Supplementary Information

New Members of Polynuclear Manganese Family: Mn^{II}₂Mn^{III}₂ Single-Molecule Magnets and Mn^{II}₃Mn^{III}₈ Antiferromagnetic Complex. Synthesis and Magnetostructural correlations

Nuno Reis Conceição,^a Oksana V. Nesterova,^a Cyril Rajnák,^b Roman Boča,^b Armando J.L. Pombeiro,^a M. Fátima C. Guedes da Silva^a and Dmytro S. Nesterov^{*a,c}

^a Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; E-mail: dmytro.nesterov@tecnico.ulisboa.pt ^b Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia

^c Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow 117198, Russia

Bond Valence Sum (BVS) Studies.

The BVS analysis was performed according to the following equation:^[S1]

$$BVS = \sum_{i=1}^{n} e^{\frac{r_0 - r_i}{0.37}}$$

where r_i is the experimentally derived bond length for ligand *i* and r_0 is the reference bond length. The values used for r_0 include Mn(II)–O = 1.765, Mn(II)–N = 1.849, Mn(III)–O = 1.732, Mn(III)–N = 1.837 Å. With these data the following valences have been deducted: (1) Mn1: 2.936, Mn2: 1.939; (2) Mn1: 2.936, Mn2: 1.970; (3) Mn1: 3.020, Mn2: 2.995, Mn3: 3.008, Mn4: 2.829, Mn5: 2.006, Mn6: 2.645. In this way the positions Mn4 and Mn6 (in **3**) were considered as being mixed-valent. The total positive charge calculated using the Mn1– Mn6 valences is +29.98, what agrees with the total negative charge (–30) expected from the molecular structure of **3**. From BVS the numbers of divalent and trivalent manganese atoms in the structure of **3** appeared to be 3.06 and 7.94, respectively. Thus, the overall formula was fixed as MnII₃MnIII₈.

Fig. S1 Experimental and theoretical powder X-ray patterns for 1.

Fig. S2 Experimental (top) and theoretical powder X-ray patterns for 2rt (middle) and 2 (bottom). The inset shows the $10-20^{\circ}$ region in detail.

Fig. S3 Experimental and theoretical powder X-ray patterns for 3.

Fig. S4 IR spectrum of 1.

Fig. S5 IR spectrum of 2.

Fig. S6 IR spectrum of 3.

Fig. S7 Polyhedral representation of the packing of tetranuclear molecules in 1 viewed down the *a* axis.

Fig. S8 Polyhedral representation of the packing of undecanuclear molecules in 3 viewed down the c axis.

Fig. S9 The dependence of the number of complexes reported in the CSD (version 5.40, August 2019) on their nuclearity (for 3 < n < 18). The search was provided only for non-polymeric compounds where all metal centers form a molecule.

		(, ,	
	1	2	2rt	
Mn1–O1	1.912(2)	1.9183(19)	1.908(3)	
Mn1–O2	1.951(2)	1.939(2)	1.945(3)	
$Mn1-O2^a$	2.246(2)	2.220(2)	2.232(3)	
Mn1–O3	1.878(2)	1.8809(18)	1.879(3)	
Mn1–O5	1.931(2)	1.927(2)	1.922(3)	
Mn1–N1	2.334(3)	2.338(3)	2.334(4)	
Mn2–O1	2.137(2)	2.131(2)	2.132(3)	
$Mn2-O2^a$	2.342(2)	2.3763(19)	2.360(3)	
$Mn2-O3^a$	2.278(2)	2.293(2)	2.291(3)	
$Mn2-O4^{a}$	2.336(3)	2.370(2)	2.364(4)	
Mn206	2.384(3)	2.303(2)	2.342(4)	
Mn2–O7	2.104(3)	2.109(2)	2.115(3)	
$Mn2-N2^{a}$	2.440(3)	2.385(3)	2.414(4)	
O1-Mn1-O2	91.67(9)	91.85(8)	91.82(13)	
$O1-Mn1-O2^a$	84.54(9)	85.26(8)	84.37(11)	
O1-Mn1-O3	172.24(10)	171.16(8)	171.85(13)	
O1-Mn1-O5	93.00(10)	93.04(8)	92.77(14)	
O1-Mn1-N1	77.53(10)	76.87(8)	77.41(13)	
$O2-Mn1-O2^a$	82.14(9)	82.11(8)	82.12(12)	
O2-Mn1-O3	81.76(9)	81.24(8)	81.43(13)	
O2-Mn1-O5	174.22(10)	173.25(9)	174.13(13)	
O2-Mn1-N1	80.95(10)	81.28(8)	81.16(13)	
O2–Mn1–N1 ^a	154.87(10)	155.09(8)	154.76(13)	
$O3-Mn1-O2^a$	98.55(9)	99.14(8)	99.13(12)	
O3-Mn1-O5	93.82(10)	94.31(8)	94.27(14)	
O3-Mn1-N1	97.26(11)	96.53(8)	96.93(13)	
$O5-Mn1-O2^a$	94.92(9)	93.67(8)	94.68(13)	
O5-Mn1-N1	103.39(11)	104.36(9)	103.42(15)	
$O1-Mn2-O2^a$	77.48(8)	76.96(7)	76.62(10)	
$O1-Mn2-O3^a$	89.80(9)	89.45(7)	89.27(11)	
$O1-Mn2-O4^a$	90.74(10)	90.59(8)	90.49(13)	
O1-Mn2-O6	78.60(9)	80.01(8)	78.90(12)	
O1-Mn2-O7	163.02(10)	165.34(8)	163.39(13)	
O1–Mn2–N2 ^a	99.17(10)	96.49(8)	98.00(13)	
O2 ^a –Mn2–O3 ^a	65.71(8)	64.34(7)	64.86(10)	
O2 ^a -Mn2-O4 ^a	150.93(10)	150.59(8)	151.05(13)	
O2 ^a –Mn2–N2 ^a	136.40(9)	135.84(8)	135.94(12)	
O3 ^a –Mn2–O4 ^a	141.68(10)	143.15(8)	141.89(13)	
O3 ^a –Mn2–N2 ^a	70.86(9)	72.07(8)	71.44(12)	
O4 ^a -Mn2-N2 ^a	71.25(11)	71.32(8)	70.86(14)	
$O6-Mn2-O2^a$	76.04(8)	75.79(7)	75.63(11)	
$O6-Mn2-O3^a$	141.61(9)	140.10(7)	140.40(12)	
$O6-Mn2-O4^{a}$	75.61(10)	75.86(8)	76.50(13)	
O6-Mn2-O7	85.06(10)	85.59(8)	84.77(13)	
$O6-Mn2-N2^a$	146.76(10)	146.96(9)	147.20(13)	
O7–Mn2–O2 ^a	94.22(9)	96.97(7)	96.45(11)	
O7–Mn2–O3 ^a	100.36(10)	100.01(8)	101.55(12)	
$O7-Mn2-O4^a$	89.63(11)	88,48(8)	88.67(13)	
$O7-Mn2-N2^a$	97.02(11)	97.06(8)	97.39(14)	

Table S1 Selected geometrical parameters (distances/Å and angles/°) for 1, 2 and 2rt.

Symmetry code: *a* 1–x, 1–y, 1–z.

