High pressure exploration in the Li - Ln - V - O system

Zadoya, A. I.;¹ Arévalo-López, Á. M.;¹ Sánchez-Benítez, J.;² Huvé,¹ M.; Blach, J.-F.;¹ Merkel, S.;³ Hilairet, N.;³ Chantel, J.;³ Colmont, M. ^{1*}

¹ Université de Lille, CNRS, Centrale Lille, Université d'Artois, Unité de Catalyse et Chimie du Solide, Lille, F-59000, France

² MALTA-Consolider Team and Departamento de Química Física, Universidad Complutense de Madrid, E-28040 Madrid, Spain

³ Univ. Lille, CNRS, INRA, ENSCL, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, F-59000, France

* Corresponding author. E-mail: <u>marie.colmont@centralelille.fr</u>

SUPPLEMENTARY INFORMATION

Table S1. Crystal parameters, data collection and structure refinement details for the

crystal	of β-	LiLa ₅ C	$O_{5}(VO_{4})_{2}$
---------	-------	---------------------	---------------------

Crystal data	
Formula	$LiLa_5O_5(VO_4)_2$
Formula weight (g/mol)	1011.3
Temperature (K)	293
Crystal system	triclinic
Space group	P-1
<i>a</i> (Å)	5.8167(15)
b (Å)	12.2954(28)
<i>c</i> (Å)	18.7221(69)
α (°)	102.03(2)
β (°)	98.76(2)
γ (°)	103.54(2)
$V(Å^3)$	1244.37(18)
Ζ	4
Data collection	
Diffractometer	X8 Bruker
Radiation; λ (Å)	Ag <i>Kα</i> ; 0.56086
Absorption coefficient, μ (mm ⁻¹)	9.621
F (000)	1752
Data range θ (9; <i>h</i> , <i>k</i> , <i>l</i>)	1.39 - 25.6; $-8 < h < 8$,
	-18 < <i>k</i> < 18, -28 < <i>l</i> < 28
No. of total reflections	9444
Total unique reflections	6539
Criterion for observed reflections	$I > 3\sigma(I)$
R _{int} (%)	7.62
Refinement	
Refinement on	Full-matrix last squares on F
Weight scheme	$1/(\sigma^2 \mathbf{F} + 0.0004 F^2)$
R _{gt} , R _{all}	7.59, 11.26
wR _{gt} , wR _{ref} ,	10.31, 11.25
GOF _{gt} , GOF _{ref}	2.10, 2.32
Max. /min. residual <i>e</i> density, $(e^{\text{Å}-3})$	10.84 / -8.89

