Towards better understanding of photophysics of platinum(II) coordination compounds with anthracene and pyrene substituted 2,6-bis(thiazol-2-yl)pyridines

Anna Maria Maroń, Katarzyna Choroba, Tomasz Pedzinski, Barbara Machura

Electronic Supplementary Information

1,5 .0,9 .0,9 1,0 a.u. a.u. 400 500 gth, nm 0,5 DMSO DCM DMSO DCM 0.0 0,0 600 300 400 500 300 400 500 600 Wavelength, nm Wavelength, nm - DCM - DMSO — DCM — DMSO 1,0 -1,0 -[a.u.] a.u. 0.5 0,0 500 800 600 700 800 500 600 700 Wavelength, nm Wavelength, nm (2) (1)

ABSORPTION AND EMISSION SPECTRA IN DICHLOROMETHANE (RT)

Figure S1. Absorption (upper) and emission (lower) spectra of (1) and (2) in CH_2Cl_2 with comparison to DMSO solutions^[1]. Insert plots: Comparison of normalized absorption (solid) and excitation (dash) spectra of (1) and (2) in CH_2Cl_2 .

	$\lambda_{\text{exc}} [\text{nm}]$	$\lambda_{em} [nm]$	ΔE_{exc-em}	τ [µs] (% weight)	χ^2
			[cm ⁻¹]		
(1)	513, 417, 386, 366, 349,	755	6248	10.53 (78.88%), 3.8	1.009
	308			(21.12%)	
(2)	500, 417, 346, 306, 277	733	6357	11.3 (68.44%), 4.2	0.982
				(31.56%)	

Table S1. Photoluminescence properties of (1) - (2) in CH₂Cl₂

Scheme S1. Schematic representation of possible deactivation pathways in bichromophoric transition metal compounds possessing ${}^{3}IL/{}^{3}ILCT$ excited state as LEES proposed in Ref [2]: A) efficient ${}^{1}IL/{}^{1}ILCT$ to ${}^{1}MLCT$ energy transfer and ${}^{3}IL/{}^{3}ILCT$ and ${}^{3}MLCT$ excited states equilibrium; B) efficient and rapid internal conversion/intersystem crossing within the organic ligand subunit; C) inefficient singlet energy transfer to the transition metal chromophore and no ${}^{3}IL/{}^{3}ILCT - {}^{3}MLCT$.

SINGLET OXYGEN SENSITIZATION

Figure S2. Emission peaks of singlet oxygen photogenerated by complexes (1)–(2) and reference erythrosine B (ErB) ($\lambda_{PE} = 440$ nm); Insert plots: decay curves of singlet oxygen phosphorescence generated by (1)–(2) in relation to ErB in EtOH.

EMISSION PROPERTIES AT 77K

Figure S3. Decay curves of 77 K emission of complexes (1)–(2).

NANOSECOND TRANSIENT ABSORPTION

Figure S4. Nanosecond transient absorption spectra (A) and kinetic fit at $\lambda = 430$ nm of argon bubbled (B) and air-equilibrated (C) DMSO solutions of (1) and L¹

Figure S5. Nanosecond transient absorption spectra (A) and kinetic fit at $\lambda = 420$ nm of argon bubbled (B) and air-equilibrated (C) DMSO solutions of (2) and L²

Figure S6. Nanosecond transient absorption spectra (A) and kinetic traces at $\lambda = 420$ nm (anthracene)/410nm (pyrene) of argon bubbled (B) and air-equilibrated (C) solutions of anthracene and pyrene.

FEMTOSECOND TRANSIENT ABSORPTION

Figure S7. Femtosecond transient absorption spectra and decay associated spectrum of anthracene.

Figure S8. Femtosecond transient absorption spectra and decay associated spectrum of pyrene.

ANALYTICAL DATA FOR L^1 , L^2 , (1) and (2)

L¹: C₂₅H₁₅N₃S₂ (421.54 g mol⁻¹): calcd C 71.25%, H 3.58%, N 9.97%; found C 71.54%, H, 3.66%, N 9.79%.¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.35 (s, 2H), 8.08 (d, *J* = 8.5 Hz, 2H), 7.92 (d, *J* = 3.0 Hz, 2H), 7.69 (d, *J* = 8.8 Hz, 2H), 7.53 (d, *J* = 3.0 Hz, 2H), 7.51 – 7.46 (m, 2H), 7.42 – 7.36 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.74, 151.57, 150.40, 144.44, 133.00, 131.36, 129.53, 128.71, 128.08, 126.38, 126.03, 125.48, 123.08, 122.13.