Table SZ Selected geor	netrical parameters (dist	ances/A and angles/) Io	of 3 .
Mn1–O6	1.83914	Mn4–O5	1.8829
Mn1–O1	1.87910	Mn4–O10	2.24810
Mn1–O4	1.91111	Mn4–O14	2.32710
Mn1–O2	2.3738	Mn4–O3	1.9069
Mn2–O1	1.9178	Mn4–N3	2.15116
Mn2–O7	1.8969	Mn5–O17	2.04115
Mn2–O3	1.9068	Mn5–O5	2.14911
Mn2–O9	1 9199	Mn5-013	2 18614
Mn2-011	2 17312	Mn5–O13 ^a	2 18911
Mn2–O2	2 31110	Mn5-014	2 38111
Mn3-01	2 2949	Mn5–N2	2 35414
Mn3-O3	1 8789	Mn6–O6	1 9638
Mn3-04	1 8844	$Mn6-O15^a$	2 05215
Mn3-O1/a	1 90310	Mn6-08	2.07213
Mn3_012	1 97310	Mn6-016	2 11812
Mn3_013	2 15711	Mn6-07	2 19010
Mn4 O2	1 0120	Mn6 N1	2.19010
WIII4-02	1.9129	MIIO-INI	2.23117
$O(M_{r}) = O(1)^{3}$	05.12	O5 Mm4 O2	05.54
$O_{0} = M_{1} = O_{1}$	95.15	$O_5 Mr_4 O_2$	93.34 174.74
O_{-} Mr1 O_{-}	95.15	O_{3} Mr 4 O_{2}	1/4./4
Of Mr = 0	109.65	$O_5 = Wi14 = O_2$	03.24 100.66
00-13 Mr 1 04	160.0	$O_2 = M_{\rm H} 4 = N_2$	100.00
$O1^{\circ}$ Nin1-O4	84.93	$O_3 = Min_4 = N_3$	100.20
OI-MnI-O4	84.93	O_2 -Mn4-N3	/9.95
06-Mn1-02	94.42	05-Mn4-010	90.84
Ola-Mnl-O2	95.83	O3-Mn4-O10	85.74
01-Mn1-02	83.43	02-Mn4-010	94.54
04-Mn1-02	85.62	N3-Mn4-O10	82.75
O6–Mn1–O2 ^a	94.42	O5-Mn4-O14	76.24
Ola–Mn1–O2a	83.43	O3-Mn4-O14	116.04
Ol-Mnl-O2 ^a	95.83	O2-Mn4-O14	98.84
O4–Mn1–O2 ^a	85.62	N3-Mn4-O14	79.35
O2–Mn1–O2 ^a	171.15	O10–Mn4–O14	155.44
O7–Mn2–O3	168.85	O17–Mn5–O5	117.56
07–Mn2–O1	90.24	O17–Mn5–O13	147.66
O3–Mn2–O1	86.54	O5–Mn5–O13	91.94
07–Mn2–09	90.44	O17–Mn5–O13 ^a	88.65
O3–Mn2–O9	93.54	O5–Mn5–O13 ^a	139.24
O1–Mn2–O9	177.15	O13–Mn5–O13ª	75.84
O7–Mn2–O11	101.95	O17–Mn5–N2	94.56
O3–Mn2–O11	88.74	O5–Mn5–N2	76.95
O1-Mn2-O11	89.14	O13-Mn5-N2	78.25
O9–Mn2–O11	88.04	O13a–Mn5–N2	135.16
O7–Mn2–O2	94.14	O17-Mn5-O14	98.36
O3–Mn2–O2	74.93	O5–Mn5–O14	70.54
O1–Mn2–O2	84.44	O13-Mn5-O14	104.74
O9–Mn2–O2	98.44	O13 ^a –Mn5–O14	75.34
O11–Mn2–O2	162.74	N2-Mn5-O14	147.35
O3–Mn3–O4	91.53	O6–Mn6–O15 ^a	97.25
O3–Mn3–O14 ^a	176.64	O6-Mn6-O8	93.74
O4–Mn3–O14 ^a	85.33	O15 ^a –Mn6–O8	169.16
O3-Mn3-O12	89.84	O6-Mn6-O16	97.25
O4-Mn3-O12	165.15	O15ª-Mn6-O16	93.15
O14ª-Mn3-O12	93.04	O8-Mn6-O16	86.15
O3-Mn3-O13	94.44	O6-Mn6-O7	101.44
O4-Mn3-O13	93.24	O15 ^a –Mn6–O7	89.85
O14 ^a –Mn3–O13	86.85	O8-Mn6-O7	87.54
O12-Mn3-O13	101.55	O16-Mn6-O7	160.65
O3-Mn3-O1	77.03	O6-Mn6-N1	173.86
O4-Mn3-O1	74.74	O15 ^a –Mn6–N1	88.17
O14 ^a –Mn3–O1	101.14	O8-Mn6-N1	81.06
O12-Mn3-O1	91.14	O16-Mn6-N1	85.75
O13-Mn3-O1	164.84	O7-Mn6-N1	75.25

Table S2 Selected geometrical parameters (distances/Å and angles/°) for 3

_

Symmetry code: *a* –x, y, 0.5–z.

Good fit of the magnetization: R(M) = 0.084 $g_{\text{eff}} = 1.85$, $J_1/hc = 37.0 \text{ cm}^{-1}$, $J_2/hc = 15.0 \text{ cm}^{-1}$, $J_3/hc = -9.7 \text{ cm}^{-1}$, $\chi_{\text{TIM}} = -8 \times 10^{-9} \text{ m}^3 \text{ mol}^{-1}$, $zj/hc = -2.0 \text{ cm}^{-1}$

Good fit of the susceptibility: $R(\chi) = 0.031$ $g_{eff} = 1.85$, $J_1/hc = 59.4 \text{ cm}^{-1}$, $J_2/hc = 8.3 \text{ cm}^{-1}$, $J_3/hc = -6.4 \text{ cm}^{-1}$, $\chi_{TIM} = -10 \times 10^{-9} \text{ m}^3 \text{ mol}^{-1}$,

Fig. S10 Two fits of the DC magnetic data for 1.

	DC -					
<i>T</i> /K	$R(\chi')$	$R(\chi'')$	Xs	χ_T	α	τ
	/%	/%				/10 ⁻⁶ s
1.9	1.5	8.1	50.2(14)	175(1)	0.19(1)	2107(64)
2.1	1.2	4.9	47.8(13)	156(1)	0.15(1)	638(16)
2.3	0.91	3.2	47.8(14)	143(1)	0.11(1)	272(7)
2.5	0.58	1.7	51.1(16)	131(1)	0.06(1)	127(4)
2.7	0.47	0.96	55.8(26)	120(1)	0.02(1)	70(4)
2.9	0.31	1.3	52.6(54)	112(1)	0.01	37(4)
3.1	0.26	1.8	37(21)	104(1)	0.01	16(6)
3.3	0.36	3.0	37	97(1)	0.01	9.5(8)

Table S3 Temperature dependence of AC susceptibility parameters for 1: a) at $B_{DC} = 0$ T

b) at	b) at $B_{\rm DC} = 0.05 {\rm T}$						
<i>T</i> /K	$R(\chi')$	$R(\chi'')$	Xs	χ_T	α	τ	
	/%	/%				/10 ⁻⁶ s	
1.9	1.4	9.2	44.4(14)	166(1)	0.30(1)	3470(131)	
2.1	1.2	6.5	43.7(14)	150(1)	0.24(1)	1030(34)	
2.3	1.0	4.9	43.7(14)	138(1)	0.19(1)	433(14)	
2.5	0.78	3.2	45.7(15)	127(1)	0.14(1)	196(6)	
2.7	0.56	2.0	50.3(17)	117(1)	0.09(1)	107(4)	
2.9	0.40	1.7	53.1(25)	109(1)	0.05(1)	63(4)	
3.1	0.30	2.3	47.6(58)	102(1)	0.05(1)	32(5)	
3.3	0.31	3.0	45(15)	95(1)	0.04(3)	19(7)	
3.5	0.33	5.6	33	89(1)	0.05	9	
3.7	0.40	9.0	33	85(1)	0.08(4)	4.8(9)	

^a Susceptibility $\chi_{\rm S}$ and χ_T in units of 10⁻⁶ m³ mol⁻¹ (SI). Standard deviations in parentheses.

Table S4 Temperature dependence of AC susceptibility parameters for 2 at $B_{DC} = 0.0$	95 T.
---	-------

		<u> </u>			A	
<i>T</i> /K	$R(\chi')$	$R(\chi'')$	Xs	χ_T	α	τ
	/%	/%				/10 ⁻⁶ s
1.9	0.69	3.6	44(3)	272(1)	0.14(1)	197(5)
2.1	0.21	1.7	31(4)	245(1)	0.13(1)	65(2)
2.3	0.19	4.8	0	226(1)	0.14(1)	23.6(4)
2.5	0.39	4.6	0	207(1)	0.11(1)	11.9(5)
2.7	0.40	7.2	0	190(1)	0.14(2)	5.2(5)
2.9	0.41	10	0	176(2)	0.21(4)	1.9(4)
3.1	0.44	14	0	164(2)	0.32(7)	0.45(27)

Fig. S11 Temperature evolution of the AC susceptibility components for 1 for different frequencies ranging between f = 0.1 to 1500 Hz.