Atom	Х	Y	Ζ	U _{eq}
Lal	0.75802(17)	0.87839(8)	0.13743(5)	0.0082(3)
La2	0.25481(17)	0.61367(8)	0.38578(5)	0.0069(3)
La3	0.80795(17)	0.10021(9)	0.01963(5)	0.0089(3)
La4	0.86837(19)	0.84533(8)	0.43356(6)	0.0103(3)
La5	0.68837(17)	0.61847(8)	0.25351(5)	0.0077(3)
La6	0.38684(17)	0.09521(8)	0.18105(5)	0.0084(3)
La7	0.96482(18)	0.11704(9)	0.31787(6)	0.0112(3)
La8	0.58736(18)	0.37294(8)	0.34621(6)	0.0102(3)
La9	0.32247(17)	0.86472(8)	0.29150(6)	0.0090(3)
La10	0.0193(2)	0.35818(9)	0.21394(6)	0.0159(3)
V1	0.5072(6)	0.9061(2)	0.56732(16)	0.0136(9)
V2	0.1489(6)	0.6722(3)	0.12267(18)	0.016(010)
V3	0.5510(6)	0.6722(3)	0.92121(19)	0.0184(10)
V4	0.1096(7)	0.3683(3)	0.47882(19)	0.0210(12)
01	0.432(2)	0.8224(12)	0.4803(8)	0.019(3)
O2	0.529(3)	0.8244(13)	0.6287(8)	0.024(4)
O3	0.034(2)	0.7461(9)	0.3436(6)	0.007(2)
O4	0.609(2)	0.9797(10)	0.2354(7)	0.013(2)
O5	0.969(2)	0.7196(11)	0.1780(7)	0.017(3)
O6	0.574(5)	0.6667(16)	0.0098(10)	0.041(4)
O7	0.891(2)	0.4926(12)	0.2967(8)	0.019(3)
O8	0.222(2)	0.2378(11)	0.2578(7)	0.015(3)
O9	0.539(2)	0.9878(10)	0.0782(7)	0.012(2)
O10	0.028(2)	0.9892(10)	0.0790(7)	0.011(2)
011	0.809(2)	0.9947(11)	0.5853(7)	0.018(3)
O12	0.231(3)	0.4139(14)	0.4121(9)	0.031(3)
O13	0.140(4)	0.7324(18)	0.0505(11)	0.050(5)
O14	0.434(2)	0.7215(11)	0.1761(7)	0.015(2)
O15	0.823(4)	0.7330(17)	0.9009(11)	0.049(5)
O16	0.328(2)	0.9950(11)	0.5931(8)	0.019(3)
O17	0.357(3)	0.7538(16)	0.8989(11)	0.045(5)
O18	0.748(2)	0.2398(11)	0.2643(7)	0.014(2)
O19	0.828(3□)	0.3939(13)	0.4803(8)	0.027(3)
O20	0.047(3)	0.2220(13)	0.4520(9)	0.029(4)
O21	0.064(6)	0.532(3)	0.0927(18)	0.103(10)
O22	0.543(2)	0.7438(10)	0.3384(6)	0.010(2)
O23	0.281(3)	0.3972(13)	0.5662(8)	0.026(3)
O24	0.099(2)	0.9802(10)	0.2380(6)	0.010(2)
O25	0.376(2)	0.4931(11)	0.2891(7)	0.010(2)
O26	0.433(4)	0.536(2)	0.8710(14)	0.073(7)
Li1	0.2651	0.4929	0.9965	0.010(7)
Li2	0.5	0.5	0.5	0.01
Li3	0	0	0.5	0.01

Table S2. Atomic parameters β- LiLa₅O₅(VO₄)₂

Atom	U ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
Lal	0.0066(4)	0.0083(4)	0.0094(4)	0.0018(3)	0.0014(3)	0.0021(3)
La2	0.0067(4)	0.0060(4)	0.0078(4)	0.0001(3)	0.0024(3)	0.0024(3)
La3	0.0077(4)	0.0132(4)	0.0061(4)	0.0033(3)	0.0025(3)	0.0020(3)
La4	0.0135(4)	0.0078(4)	0.0081(4)	0.0009(3)	0.0018(3)	0.0014(3)
La5	0.0071(4)	0.0058(4)	0.0101(4)	0.0001(3)	0.0032(3)	0.0030(3)
La6	0.0085(4)	0.0079(4)	0.0083(4)	0.0020(3)	0.0011(3)	0.0017(3)
La7	0.0103(4)	0.0123(4)	0.0090(4)	0.0038(3)	0.0004(3)	-0.0014(3)
La8	0.0118(4)	0.0096(4)	0.0102(4)	0.0024(3)	0.0026(3)	0.0050(3)
La9	0.0078(4)	0.0087(4)	0.0118(4)	0.0026(3)	0.0012(3)	0.0057(3)
La10	0.0133(5)	0.0133(5)	0.0168(5)	0.0015(4)	0.0020(4)	-0.0022(4)
V1	0.0267(15)	0.0060(12)	0.0054(11)	0.0045(10)	0.0013(10)	-0.0025(10)
V2	0.0137(15)	0.0184(15)	0.0123(14)	0.0042(12)	0.0003(11)	-0.0036(12)
V3	0.0113(15)	0.0188(16)	0.0190(16)	-0.0009(12)	-0.0003(12)	0.0001(13)
V4	0.0275(16)	0.0258(18)	0.0134(14)	0.0126(15)	0.0036(12)	0.0073(13)

