Supporting information

Metathetic synthesis of lead cyanamide as a new p-type semiconductor photoelectrocatalyst

Xianji Qiao,^{a ‡} Zili Ma,^{a ‡} Dongbao Luo,^{a b} Alex J. Corkett,^a Adam Slabon,^c Anna Rokicinska,^d Piotr Kuśtrowski,^d and Richard Dronskowski,^{* a b}

^aChair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, 52056 Aachen, Germany

^bHoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, China

^cDepartment of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden

^dFaculty of Chemistry, Jagiellonian University, Gronostaiowa 2, 30-387 Krakow, Poland

[‡]Authors equally contributed to this work

Corresponding Author

* Email: drons@HAL9000.ac.rwth-aachen.de

Table S1 Crystallographic data and fractional coordinates for PbNCN. Standard deviations are given in parentheses. The thermal displacement parameters of C and N were constrained to be equal.

Atom	Wyckoff site	X	У	Z	U _{iso (} Ų)
Pb1	4 <i>c</i>	0.39296(21)	1⁄4	0.63469(15)	0.0246(5)
N1	4 <i>c</i>	0.3329(26)	1⁄4	0.4394(13)	0.001(3)
N2	4 <i>c</i>	0.9248(26)	1⁄4	0.3655(18)	"
C1	4 <i>c</i>	0.1148(25)	1⁄4	0.4051(15)	"

Orthorhombic, *Pnma* (No. 62), Z = 4, a = 5.5514(2) Å, b = 3.8609(1) Å, c = 11.7103(4) Å; $R_{wp} = 2.51\%$, $R_p = 1.61\%$, 32 variables.

Table S2 Comparison of bond lengths from this work, single-crystal data and calculated ones by electronic-structure theory (PBE functional). Note that DFT is notoriously unreliable to correctly model the single-/triple C–N bond distances.

Bond lengths (Å)	this work	single crystal	DFT calculation
C1-N1	1.15(3)	1.16(3)	1.227
C1-N2	1.28 (3)	1.30(3)	1.248
Pb1–N1 (–x+½, –y, z+½)	2.311(16)	2.31(2)	2.379
Pb1–N1 (x+½, y, –z+½)	2.607(10)	2.620(13)	2.645
Pb1-N2	2.615(10)	2.622(11)	2.583

Figure S1 Rietveld refinements of experimental powder XRD patterns of PbNCN photoelectrodes after PEC water reduction at a) 0.5 V vs RHE and b) 0 V vs RHE for 1 h.

Figure S2 Experimental IR spectrum of separate PbNCN photoelectrodes after PEC water reduction at 0.5 V vs RHE and 0 V vs RHE for 1h comparing with original PbNCN.

Figure S3 CA of separate PbNCN photoelectrodes at 0.5 V and 0 V vs RHE in 0.1 M kPi electrolyte (pH = 7) under chopped AM 1.5G illumination (100 mW cm⁻²).

Figure S4 Tauc plot for the PbNCN electrode showing the electronic band gap.