Fig. S12 AC susceptibility data for 2: field dependence for a set of frequencies at T = 2.0 K.

Fig. S13 Temperature evolution of the AC susceptibility components for 2 for different frequencies ranging between f = 0.1 to 1500 Hz.

Fig. S14 A comparison of the AC susceptibility data for 1 and 2 at $B_{DC} = 0.05$ T and T = 1.9 K.

Fig. S15 AC susceptibility data for 3: field dependence for a set of frequencies at T = 2.0 K.

						Jahn-Te	ller Mn ^{III} geometry		_			Coefficients		_	
		Α	В	С	D	Е	F	G	Н	I	K	L	М		
CSD		$d(Mn_b \cdots Mn_b)$	$d(Mn_w \cdots Mn_w)$	$\angle(Mn_b-O-Mn_b)$	$d(Mn_b-O)$	$d(Mn_b-X)$	\angle (X-Mn _b -O)	$\angle(X-Mn_b\cdots Mn_b)$	$d(Mn_b-O)$	d(Mnb-X) avg.	Jahn-Teller d_{z^2}	Jahn-Teller	$Mn_b \cdots Mn_w$	$J_{\rm bb}$	$J_{ m wb}$
refcode	T / K ^c	/ A	/ A	/ °	/ A	/ A	/ °	/ °	/ A	/ A	distortion	axial elong.	distortion / A	/ cm ⁻¹	/ cm ⁻¹
1	293	3.170	5.803	97.86	2.246	2.333	154.89	123.00	1.951	1.918	0.963	1.194	0.137	-	-
2rt	293	3.156	5.847	97.86	2.233	2.334	154.76	123.03	1.945	1.913	0.957	1.194	0.153	12 85	1 55 / 0 47 ^d
2	150	3.141	5.857	97.90	2.219	2.338	155.12	123.19	1.938	1.917	0.949	1.189	0.174	12.00	1007 0117
GEFBEZ	93	3.210	5.816	98.91	2.246	2.199	157.73	132.06	1.973	1.943	1.021	1.144	0.059	6.81	1.12
VUGVOJ	93	3.206	5.881	99.44	2.118	2.127	160.85	131.51	2.085	1.987	0.996	1.068	0.019	6.38	0.88
XIYFER	100	3.211	5.819	99.73	2.179	2.209	159.06	136.20	2.018	1.959	0.986	1.120	0.039	4.52	1.3
CITZEL	100	3.211	5.846	99.48	2.262	2.207	159.82	141.68	1.936	1.921	1.025	1.163	0.051	6.97	0.4
IHETAR	100	3.135	5.869	96.89	2.227	2.322	153.87	123.20	1.956	1.919	0.959	1.185	0.099	2.3	0.18
IHETEV	100	3.143	5.835	97.40	2.207	2.275	155.56	122.52	1.972	1.925	0.970	1.164	0.148	2.4	0.44
PEKNEZ	100	3.162	5.837	98.31	2.218	2.376	153.87	121.98	1.956	1.923	0.934	1.194	0.158	4.66	0.28
PEKNID	100	3.174	5.720	98.46	2.229	2.285	154.48	122.70	1.955	1.916	0.975	1.178	0.077	7.65	0.9
UZUJAB	100	3.161	5.793	96.57	2.252	2.324	153.07	122.61	1.975	1.921	0.969	1.191	0.082	5.28	4.03 / -0.7 ^d
BIGNUA01	105	3.253	5.783	100.28	2.264	2.319	161.03	138.84	1.967	1.919	0.976	1.194	0.067	8.1	0.4
AJISUH	108	3.202	5.731	99.38	2.091	2.138	160.61	133.26	2.108	1.996	0.978	1.059	0.026	5.3	0.78
VUGVID	113	3.284	5.770	100.51	2.280	2.22	161.19	140.23	1.984	1.950	1.027	1.154	0.067	8.52	0.87
NEPFET	113	3.192	5.798	98.35	2.256	2.217	157.99	137.47	1.955	1.942	1.018	1.152	0.129	8.79	0.93
GEFBID	118	3.238	5.915	100.58	2.239	2.222	159.88	136.07	1.964	1.944	1.008	1.147	0.041	8.8	0.8
BEXGES	120	3.267	5.665	100.64	2.255	2.309	161.52	139.82	1.984	1.942	0.977	1.175	0.092	3.2	0.28
ACINIK	123	3.149	5.754	97.39	2.236	2.391	154.93	122.87	1.948	1.919	0.935	1.206	0.157	7.0	0.06
EWIVEL	123	3.222	5.906	100.41	2.201	2.384	149.00	118.25	1.989	1.928	0.923	1.189	0.012	6.5	1.7
EWIVIP	123	3.165	5.792	97.03	2.255	2.316	154.13	123.78	1.961	1.914	0.974	1.194	0.107	6.6	0.4
EWIVOV	123	3.187	5.705	97.79	2.269	2.393	153.55	122.77	1.952	1.916	0.948	1.217	0.126	10.9	0.22
VASBAV	123	3.228	5.793	99.36	2.254	2.211	158.21	134.31	1.973	1.945	1.019	1.148	0.083	0.01	1.87
VASBEZ	123	3.259	5.866	100.15	2.290	2.229	158.41	142.00	1.951	1.946	1.027	1.161	0.116	-0.06	1.39
VASBID	123	3.195	5.742	99.28	2.227	2.361	152.89	121.53	1.959	1.919	0.943	1.195	0.144	2.32	0.66
VASBOJ	123	3.136	5.765	96.45	2.241	2.278	156.20	124.43	1.957	1.910	0.984	1.183	0.096	2.06	0.88
VASBUP	123	3.152	5.724	97.45	2.245	2.403	154.50	122.52	1.941	1.913	0.934	1.215	0.141	2.22	0.02
VASCAW	123	3.258	5.656	101.43	2.211	2.364	148.35	117.61	1.994	1.932	0.935	1.184	0.003	0.66	0.47
VASCEA	123	3.256	5.647	101.12	2.229	2.383	148.37	117.96	1.982	1.919	0.935	1.202	0.016	0.26	-0.42
VASCIE	123	3.217	5.961	100.10	2.231	2.419	148.92	118.94	1.959	1.929	0.922	1.205	0.003	0.27	-0.46
TEBZUW	150	3.239	5.602	100.16	2.235	2.216	161.02	135.79	1.983	1.946	1.009	1.144	0.084	5.97	0.49
XIYFIV	150	3.234	5.731	100.25	2.170	2.185	160.32	135.83	2.042	1.968	0.993	1.106	0.017	4.87	1.1
AJISIV	150	3.228	5.746	99.55	2.249	2.207	160.32	139.70	1.973	1.941	1.019	1.148	0.090	9.9	1.0
PEMSUW	150	3.174	5.801	97.62	2.255	2.325	154.17	124.10	1.955	1.910	0.970	1.199	0.098	8.55	1.801
QAQRAC	150	3.235	5.879	100.50	2.244	2.190	160.10	138.22	1.958	1.935	1.025	1.146	0.065	5.95	0.45
RAZMIP	150	3.281	5.734	97.88	2.410	2.213	165.64	142.48	1.920	1.901	1.089	1.216	0.224	7.71	3.42
RAZMOV	150	3.244	5.698	97.30	2.376	2.353	162.03	143.88	1.927	1.901	1.010	1.244	0.179	12.46	3.25
TECBAF	150	3.253	5.784	99.45	2.277	2.195	159.24	137.48	1.979	1.898	1.037	1.178	0.093	9.24	0.86
TECBIN	150	3.230	5.757	98.89	2.292	2.198	159.05	138.75	1.949	1.941	1.043	1.157	0.092	3.48	0.38
XIYFOB	150	3.218	5.875	99.55	2.241	2.196	160.42	137.43	1.968	1.942	1.020	1.142	0.078	5.56	0.54
XIYGAO	150	3.220	5.856	99.09	2.276	2.229	158.72	137.26	1.946	1.937	1.021	1.163	0.106	5.21	0.9
AJISOB	173	3.207	5.827	99.03	2.248	2.212	159.33	142.46	1.961	1.942	1.016	1.148	0.145	6.3	4.2