Table S3. Anisotropic atomic displacement parameters of β - LiLa₅O₅(VO₄)₂

Atom1	Atom2	d, Å		La9	2.3721(14)
01	La2	2.6668(14)		La5	2.3888(13)
	La4	2.7680(18)		La2	2.4361(13)
02	Las	25324(22)	023	La2	2 7953(18)
02	Lao La7	2.3521(22) 2.8548(22)	0.20	Las	2.8087(17)
03	La/	2.0340(22) 2.3304(13)		La0 La4	2.0007(17)
05	La4	2.3304(13) 2.4035(10)	024	La7	2.9100(20) 2 3640(13)
	Las	2.4053(10) 2.4252(12)	024	La/	2.3049(13) 2.3068(10)
		2.4233(13)			2.3908(10) 2.4127(14)
04	La2	2.4042(14)		La9	2.4127(14) 2.4209(12)
04		2.3952(10)	025	Lao	2.4396(13)
		2.401/(17)	023		2.5552(14)
		2.4086(13)			2.5575(10)
o -	La9	2.4345(16)		La2	2.4141(14)
05	La5	2.5885(18)	026	Las	2.4324(16)
	Lal	2.6955(19)	026	Las	2.5770(25)
	La9	2.7071(14)	VI	02	1.6754(23)
07	La5	2.3553(18)		01	1.6759(15)
	Lal0	2.3754(17)		016	1.7430(19)
	La8	2.4078(17)		011	1.7592(16)
	La2	2.4415(13)	V2	013	1.6432(37)
08	La10	2.3104(19)		021	1.6764(46)
	La7	2.4259(18)		05	1.6983(19)
	La8	2.4588(14)		014	1.7163(15)
	La6	2.4837(18)	V3	06	1.646(31)
09	La3	2.3690(10)		O26	1.6890(22)
	La3	2.3792(13)		015	1.6931(30)
	Lal	2.3885(14)		017	1.6969(30)
	La6	2.5072(13)	V4	012	1.6595(23)
O10	La3	2.3795(17)		023	1.6847(18)
	La3	2.3888(18)		O20	1.7138(22)
	Lal	2.3941(17)		019	1.7412(20)
	La6	2.4877(13)		019	2.7812(20)
011	La4	2.5098(18)	Lil	O21	2.2083(58)
	La7	2.8455(20)		O21	2.2983(65)
	La9	2.8881(19)		06	2.3504(41)
012	La2	2.5989(22)		06	2.4264(34)
	La8	2.6410(24)		O26	2.8163(43)
013	La3	2.6644(39)		O26	2.9606(40)
O14	La5	2.6224(18)		013	2.9766(36)
	Lal	2.6522(16)	Li2	012	1.9904(18)
	La9	2.7408(16)		012	1.9909(18)
015	La3	2.5908(22)		O23	2.2693(20)
	La10	2.6280(30)		O23	2.2701(20)
016	La4	2.5840(18)		019	2.5708(20)
	La9	2.6808(14)		019	2.5709(20)
	La7	2.8864(18)	Li3	011	2.0905(20)
017	La3	2 5868(29)		011	2.0912(20)
	Lalo	2 6625(24)		016	2.4080(17)
	La6	2.8952(30)		016	2.4086(17)
018	Lalo	2.3615(17)		020	2.9865(24)
010	La7	2 4288(18)		020	2.9871(24)
	La8	2 4373(17)			
	La6	2.4743(13)			
019	Las	2.6181(19)			
017	La2	2.6228(22)			
020	La2	2.0220(22) 2 4411(24)			
020	La7	2.111(27) 2.5089(21)			
022	La4	2 2987(10)			
<u> </u>					