L²: C₂₇H₁₇N₃S₂ (447.44 g mol⁻¹): calcd C 72.47%; H 3.83%; N 14.30%; found: C 72.13%; H 3.69%; N 14.47.¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 2H), 8.30 – 8.20 (m, 4H), 8.16 – 8.03 (m, 5H), 7.97 (d, *J* = 3.1 Hz, 2H), 7.54 (d, *J* = 3.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.88, 152.02, 151.33, 144.38, 133.88, 131.85, 131.52, 130.99, 128.77, 128.39, 128.37, 127.49, 127.26, 126.42, 125.82, 125.55, 125.06, 124.97, 124.86, 124.27, 122.13, 122.01.

(1): $C_{25}H_{15}S_2N_3CIPt$, CF_3SO_3 : calcd C 38.98%, H 1.89%, N 5.25%; found: C 38.73%; H 1.884%; N 5.537%. IR (KBr; cm⁻¹): 3437v_(OH), 3124, 3066v_(ArH); 1607 v_(C=N, C=C); 1451 $\delta_{(C-C)}$ out of the plane); 1255 $v_{a}(SO3)$, 1153v_(C-N); 1092 $\delta_{(C-CH \text{ in the plane})}$; 1030 $v_{s}(SO3)$; 895 $\delta_{(C-C \text{ out of the plane})}$; 634 $\delta_{(SO3)}$. ¹H NMR (400 MHz, ppm) δ 8.90 (s, 1H, H^{C8}), 8.88 (s, 2H, H^{B2}), 8.48 (d, J = 3.4 Hz, 2H, H^{A1}), 8.27 (d, J = 8.4 Hz, 2H, H^{C3}), 8.03 (d, J = 3.4 Hz, 2H, H^{A2}), 7.87 (d, J = 8.7 Hz, 2H, H^{C6}), 7.66 – 7.55 (m, 4H, H^{C4, C5}). ¹³C NMR (100 MHz, ppm) δ 169.71 (C^{A3}), 153.87 (C^{C1}), 151.07 (C^{B1}), 140.88 (C^{A2}), 130.98 (C^{C2}), 130.65 (C^{C7}), 129.00 (C^{A1}), 128.79 (C^{C3}), 128.67 (C^{C8}), 127.05 (C^{C4, C5}), 126.09 (C^{C4, C5}), 125.82 (C^{B2}), 125.60 (C^{C6}).

(2): $C_{27}H_{15}S_2N_3CIPt$, CF_3SO_3 : calcd C 40.76%, H 1.83%, N 5.09%; found: C 40.54%, H 1.904%, N 4.943%. IR (KBr; cm⁻¹): 3454 v_(OH), 3067, 2922 v_(ArH); 1606 v_(C=N, C=C); 1483, 1453 $\delta_{(C-CH \text{ out of the plane})}$; 1253, 1152v_(C-N); 1079 $\delta_{(C-CH \text{ in the plane})}$; 1028 v_{s(SO3)}; 849 $\delta_{(C-C \text{ out of the plane})}$; 721 $\delta_{(C-C \text{ in the plane})}$; 636 $\delta_{(SO3)}$. ¹H NMR (400 MHz, ppm) δ 8.88 (s, 2H, H^{B2}), 8.48 – 8.45 (m, 3H, H^{A1+C13}), 8.41 (d, *J* = 7.6 Hz, 1H, H^{C8}), 8.34 – 8.30 (m, 4H, H^{C10+C6+C3+C2}), 8.27 – 8.23 (m, 2H, H^{C12+C5}), 8.14 (t, *J* = 7.6 Hz, 1H, H^{C9}), 7.93 (d, *J* = 3.4 Hz, 2H, H^{A2}). ¹³C NMR (100 MHz, ppm) δ 169.01 (C^{A3}), 154.57 (C^{C1}), 150.10 (C^{B1}), 140.70 (C^{A2}), 131.96 (C^{C4}), 131.50 (C^{C7}), 130.79 (C^{B3}), 130.15 (C^{C2}), 129.16 (C^{A1}), 129.08 (C^{C6}), 128.86 (C^{C11}), 127.51 (C^{C9}), 127.46 (C^{C12}), 127.15 (C^{C5}), 126.89 (C^{C14}), 126.52 (C^{C8}), 125.79 (C^{C13}), 125.05 (C^{C10}), 124.78 (C^{B2}), 123.83 (C^{C3}), 123.62 (C^{C15, C16}), 123.51 (C^{C15, C16}).

STABILITY STUDIES IN DMSO SOLUTIONS

Figure S9. Stability studies in DMSO solution of compounds (1) and (2).

REFERENCES

[1] K. Choroba, B. Machura, L. R Raposo, J. G. Małecki, S. Kula, M. Pająk, K. Erfurt, A. Maroń, A. R Fernandes, *Dalton Transactions*, 2019, 48, 13081–13093

[2] J. E. Yarnell, K. A. Wells, J. R. Palmer, J. M. Breaux, F. N. Castellano, *J. Phys. Chem. B* 2019, **123**, 7611–7627