Table S5 Exchange coupling constants and selected geometrical parameters of the literature reported complexes bearing a $\{Mn_{2}^{II}Mn_{2}^{III}(\mu_{3}-O)_{2}(\mu-O)_{4}\}$ core.^a

^a Mn_b refer to the Mn^{III} atoms that are at hexacoordinated "body" sites and Mn_w to the Mn^{II} at the remaining "wing" sites; the meaning of the parameters A–M are illustrated in Figure S16; J values refer to $H = -2JS_1S_2$ formalism; ^b the structures and references can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/ using the refcode; ^c temperature of the X-ray diffraction experiment; ^d two J_{bw} constants were reported; I is the averaged non-Jahn-Teller distances around the Mn_b atom; $M = | d(Mn_b \cdots Mn_w) - d(Mn_b \cdots Mn_w') |$; K = E/D; L = (E+D)/2/I;

Fig. S16 Schematic illustration of the geometrical parameters A–M (Table S5).

			Calculated J / cm^{-1}			_	
CSD refcode	Complex	Exp. ^c <i>J</i> / cm ⁻¹	Form. ^d 1	Form. ^d 2	Туре	Conditions ^e	Ref.
		Mn ^{III}	2 dimers				
LEBQUF	$[Mn_2(HL^a)_2(bpy)_2](CIO_4)_2$	2.13	0.27	0.22	-	H atoms were added to –OH groups	[S2]
TEXBON	$[Mn_2(L^b)_2(CH_3O)_2(CH_3OH)_4]$	-10.33	-19.13	-15.31	-	-	[S3]
DILHEO	[Mn ₂ O(L ¹¹) ₂ (bpy) ₂ Cl _{1.65} (H ₂ O) _{0.35}]Cl _{0.35} ·H ₂ O _{0.65}	-5.1	-10.59	-8.57	-	-	[S4]
UBUWIA	[Mn ₂ Ca ₂ (L ¹) ₆ (H ₂ O) ₄ (CH ₃ CN) ₂](ClO ₄) ₄	1.52	0.01	0.01	-	-	[S5]
BASGIO	$[Mn_2(L^c)_2(N_3)_2]$	1.09	-1.41	-1.12	-	-	[S6]
		Mn ^{II} 2Mn ^I	^{III} ₂ tetramers				
1	[Mn ₄ (HBuDea) ₂ (BuDea) ₂ (EBA) ₄]	-	5.21	4.17	J _{bb}	-	tw
		-	5.27	4.21	J _{bb}	Truncated ligands ^f	
		-	-1.1	-0.9	J _{bw1}	Truncated ligands	
		-	3.3	2.7	J _{bw2}	Truncated ligands	
		-	5.61	4.49	J _{bb}	Truncated ligands; terminal carboxylates, coordinated to Mn_w atoms, replaced with chlorides	
2	[Mn ₄ (HBuDea) ₂ (BuDea) ₂ (DMBA) ₄]	12.85	6.01	4.81	$J_{ m bb}$	-	tw
		12.85	6.06	4.85	J _{bb}	Truncated ligands	
		-0.47	-1.49	-1.22	J _{bw1}	Truncated ligands	
		1.55	3.01	2.46	J _{bw2}	Truncated ligands	
		12.85	5.06	4.05	J _{bb}	Truncated ligands;	

Table S6 Experimental and calculated coupling constants of the reported complexes bearing $\{Mn^{II}_2\}$ and $\{Mn^{II}_2Mn^{III}_2(\mu_3-O)_2(\mu-O)_4\}$ cores.^a

						B3LYP-G functional, TZVP set	
		10.05	4 77	2.01	,	Truncated ligands;	
		12.85	4.77	3.81	J _{bb}	B3LYP-G functional, SVP set	
2rt	[Mn ₄ (HBuDea) ₂ (BuDea) ₂ (DMBA) ₄]	12.85	5.32	4.25	J _{bb}	Truncated ligands	tw
		-0.4 7	-1.04	-0.85	J _{bw1}	Truncated ligands	
		1.55	3.15	2.58	J _{bw2}	Truncated ligands	
PEKNEZ	$[Mn_4(BuDea)_2(HBuDea)_2(L^{11})_4]$	4.66	6.63	5.3	J _{bb}	-	[S7]
		4.66	6.63	5.3	J _{bb}	Truncated ligands	
		0.28	-1.05	-0.86	J _{bw1}	Truncated ligands	
		0.28	3.18	2.6	J _{bw2}	Truncated ligands	
PEMSUW	[Mn ₄ (H ₂ L ⁹) ₂ (HL ⁹) ₂ (PhCO ₂) ₂](PhCO ₂) ₂ ·0.7CH ₃ CN·0.3EtOH	8.55	3.78	3.03	J _{bb}	Truncated ligands	[S7]
		1.81	-0.83	-0.68	J _{bw1}	Truncated ligands	
		1.81	3.11	2.55	J _{bw2}	Truncated ligands	
VASBEZ	$[Mn_4(L^1)_6(NO_3)_2(L^5)_2]$ ·2CH ₃ CN	-0.06	0.24	0.19	J _{bb}	Truncated <i>p</i> -tol groups	[S8]
VASCAW	$[Mn_4(L^7)_2(L^8)_2(H_2O)_2]$ ·6CH ₃ CN	0.66	2.59	2.07	J _{bb}	-	[S8]
AJISUH	$[Mn_4(L^1)_4(L^6)_2(CH_3O)_2](CIO_4)_2 \cdot 2CH_3OH$	5.3	5.69	4.55	J _{bb}	-	[S9]
UZUJAB	[Mn ₄ (HL ¹²) ₂ (L ¹²) ₂ (L ¹⁵) ₄](BPh ₄) ₄	5.28	5.38	4.3	J _{bb}	-	[S9]
		0.7	0.99	0.81	J _{bw1}	-	
		4.03	3.62	2.96	J _{bw2}	-	
RAZMIP	$[Mn_4(HL^3)_4(CH_3OH)_4Cl_2]$	7.71	-0.78	-0.63	J _{bb}	-	[S10]
		3.42	2.66	2.17	J _{bw1}	-	
		3.42	-0.86	-0.71	J _{bw2}	-	
		3.42	2.61	2.13	J _{bw1}	Al ^{III} as a trivalent diamagnetic metal	
		3.42	-0.9	-0.74	J _{bw2}	Al ^{III} as a trivalent diamagnetic metal	
		7 71	_1 61	_1 20	,	Terminal methanol molecules eliminated, structure	
		7.71	-1.01	-1.29	J _{bb}	optimized	
		7.71	0.49	0.39	J _{bb}	X-ray structure optimized	
RAZMOV	$[Mn_4(HL^3)_4(CH_3OH)_4Br_2]$	12.46	-1.75	-1.4	J _{bb}	-	[S10]
		3.25	3.06	2.5	J _{bw1}	-	
		3.25	-0.99	-0.81	J _{bw2}		
NEPFET	$[Mn_4(L^1)_6Br_2(H_2O)_2]Br_2 \cdot 4H_2O$	8.79	-0.88	-0.71	J _{bb}	-	[S11]
AJISIV	$[Mn_4(L^1)_6(NO_3)_2(CH_3CN)_2](CIO_4)_2 \cdot 2CH_3CN$	9.9	0.15	0.12	J _{bb}	H atoms added to CH₃CN ligands	[S12]
BIGNUA01	$[Mn_4(HL^4)_6(CH_3CO_2)_2](CIO_4)_2$	8.1/8.7	1.28	1.02	J _{bb}	H atoms added to OH groups	[S13]

^a Mn_b refer to the Mn^{III} atoms that are at hexacoordinated "body" sites and Mn_w to the Mn^{II} at the remaining "wing" sites; ^b the original structures can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/ using the refcode; ^c exchange coupling determined through the fitting of experimental data; ^d formalism used to extract the *J* value: (Form. 1) $J_{AB} = -(E_{HS} - E_{BS}) / (S_A + S_B)^2$ and (Form. 2) $J_{AB} = -(E_{HS} - E_{BS}) / ((S_A + S_B)(S_A + S_B + 1))$. Both experimental and calculated *J* values refer to $H = -2JS_1S_2$ Hamiltonian; ^e unless stated otherwise, the atomic coordinates were taken from X-ray data without geometry optimization. All uncoordinated anions or solvent molecules, as well as disordered components, were eliminated. For other conditions see the main text; ^f to reduce the computational time, the hydrocarbon non-chelating groups of the ligands were transformed to methyl groups, e.g. benzoic O₂CPh and pivalic O₂CC(CH₃)₃ acids became acetic O₂CCH₃ one, *N*-butyl diethanolamine became *N*-methyl one.