Table S4. Selected interatomic distances for β - LiLa₅O₅(VO₄)₂

Atom	La1	La2	La3	La4	La5	La6	La7	La8	La9	La10	V1	V2	V3	V4	Li1	Li2	Li3	∑a
01		0.26		0.04 + 0.04							1.37							1.70
02						0.03	0.15 + 0.04	0.37			1.38							1.98
03		0.45		0.65	0.54				0.50									2.15
04	0.55					0.54	0.53		0.49									2.10
05	0.24				0.32				0.23			1.30						2.09
O6	0.09												1.48		0.17 + 0.15			1.89
07		0.48			0.61			0.53		0.58								2.20
08						0.43	0.50	0.46		0.69								2.08
09	0.56		0.59 ± 0.57			0.40												2.12
O10	0.55		0.57 + 0.56			0.42												2.10
011				0.40 + 0.06			0.16		0.14		1.11						0.20 + 0.20	2.27
012		0.31						0.28						1.43		0.24 + 0.24		2.49
013			0.26									1.50			0.04 + 0.04			1.83
014	0.27				0.29				0.21			1.24						2.01
015			0.32			0.05				0.29			1.31					1.97
016				0.32			0.14		0.25		1.16						0.12 + 0.12	2.11
017			0.32			0.14				0.26			1.30					2.02
018						0.44	0.50	0.49		0.60								2.03
019		0.29						0.29						1.16		0.10 + 0.10		1.93
O20				0.48			0.40							1.25			0.05 + 0.05	2.23
021										0.04		1.37			0.13 ± 0.11			1.65
022		0.49		0.72	0.56				0.59									2.35
023		0.18 + 0.04		0.13	0.03	0.40	0.50	0.17						1.35		0.15 ± 0.15		2.21
024	0.55	0.50			0.61	0.48	0.60	0.40	0.52	0.61								2.15
025		0.52			0.61			0.49		0.61			1.22		0.00+0.05			2.23
026	0.70	2.02	2.10	2.04	0.33	2.02	2.01	2.00	2.02	2.07	5.01	- 41	1.33	5.10	0.08+0.06	0.07	0.75	1.80
∑c	2.79	3.02	3.19	2.84	3.29	2.93	3.01	3.09	2.92	3.06	5.01	5.41	5.43	5.18	0.77	0.97	0.75	

Table S5. BVS calculation for $\beta\text{-}\ LiLa_5O_5(VO_4)_2$

(R, b)⁽¹⁾ parameters being for La-O (2.179; 0.359), V-O (1.799; 0.388), Li-O (1.062; 0.642).

Figure S1. Organization scheme of the Diamond Anvil Cell used for in situ Raman spectroscopy.

Figure S2. Reminder of the crystal structure of $[Bi_{12}O_{15}]Li_2(SO_4)_4]$ (ref Lü et al., Inorg Chem, 2014, 53, 12058). The multi-dimensional framework is evidenced (3D porous cationic framework with 1D channels hosting sulfates and Li⁺ cations.

Figure S3: Rietveld refinement of a) HP LiLa₅O₅(VO₄)₂, b) LiNd₅O₅(VO₄)₂ and c) LiLa₂O₂(VO₄). The refinements were performed using TOPAS software. Note that the small amount of sample drastically damaged the quality of the data and also of the refinement but at least it undoubtedly confirmed the purity of the samples for a) and b) and the presence of impurities for c).

Crystal data	
Formula	LiLa ₂ O ₂ VO ₄
Formula weight (g/mol)	431.7
Temperature (K)	293
Crystal system	triclinic
Space group	<i>P</i> -1
a (Å)	5.8144(7)
<i>b</i> (Å)	5.8167(7)
<i>c</i> (Å)	8.527(1)
α (°)	98.184(7)
β(°)	100.662(7)
γ (°)	92.579(7)
$V(Å^3)$	279.7(2)
Ζ	2
Data collection	
Diffractometer	SMART APEX DUO
Radiation; λ (Å)	ΜοΚα; 0.71073
Absorption coefficient, μ (mm ⁻¹)	16.583
F (000)	376
Data range θ (9; <i>h</i> , <i>k</i> , <i>l</i>	2.46 - 23.42; -6 < h < 6,
	-6 < k < 6, -9 < l < 9
No. of measured reflections	2980
Total reflections (N_2) /unique (N_1)	917 / 667
Criterion for observed reflections	$I > 3\sigma(I)$
R _{int} (%)	2.07
Refinement	
Refinement on	Full-matrix last squares on F
Weight scheme	$1/(\sigma^2 \mathbf{F} + 0.0001 F^2)$
R _{gt} , R _{all}	0.0494, 0.0564
wR _{gt} , wR _{ref}	0.0646, 0.0651
GOF _{gt} , GOF _{ref}	3.84, 3.47
Max. /min. residual <i>e</i> density, $(e^{A^{-3}})$	6.44 / -1.95

Table S6. Crystal parameters, data collection and structure refinement details for the crystal of $\beta\text{-LiLa}_2O_2VO_4$

