 Hz, 2H), 8.03 (d, *J*=8.0 Hz, 1H), 7.88 (s, 1H), 7.61-7.57 (m, 3H), 2.61 (s, 3H), 1.39 (s, 9H). <sup>13</sup>C NMR (100M Hz, CDCl<sub>3</sub>/TMS): 153.49, 151.26, 143.42, 141.67, 140.98, 139.98, 134.33, 132.62, 129.25, 128.11, 127.31, 126.25, 35.00, 31.40, 21.96. HRMS (ESI): *m/z* calcd for C<sub>19</sub>H<sub>21</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 277.1699, found: 277.1690.



2-(3-chlorophenyl)-6-methylquinoxaline (**13c**). Yield 80%, light yellow solid, Mp: 121-122 °C; <sup>1</sup>H NMR (400M Hz, CDCl<sub>3</sub>/TMS):  $\delta$  9.16 (s, 1H), 8.06 (d, *J*=8.0 Hz, 1H), 7.93(s, 1H), 7.73-7.71 (m, 1H), 7.64 (d, *J*=8.0 Hz, 1H), 7.56-7.54 (m, 1H), 7.46-7.44 (m, 2H), 2.63 (s, 3H). <sup>13</sup>C NMR (100M Hz, CDCl<sub>3</sub>/TMS): 151.60, 146.17, 141.54, 140.90, 139.13, 136.80, 132.74, 132.69, 132.05, 130.77, 130.36, 129.24, 128.18, 127.55, 22.01. HRMS (ESI): *m/z* calcd for C<sub>15</sub>H<sub>12</sub>ClN<sub>2</sub> [M+H]<sup>+</sup>: 255.0684, found: 255.0688.



6-isopropyl-2-phenylquinoxaline (**14c**). Yield 85%, light yellow solid, Mp: 69-72 °C; <sup>1</sup>H NMR (400M Hz, CDCl<sub>3</sub>/TMS): δ 9.29 (s, 1H), 8.18 (d, *J*=8.0 Hz, 1H), 8.09 (d, *J*=8.0 Hz,1H), 7.93 (s, 1H), 7.70 (d-d,  $J_I$ = 4.0 Hz,  $J_2$ = 8.0 Hz, 1H), 7.58-7.49 (m, 3H), 3.20-3.13 (m, 1H), 1.39 (d, *J*=8.0 Hz, 6H). <sup>13</sup>C NMR (100M Hz, CDCl<sub>3</sub>/TMS): 151.34, 150.99, 143.33, 141.92, 141.23, 137.18, 130.49, 130.07, 129.45, 129.24, 127.59, 125.37, 34.24, 23.86. HRMS (ESI): *m/z* calcd for C<sub>17</sub>H<sub>17</sub>N<sub>2</sub> [M+H]<sup>+</sup>:

#### 249.1386, found: 249.1388.



