 $H_3L^a = 1,1,1$ -tris(hydroxymethyl)ethane; bpy = 2,2'-bipyridine; H_2L^b = salicylic acid; H_2L^c = product of condensation of 1,1,2,2-tetramethylethylenediamine with 5-chlorosalicylaldehyde. All other ligands are described in Table 1 footnote.

Fig. S17 The *t*-values, expressed as a slope/ σ (slope) of the linear regressions of the dependences of experimental (top) and calculated (bottom) J_{bb} values on certain geometrical parameters **A**–**M** (Table S5). The red horizontal line indicates the 3 σ threshold.

Fig. S18 The experimental and calculated J_{bb} values plotted as functions of **D** and **F** parameters (see Table S5 and S16).

Fig. S19 Left: 3D map showing the discrepancy R factor between the calculated χT vs. T curves, where one curve was generated using the fitted parameters for 2 (parameters set *a*) and the other curve was obtained by varying J_{bb} and J_{bw} in a settled range with the step of 1 cm⁻¹ (g_{eff} was varied from 1.85 to 2.0 with 0.01 step for every J_{bb}/J_{bw} pair and the solution with the lowest R was chosen). The use of smaller step of 0.1 and 0.5 cm⁻¹ did not change the overall map shape, but influenced the distribution of best R solutions. Right: μ_{eff} vs. T curves calculated for particular solutions ($H = -2JS_1S_2$ formalism): *a*: $g_{eff} = 1.90$, $J_{bb} = 12.9$, $J_{bw1} = 0.47$, $J_{bw2} = 1.6$ cm⁻¹; *b*: $g_{eff} = 1.86$, $J_{bb} = 30$, $J_{bw} = 0.6$ cm⁻¹; *c*: $g_{eff} = 1.99$, $J_{bb} = 0$, $J_{bw} = 0.9$ cm⁻¹; *d*: $g_{eff} = 1.91$, $J_{bb} = -21.9$, $J_{bw} = 10$ cm⁻¹. The R factor was determined as $R = \sum_{n} \frac{(\chi T_{calcd} - \chi T_{exp})^2}{\chi T_{exp}^2}$. The MAGPACK program was used to calculate the magnetic

 \overline{n} $\chi^{I} exp$. The MAGPACK program was used to calculate the magnetic susceptibility for a given parameter set.^[S14] The homemade software written by D.S.N. was used to screen the given parameters, generate MAGPACK input files and sort the output.

Fig. S20 Left: 3D map showing the discrepancy R factor between the calculated χT vs. T curves, where one curve was generated using the fitted parameters for RAZMIP (parameters set *a*) and the other curve was obtained by varying J_{bb} and J_{bw} in a settled range with the step of 1 cm⁻¹ (the other conditions are described in Fig. S19 caption). Right: μ_{eff} vs. T curves calculated for particular solutions ($H = -2JS_1S_2$ formalism): *a*: $g_{eff} = 1.89$, $J_{bb} = 7.71$, $J_{bw} = 3.42$; *b*: $g_{eff} = 1.89$, $J_{bb} = 0$, $J_{bw} = 5$ cm⁻¹; *c*: $g_{eff} = 1.89$, $J_{bb} = 30$, $J_{bw} = 2.7$ cm⁻¹; *d*: $g_{eff} = 1.85$, $J_{bb} = -10.4$, $J_{bw} = 10$ cm⁻¹.

Fig. S21 DFT optimized structure RAZMIP.

Fig. S22 DFT optimized structure RAZMIP with eliminated terminal methanol molecules.

Fig. S23 Reflection intensity statistics for **3** for different experiments (exposure/temperature, top down): 19 s / 150 K, 19 s / 150 K, 60 s / room temperature.

Fig. S24 Reconstructed precession image for **3** (60 s / room temperature) at 0.8 Å maximum resolution, showing absence of reflections in the 1.2-0.8 Å area.

Listing S1 Shortened example of the Orca input for "broken symmetry" calculation of an exchange coupling between Mn^{III} centres (only metal atoms are shown).

Listing S2 Selected output of the ORCA DFT calculations described in the Listing S1.

High spin state:

TOTAL SCF ENERGY					
Total Energy	:	-8382.97726766	Eh	-228112.40846	eV
Components:					
Nuclear Repulsion	:	14031.69277591	Eh	381821.77188	еV
Electronic Energy	:	-22414.67004357	Eh	-609934.18034	eV
One Electron Energy	v:	-39601.52007391	Eh	-1077612.14595	еV
Two Electron Energy	y:	17186.85003034	Eh	467677.96561	eV
Virial components:					
Potential Energy	:	-16743.11406115	Eh	-455603.29603	eV
Kinetic Energy	:	8360.13679349	Eh	227490.88756	eV
Virial Ratio	:	2.00273207			
DFT components:	_		.]		
n (Arbiia)	•	200.0000000/09000	erectrons		

N(Bota)			242 000695477022	alactrone
n (beca)		•	242.00000004//022	erectrons
N(Total)		:	492.001381186890	electrons
E(X)		:	-513.687256868661	Eh
E(C)		:	-18.130420865545	Eh
E(XC)		:	-531.817677734206	Eh
DFET-embed.	en.	:	0.00000000000	Eh

MULLIKEN ATOMIC CHARGES AND SPIN POPULATIONS

0	Mn:	0.638024	3.839295
1	Mn:	0.638021	3.839294
2	Zn:	0.888141	0.008386
3	Zn:	0.888136	0.008386

Low spin state:

_____ TOTAL SCF ENERGY _____ Total Energy : -8382.97682576 Eh -228112.39644 eV Components: 14031.69277591 Eh -22414.66960168 Eh -39601.50654311 Eh 17186.83694143 Eh Nuclear Repulsion : 381821.77188 eV -609934.16832 eV Electronic Energy : One Electron Energy: -1077611.77776 eV Two Electron Energy: 467677.60945 eV Virial components: Potential Energy : -16743.11023201 Eh Kinetic Energy : 8360.13340625 Eh Virial Ratio : 2.00273242 -455603.19183 eV 227490.79539 eV DFT components:

 DF1 components.