Table S7. Atomic parameters for $\beta\text{-LiLa}_2O_2VO_4$

Atom	Х	Y	Ζ	U _{eq}
Lal	0.79396(16)	0.53683(15)	0.64942(10)	0.0036(4)
La2	0.29049(16)	0.02787(15)	0.6488(1)	0.0036(4)
V1	0.7888(6)	0.1786(6)	0.9378(4)	0.0155(11)
01	0.827(3)	0.238(3)	0.1319(16)	0.059(7)
O2	0.9974(18)	0.7476(18)	0.4964(12)	0.003(4)
O3	0.5069(18)	0.2472(19)	0.4996(12)	0.005(4)
O4	0.574(2)	0.356(2)	0.8627(15)	0.023(5)
05	0.030(2)	0.263(2)	0.8566(14)	0.023(5)
O6	0.668(2)	0.896(2)	0.8561(14)	0.024(5)
Li1	0.660(6)	0.660(5)	0.000(4)	0.022(12)

Atom	U ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
Lal	0.0042(6)	0.0037(6)	0.0029(6)	-0.0006(4)	0.0007(4)	0.0006(4)
La2	0.0039(6)	0.0036(6)	0.0029(6)	-0.0009(4)	0.0001(4)	0.0005(4)
V1	0.0140(18)	0.0142(18)	0.0187(18)	0.0011(14)	0.0023(14)	0.0052(14)
01	0.092(13)	0.050(11)	0.028(9)	-0.082(10)	0.065(9)	-0.057(8)
O2	0.000(6)	0.005(6)	0.001(6)	0.002(5)	-0.009(5)	0.001(5)
O3	0.004(6)	0.013(7)	-0.004(6)	-0.002(5)	-0.005(5)	0.008(5)
O4	0.023(8)	0.024(8)	0.023(8)	-0.007(6)	0.012(6)	0.005(6)
05	0.018(7)	0.030(8)	0.021(8)	0.004(6)	0.001(6)	0.009(6)
06	0.032(9)	0.020(8)	0.019(8)	-0.003(6)	0.006(7)	-0.001(6)
Li1	0.025(19)	0.017(18)	0.03(2)	0.010(15)	0.009(16)	0.004(15)

Table S8. Anisotropic atomic displacement parameters for $\beta\text{-LiLa}_2O_2VO_4$

Table S9. Selected interatomic distances (Å)

Atom 1	Atom2	d, Å
01	La2	2.7490(17)
	Lal	2.7523(15)
O2	Lal	2.3455(11)
	La2	2.3619(93)
	Lal	2.4306(11)
	La2	2.4351(11)
O3	Lal	2.3664(95)
	La2	2.3866(11)
	La2	2.3958(12)
	Lal	2.4663(11)
04	La2	2.7018(11)
	Lal	2.7082(14)
05	Lal	2.7645(12)
	La2	2.7917(12)
06	Lal	2.7523(12)
	La2	2.7630(11)
V1	01	1.6132(14)
	04	1.7446(12)
	06	1.7522(11)
	05	1.7552(13)
Li1	04	1.9596(40)
	04	1.9652(30)
	06	1.9716(36)
	05	1.9749(33)

Atom	Lal	La2	V1	Li1	$\sum_{v} a$
01	0.20	0.20	1.61		2.02
O2	0.50+0.63	0.50+0.49			2.22
03	0.59+0.45	0.56+0.55			2.15
O4	0.23	0.23	1.15	0.25+0.24	2.10
O5	0.20	0.18	1.12	0.24	1.74
06	0.20	0.20	1.13	0.24	1.77
$\sum_{v} c$	3.00	3.01	5.01	0.98	,

Table S10. Bond-valence analysis (v.u.) for the crystal structure of β -LiLa₂O₂VO₄

 \sum va and \sum vc are the bond valence sums for anions and cations, respectively.

(R, b)⁽¹⁾ parameters being for La-O (2.179; 0.359), V-O (1.799; 0.388), Li-O (1.062; 0.642).