 N(Alpha)

 :
 246.000689947738 electrons

 N(Beta)
 :
 246.000689968849 electrons

 :
 246.000689968849 electrons

 N(Total) 492.001379916587 electrons : E(X) -513.686387305042 Eh : : E(C) -18.130471161542 Eh E(XC) : DFET-embed. en. : -531.816858466584 Eh 0.00000000000 Eh MULLIKEN ATOMIC CHARGES AND SPIN POPULATIONS -----0 Mn: 0.638753 3.838021 1 Mn: 0.638751 -3.838020 2 Zn: 0.888166 -0.005604 3 Zn: 0.888162 0.005604 _____ BROKEN SYMMETRY MAGNETIC COUPLING ANALYSIS _____ S(High-Spin) = 4.0 <S**2>(High-Spin) = 20.0643 <S**2>(BrokenSym) = 4.0575 E (High-Spin) = -8382.977268 Eh E (BrokenSym) = -8382.976826 Eh E(High-Spin) - E(BrokenSym) = -0.0120 eV -96.975 cm**-1 (FERROMAGNETIC coupling) _____ | Spin-Hamiltonian Analysis based on H(HDvV)= -2J*SA*SB | _____ 6.06 cm**-1 (from -(E[HS]-E[BS])/Smax**2) | J(1) =1

 | J(2) =
 4.85 cm**-1
 (from - (E[HS]-E[BS])/(Smax*(Smax+1))) |

 | J(3) =
 6.06 cm**-1
 (from - (E[HS]-E[BS])/(<S**2>HS-<S**2>BS)) |

J(1):	(a)	A.P. Ginsberg J. Am. Chem. Soc. 102 (1980), 111
	(b)	L. Noodleman J. Chem. Phys. 74 (1981), 5737
	(C)	L. Noodleman E.R. Davidson Chem. Phys. 109 (1986), 131
J(2)	(d)	A. Bencini D. Gatteschi J. Am. Chem. Soc. 108 (1980), 5763
J(3)	(e)	K. Yamaguchi Y. Takahara T. Fueno in: V.H. Smith (Ed.)
		Applied Quantum Chemistry. Reidel, Dordrecht (1986), pp 155
	(f)	T.Soda et al. Chem. Phys. Lett., 319, (2000), 223

Listing S3 Shortened example of the Orca input geometry optimization (only metal atoms are shown).

```
# RAZMIP, X-ray structure optimization,
! RI BP86 def2-SVP def2/J D3BJ TIGHTSCF Opt Grid3 FinalGrid5
* xyz 0 19
Mn      -4.409441    5.653581    7.843303 newgto "def2-tzvp" end
Mn      -5.344142    2.886245    9.122344 newgto "def2-tzvp" end
Mn      -6.534917    5.846319    10.335214 newgto "def2-tzvp" end
Mn      -5.600216    8.613655    9.056174 newgto "def2-tzvp" end
```

Listing S4 Selected output of the ORCA DFT calculations described in the Listing S3.

		lGeomet	ry convergenc	· · · · · · · · · · · · · · · · · · · ·	
Ite	m 	value		Tolerance	Converged
Ene RMS MAX RMS MAX	rgy change gradient gradient step step	-0.0000045 0.0000307 0.0002160 0.0016824 0.0119827	109 532 359 988 072	0.0000050000 0.0001000000 0.0003000000 0.002000000 0.004000000	YES YES YES YES NO
 Max Max	(Bonds) (Dihed)	0.0006 M 0.69 M	ax(Angles) ax(Improp)	0.06 0.00	
The en and th is acc Conver	ergies and o e convergen eptable. gence will	gradients are c ce on bond dist. therefore be sig	onverged ances, angles gnaled now	, dihedrals and	impropers
	******* *** FIN ***	**************************************	**************************************	STATIONARY POIN STATIONARY POIN S)	* * * * * T * * * * * *
TOTAL SCF ENE	 RGY 				
Total Energy	:	-8285.17527	297 Eh	-225451.08089	eV
Components: Nuclear Repul Electronic En One Electron Two Electron	sion : ergy : Energy: Energy:	16717.74747 -25002.92274 -44763.09926 19760.17652	161 Eh 459 Eh 726 Eh 268 Eh	454913.03603 -680364.11692 -1218065.85633 537701.73941	eV eV eV
Virial compon Potential Ene Kinetic Energ Virial Ratio	ents: rgy : y : :	-16530.35439 8245.17912 2.00485	915 Eh 618 Eh 085	-449813.81129 224362.73040	eV eV
DFT component N(Alpha) N(Beta) N(Total) E(X) E(C)	s: : : :	288.000109530 270.000113408 558.000222939 -618.797621681 -22.262142985	604 electrons 799 electrons 404 electrons 450 Eh 094 Eh	5 5 5	

E(XC)		:	-641.059764666543	Eh
DFET-embed.	en.	:	0.00000000000	Eh

MULLIKEN ATOMIC CHARGES AND SPIN POPULATIONS

0	Mn:	0.515120	3.836839
1	Mn:	0.393686	4.766871
2	Mn:	0.514746	3.836801
3	Mn:	0.393213	4.766783

Listing S5 Cartesian coordinates for DFT optimized structure RAZMIP.

Mn	-4.29300718175490	5.67552486367432	8.06970794743486
Mn	-5.25877922423304	2.87732319443740	9.16045651322295
Mn	-6.65153503641551	5.82319883658339	10.10874777573369
Mn	-5.68574409159810	8.62177103946940	9.01735376957693
C1	-5 04015374891351	1 23975173984244	7 52732491638608
0	-3 54397686845586	4 13920107949689	8 88869563880580
0	-2 66621783088743	6 65000319759413	9 272012/3702330
0	-2.00021/03000/43	0.0JU9UJI0/J04IJ	0.2/291243/02339 E E00100C01E0701
0	-2.93643015301554	7.58440774886511	5.50218269152781
н	-3.55/16424201324	7.70479331067607	6.26514693480507
0	-5.96099594193863	4.73859093114104	8.1/355338523489
0	-5.18/621/4223965	7.21246148697746	7.24333766430665
0	-4.72513312318497	1.50639239640028	10.82933569314555
Η	-5.20703328674000	0.68162407138327	10.61726606432613
0	-3.92693006006335	5.09763193785252	5.92400775230473
Η	-3.48166680909163	5.89862173808324	5.52223615795675
0	-7.43081071128597	2.42694715066961	9.55972050310502
Н	-7.89111922298027	3.31131403514774	9.72272577588342
С	-1.27938074475357	4.70164403754030	8.19378105452648
C	-1.62075404633995	5,99162528203567	7.71545413319665
Ċ	-0.98699964392722	6.53555916022137	6.57445561625437
Ċ	0 08112870872766	5 82639069869185	5 99698689742875
н	0 57709845907472	6 24449385535432	5 10471839326830
C	0.50051012204507	4 59256622607995	6 50601646436473
ä	0.0000142204007	4.002000220070000	7 50072120000071
C	-0.20894437852777	4.02564162520926	7.58872128098971
Н	0.05458202145047	3.01/6126//22091	7.94977661192009
С	-2.1630819/81662/	4.08659042197095	9.25946945461992
Н	-1.884/8266615243	3.02342857667845	9.41644587740383
Η	-2.03394461046397	4.61781578142552	10.23072553981143
С	-1.58092217235760	7.78433415183568	5.95857382729999
Η	-1.56124710620632	8.63304326586224	6.67685351451436
Η	-0.98963376366564	8.08409158065892	5.07021746048020
С	1.68269481641196	3.85158078891901	5.89825724606673
Η	1.53824724686366	2.75271787656912	5.92664384312314
Η	2.62377204584556	4.06927741718687	6.44940414560174
Н	1.84624860748677	4.14845781014705	4.84304742421811
С	-7.05859057978583	5.93699203593086	6.30228745511137
C	-6.27536031736839	7.11197381039205	6.43419782012081
Ċ	-6.67773550772159	8.28962957857052	5.74130089836561
Ċ	-7 81097123536892	8 27465868827804	4 91626133511475
н	-8 10552842198012	9 20611495865409	4 40531179537273
Ċ	_9 59130514021209	7 10030212251750	1 7/112001373050
c	-9 19700242347103	5 96906673060570	5 46042512612709
U U	-0.10/0924234/193	5.90000075000570	5 27609002657550
п	-8.79434072032033	1.00000000000000000	J.J/0000920J/JJU
C	-6.77636552380248	4.63240978962333	7.01624516475127
H	-/./49422181549/1	4.20542668610625	7.34243617370618
Н	-6.31059489452449	3.89991485350361	6.31830692651918
С	-5.02018485895499	1.93410548068360	12.18903791934155
Η	-4.68809754093205	1.14742349376638	12.89788369084641
Η	-6.11540784843472	2.08396089562618	12.30473585868426
С	-9.77880849341641	7.08962323256167	3.82174814645985
Η	-10.47376159796085	6.26455968640158	4.07510785805592
Н	-9.47261754481349	6.94770210576890	2.76221536725269
Н	-10.34625132265437	8.04132273293886	3.86915136965289
С	-3.29301585380302	3.88759981906084	5.49371260928248
Н	-3.47783625180173	3.72063178543835	4.41065147795333
Н	-3.73686287536528	3.05166869029691	6.06922687764455
Н	-2.19943636738478	3.91373929290592	5.68103519552951
С	-8.24859843738061	1.61354168048429	8.71702526171082
-			

Н	-9.09425393953538	1.17181320847074	9.28893934863043
Н	-7.60949398031175	0.81144628595372	8.30168560774434
Н	-8.65885760841926	2,19484017414000	7.86273436076811
C1	-5 90611337012315	10 26054057909161	10 64910982363111
0	_7 /00325108/5507	7 35002403492601	0 20036330033711
0	- / . 40032319043397	1.0000000000000000000000000000000000000	9.29030339033711
0	-0.2/913/30233021	4.04034/190211/1	9.90500422029774
0	-8.00565258046288	3.923/3394933324	12.08000702392723
Н	-/.38452123/28/5/	3.80500494036075	11.91/233/913/385
0	-4.9838/246825464	6.76041935293861	10.00491835509178
0	-5.75685152239432	4.28599577490336	10.93460393234294
0	-6.21975692940327	9.99183561837217	7.34854198088554
Η	-5.73876208379457	10.81709940041830	7.56081109692748
0	-7.01870036789219	6.39931371251001	12.25413630813976
Н	-7.46208773426681	5.59807063840899	12.65726603812077
0	-3.51415877283121	9.07298360346760	8.61681681040158
Н	-3.05426125927246	8.18791672664377	8.45626026166089
С	-9.66523822268796	6.79836076192579	9.98442085016614
С	-9.32424132844992	5.50841446675661	10.46294119888946
Ĉ	-9.95710517472228	4.96560243405340	11.60495099797679
Ċ	-11 02497266641337	5 67516148125909	12 18239047158543
н	-11 51976977864202	5 25839012315162	13 07593166060495
C	_11 45310702170310	6 01001600025306	11 67222006461602
c	10 72502106042250	7 47511004007572	10 59072644506047
C	10 00010704440670	1.4/JIL09400/J/J	10.00050107070004/
п	-10.99812/044428/0	0.40322327039242	10.22039107270000
C	-8./8105300/64169	7.41288296653634	8.918/8212353196
H	-9.05894938399848	8.4/60839229/654	8./61404//934456
Н	-8.909/289//23421	6.881431842/5856	/.94/6161/304900
С	-9.36044272245935	3.71945337940181	12.22367688470215
Η	-9.37801380094690	2.86931755282992	11.50701630966428
Η	-9.95137432893641	3.41993448351532	13.11236149671666
С	-12.62608241066356	7.65034667204428	12.28082319369538
Η	-12.48162149278414	8.74918806348603	12.25179551970384
Η	-13.56733736624833	7.43236344464259	11.73008866731054
Η	-12.78934652306631	7.35408247712152	13.33625071019758
С	-3.88630674748896	5.56183581375087	11.87605065783203
С	-4.66921281334852	4.38666060723626	11.74384676506159
С	-4.26647452981715	3.20888099609998	12.43626558752710
С	-3.13297037398564	3.22378243144708	13.26099100379074
Н	-2.83810775073302	2.29223092353602	13.77158878640155
С	-2.36263659910952	4.38910204209191	13.43614850706193
С	-2.75745600578243	5.53062067065996	12.71743906771914
Н	-2.15037453467839	6.44814100702296	12.80201973779556
С	-4.16958865151242	6.86668115186012	11.16309948847490
Н	-3.19689071428667	7.29542405909197	10.83810537265211
н	-4.63692174617314	7.59789928808945	11.86130099816925
Ċ	-5 92413418069598	9 56449400857939	5 98881869658805
ц	-6 25627454249055	10 35114730603045	5 27997623545886
и Ц	-4 82885882330540	9 /1/9/720525877	5 87351601811470
C	-1 16474934655761	4 40974591477104	14 35401015094069
	-1.104/4034033/01	4.400/4JJ14//104 5.00/15075000700	14 10162074000046
п	-0.4/01855404150/	J.2341J0/J299/23	14.10102074080040
н	-1.4/03/152523058	4.55000155814422	13.41469637118324
Н	-0.39/01416929609	3.43/20U1/8/9885	10 (057770050052815
C	-7.65343259435409	7.60861957060011	12.685///225095//
H	-/.469/5/31391008	/.//38596/450502	13./09234552/43/8
H	-7.20993948562572	8.445/0089116//4	12.111/4330615781
Н	-8./46852/9286831	/.581510//003929	12.49/60/53666067
С	-2.69692439193241	9.88804292633898	9.45834273326397
Η	-1.85173500955569	10.32981342508517	8.88577804790982
Η	-3.33647536168920	10.69027728701803	9.87279116537815
Η	-2.28610718808981	9.30819626052990	10.31334736939517

Listing S6 Cartesian coordinates for DFT optimized structure RAZMIP, where terminal methanol molecules were eliminated.

Mn	-4.24771801114839	5.73619534913295	8.07239773872393
Mn	-5.17727583141411	2.98858822211688	9.16940135935311
Mn	-6.69738029422083	5.76288012327661	10.10502731361007
Mn	-5.76807310890673	8.51033418302585	9.00822946516719
Cl	-4.60789740267172	10.19731651365164	10.04748810758349
Cl	-6.33835124127098	1.30195967138109	8.13025393832402
0	-3.48832823431560	4.11720426353260	8.78722727665051
0	-2.63882207045482	6.66527042333342	8.25399211839460
0	-2.85394150018583	7.72928164543818	5.62082969251755

Н	-3.42175011922169	7.79332379825459	6.42807447468097
0	-5.92524523649020	4.79368478574511	8.15728716018864
0	-5.17476395510420	7.29375852514961	7.28908374465203
0	-4.78517748878718	1.46308450352224	10.74863206659964
Н	-5.45737808602392	0.82520655633874	10.41079844683292
0	-3 89241660391362	5 25188300661375	5 88411774328395
ц Ц	_3 /2003375325220	6 07420320049946	5 5/1301/7136003
п	-3.42903373323220	0.07420320040040	5.54136147138003
С	-1.22234309367163	4./2462812469583	8.18483188017523
С	-1.58177494949768	6.01820074243102	7.72307237951255
С	-0.91220912143799	6.59438350824234	6.61475737294472
С	0.17700409763727	5.91053874390441	6.04949887291383
Н	0.69475078255254	6.35753658165007	5.18386116448821
С	0.60532882518993	4.65743076218444	6.53855052711436
Ĉ	-0 12996288165397	4 07226330295267	7 59300461671918
ц	0 1/2251/12673/7	3 06310406369630	7 0/506960609303
П	0.1422014100/04/	1 00400262542666	0.01007041570500
C	-2.11852321481157	4.08490263542666	9.2182/2415/2580
Н	-1.82393530536537	3.02764362205169	9.38490125431582
Η	-2.04371031017553	4.61493633131015	10.19461937051390
С	-1.47815714307485	7.87388849115589	6.04137549750534
Η	-1.41089463320626	8.69734280089890	6.78558362255348
Н	-0.90363077714024	8.17723358044020	5.14355095752409
С	1.80300037151188	3.95618638474214	5,94283870047480
н	1 70444687131374	2 85380113535655	6 00517888166580
ц	2 73854617269305	1 22928311930384	6 47870424046178
ц Ц	1 0/000050636032	4 22756025233567	1 97796040209071
п	1.94000039030032	4.22/3092323330/	4.07700949290071
C	-7.03723849061415	0.01//81081089/0	6.31/083523252/6
С	-6.26002239555775	7.19567879611541	6.46353396456885
С	-6.66021267235950	8.38167629347391	5.78617346666183
С	-7.79471338651897	8.37558559420265	4.96195816395143
Η	-8.09040846445393	9.31267113330657	4.46248930481371
С	-8.56455686008795	7.21187126830155	4.77639423150738
С	-8.16755546772546	6.05954806111795	5.47803946270817
Н	-8.77268446247579	5.14215529162507	5.38261864801654
C	-6 735701/007/880	1 69673638167415	6 99159763729860
	7 60017500464160	4 215005050107413	7 20552101051727
п тт	-/.0091/J00404109	4.21300372237412	7.29555101951727
н	-6.24311/55496316	4.01034302866707	6.266/902/4249/1
С	-5.04802204707534	1.85022193878382	12.12515634681109
Н	-4.70830786394007	1.04081863905926	12.80431708462663
Н	-6.13832339929677	2.00828974282220	12.27255746854649
С	-9.76590291652394	7.19739498606455	3.86204042652961
Η	-10.54625489667495	6.49884457514381	4.22483372972870
Н	-9.48752742971589	6.86964005350235	2.83654770135389
Н	-10.22143592060173	8.20350329766054	3.77068666070780
С	-3.23855208556430	4.06834676421680	5.42785543694834
Н	-3.38903800174237	3,93256920327367	4.33505367917946
н	-3 69445765388304	3 20979370224155	5 95774651361514
ц Ц	-2 15174788340695	1 0829/1836/1356	5 65362809212655
0	-7 45661391449924	7 3016007/50///3	0 30056170206702
0	-7.43001301449924	1.30109074394443	9.309301/9200/92
0	-8.30648675569461	4.83434021420129	9.923/6981346/45
0	-8.088/1465864/58	3.//206168251911	12.55//384040/689
Η	-7.52090841996980	3.70713902220223	11.75047835434968
0	-5.01970930659733	6.70516059112946	10.01997259214187
0	-5.77057756809795	4.20530719564202	10.88797779084742
0	-6.16221922163611	10.03587831413660	7.42944677267394
Н	-5.49098444903656	10.67491136496863	7.76693704968966
0	-7.05080967751289	6.24741000416549	12.29287072970572
Н	-7.51242952375004	5,42481630317609	12.63708775459151
C	-9 72219376729625	6 77580064609353	9 99355862925418
č	-9 36264517702777	5 / 8030371/7/00/	10 15551066106761
C	-9.30204317702777	J.402323/14/4204	10.45551266426761
С	-10.03100/9/621009	4.90/15/8231869/	11.56504424498375
С	-11.11909254245712	5.59173266614929	12.13163191198264
Н	-11.63583610950274	5.14543451990849	12.99821567565472
С	-11.54757956640749	6.84469198966467	11.64238184404759
С	-10.81346998525694	7.42892111203837	10.58653628182328
Н	-11.08573649045202	8.43798821752121	10.23425643327211
С	-8.82659196558240	7.41456548733816	8.95896092151438
Н	-9.12067530423864	8.47189035240105	8.79192369522845
н	-8.90202533618413	6.88409344995990	7.98294054325615
<u> </u>	-9 46500570505136	3 627701000/0/1/	12 1385/866370022
U TT	-0 532007E0602720	0 00261650050005 0 00361650050005	11 305010100570932
п 	- 3. JJ2 33/JU0U3/39	2.00304030632233	12 0271227020007
H	-10.038/3/4/9110/5	3.3231/604455381	10,000,100,000,000,000
С	-12./43949/6664035	/.54/00954098033	12.23943901781290
Η	-12.64441817570394	8.64931285965506	12.17714104510516
Η	-13.68029119642289	7.27489159820000	11.70446536321844
Н	-12.88821013929889	7.27561559453775	13.30451118239755
С	-3.90774575391871	5.48082631033932	11.86011769857144
С	-4.68539819076830	4.30322395515603	11.71386863664057

С	-4.28607709403921	3.11724028513783	12.39177775248029
С	-3.15186276836817	3.12308211410448	13.21637564158597
Н	-2.85671198725152	2.18605486946476	13.71626587569741
С	-2.38163460001695	4.28656902932099	13.40187288100503
С	-2.77785300746005	5.43883044561747	12.69971700326301
Н	-2.17227825390254	6.35594070248761	12.79504621855587
С	-4.20813947373482	6.80181137645010	11.18486240205044
Н	-3.25420687725659	7.28094666092506	10.87962785726237
Н	-4.69906887436195	7.48940367081311	11.90963191742742
С	-5.89880171213883	9.64895822056652	6.05299607079216
Н	-6.23874925742023	10.45810929203726	5.37361948323922
Н	-4.80836589608054	9.49144168483363	5.90589147891951
С	-1.18072217730913	4.30083812065833	14.31679570449421
Η	-0.40023327096288	4.99953754666523	13.95459251037624
Η	-1.45961231449445	4.62826773694533	15.34225295357141
Н	-0.72517751290048	3.29472721671907	14.40807788173416
С	-7.70431675331549	7.43124714554339	12.74890140404768
Η	-7.55208620481886	7.56803096127128	13.84131604521020
Н	-7.24952414249970	8.28952260803071	12.21760781249802
Н	-8.79141181759768	7.41596415776636	12.52456706769613

References

- S1 G. P. Shields, P. R. Raithby, F. H. Allen, W. D. S. Motherwell, *Acta Crystallogr. B* 2000, 56, 455-465; I. D. Brown, *Chem. Rev.* 2009, 109, 6858-6919; G. L. Abbati, A. Cornia, A. C. Fabretti, A. Caneschi, D. Gatteschi, *Inorg. Chem.* 1998, 37, 3759-3766
- S2 G. Rajaramana, E. C. Sañudo, M. Helliwell, S. Piligkos, W. Wernsdorfer, G. Christou, E. K. Brechin, *Polyhedron*, 2005, 24, 2450-2454.
- S3 X. S. Tan, W. X. Tang, J. Sun, *Polyhedron*, **1996**, *15*, 2671-2675.
- S4 K. R. Vignesh, S. K. Langley, C. J. Gartshore, I. Borilović, C. M. Forsyth, G. Rajaraman, K. S. Murray, *Dalton Trans.*, 2018, 47, 11820-11833.
- S5 A.Arauzo, E. Bartolomé, A. C. Benniston, S. Melnic, S. Shova, J. Luzón, P. J. Alonso, A.-L. Barra, J. Bartolomé, *Dalton Trans.*, 2017, 46, 720–732.
- S6 C. Kachi-Terajima, R. Ishii, Y. Tojo, M. Fukuda, Y. Kitagawa, M. Asaoka, H. Miyasaka, J. *Phys. Chem. C*, **2017**, *121*, 12454–12468.
- S7 A. M. Ako, V. Mereacre, I. J. Hewitt, R. Clerac, L. Lecren, C. E. Ansonaand A. K. Powell, J. Mater. Chem., 2006, 16, 2579–2586.
- S8 K. R. Vignesh, S. K. Langley, C. J. Gartshore, B. Moubaraki, K. S. Murray, G. Rajaraman, Inorg. Chem., 2017, 56, 1932–1949.
- S9 K. J. Heroux, H. M. Quddusi, J. Liu, J. R. O'Brien, M. Nakano, E. del Barco, S. Hill, D. N. Hendrickson, *Inorg. Chem.*, 2011, 50, 7367–7369.
- S10 C. Yang, G.-H. Lee, C.-S. Wur, J. G. Lin, H.-L. Tsai, Polyhedron, 2005, 24, 2215-2221.
- S11 J. Yoo, A. Yamaguchi, M. Nakano, J. Krzystek, W. E. Streib, L.-C. Brunel, H. Ishimoto, G. Christou, D. N. Hendrickson, *Inorg. Chem.*, 2001, 40, 4604–4616.
- S12 E.-C. Yang, N. Harden, W. Wernsdorfer, L. Zakharov, E. K. Brechin, A. L. Rheingold, G. Christou, D. N. Hendrickson, *Polyhedron*, 2003, 22, 1857–1863.
- S13 J. Yoo, E. K. Brechin, A. Yamaguchi, M. Nakano, J. C. Huffman, A. L. Maniero, L.-C. Brunel, K. Awaga, H. Ishimoto, G. Christou, D. N. Hendrickson, *Inorg. Chem.*, 2000, 39, 3615–3623.
- S14 J. J. Borrás-Almenar, J. M. Clemente-Juan, E. Coronado, B. S. Tsukerblat, J. Comput. Chem., 2001, 22, 985–991.