Crystal data	
Formula	$LiNd_5O_5(VO_4)_2$
Formula weight (g/mol)	1038
Temperature (K)	293
Crystal system	monoclinic
Space group	<i>C</i> 2/ <i>m</i>
<i>a</i> (Å)	19.4507(2)
<i>b</i> (Å)	5.7848(5)
c (Å)	12.2593(1)
β (°)	117.847(5)°
$V(Å^3)$	1219.7(2)
Ζ	4
Data collection	
Diffractometer	X8 Bruker
Radiation; λ (Å)	AgKα; 0.56086
Absorption coefficient, μ (mm ⁻¹)	5.649
F (000)	1812
Data range θ (9; <i>h</i> , <i>k</i> , <i>l</i>)	1.48-25.38; -29 < h < 29,
	-8 < <i>k</i> < 8, -18 < <i>l</i> < 18
No. of measured reflections	11412
Total reflections $(N_2)/unique (N_1)$	2474 / 1496
Criterion for observed reflections	$I > 3\sigma(I)$
R_{int} (%)	8.15
Refinement	
Refinement on	Full-matrix last squares on F
Weight scheme	$1/(\sigma^2 \mathbf{F} + 0.0001 F^2)$
R _{Ft} , R _{all}	3.80, 8.14
wR _{gt} , wR _{ref} ,	3.78, 6.31
GOF _{gt} , GOF _{ref}	1.19, 1.53
Max. /min. residual <i>e</i> density, (<i>e</i> Å ⁻³)	3.80 / -3.99

Table S11. Crystal parameters, data collection and structure refinement details for the crystal of $LiNd_5O_5(VO_4)_2$

Atom	Х	Y	Ζ	Ueq
Nd1	0.89074(5)	0	0.44057(9)	0.0057(3)
Nd2	0.76267(5)	0.5	0.25519(9)	0.0067(3)
Nd3	0.19110(5)	0.5	0.41550(9)	0.0070(4)
Nd4	0.83240(5)	0	0.10994(9)	0.0088(4)
Nd5	0.96954(5)	0.5	0.33388(10)	0.0081(3)
V1	0.14892(18)	0.5	0.0552(3)	0.0110(12)
V2	0.05691(17)	0	0.2462(3)	0.0082(11)
01	1	0.256(2)	0.5	0.007(2)
O2	0.1165(7)	0	0.1824(13)	0.021(3)
O3	0.9655(8)	0	0.1292(14)	0.028(4)
O4	0.0741(5)	0.2359(19)	0.3397(9)	0.018(2)
O5	0.8633(4)	0.7509(84)	0.2669(7)	0.0065(17)
06	0.9304(10)	0.5	0.0820(18)	0.051(6)
O7	0.2080(5)	0.7343(83)	0.0672(8)	0.0107(18)
08	0.7840(5)	0.7467(85)	0.4169(8)	0.0087(16)
09	0.1233(10)	0.5	0.1666(19)	0.054(6)
Li1	1	0.257(16)	0	0.10(2)

Table S12. Atomic parameters for $LiNd_5O_5(VO_4)_2$

Table S13. Anisotropic atomic displacement parameters for $LiNd_5O_5(VO_4)_2$

Atom	U ¹¹	U ²²	U ³³	U ¹³
Nd1	0.0042(4)	0.0058(5)	0.0066(5)	0.0021(3)
Nd2	0.0061(4)	0.0068(5)	0.0066(4)	0.0025(3)
Nd3	0.0069(4)	0.0047(5)	0.0112(5)	0.0059(4)
Nd4	0.0104(5)	0.0090(5)	0.0057(4)	0.0028(4)
Nd5	0.0064(4)	0.0057(4)	0.0107(4)	0.0028(3)
V1	0.0114(15)	0.0070(16)	0.0164(16)	0.0080(12)
V2	0.0070(13)	0.0091(16)	0.0095(15)	0.0048(11)

Atom 1	Atom 2	d, Å
01	Nd5	2.3157(71)
	Nd5	2.3163(71)
	Nd1	2.4070(72)
	Nd1	2.4071(72)
O2	Nd2	2.5515(13)
O3	Nd4	2.4877(17)
O4	Nd5	2.5178(11)
	Nd3	2.5301(97)
	Nd1	2.8048(11)
O5	Nd4	2.2489(87)
	Nd5	2.3387(81)
	Nd2	2.3864(88)
	Nd1	2.4147(88)
06	Nd5	2.8138(22)
O7	Nd4	2.4698(95)
	Nd2	2.5518(92)
	Nd4	2.6046(99)
08	Nd2	2.3180(96)
	Nd3	2.3199(10)
	Nd3	2.3588(95)
	Nd1	2.4450(97)
09	Nd3	2.7005(21)
V1	09	1.6585(27)
	06	1.6689(16)
	07	1.7385(10)
	07	1.7386(10)
V2	02	1.6748(18)
	03	1.6834(12)
	04	1.7118(11)
	04	1.7120(11)
Li1	06	2.4671(57)
	06	2.4676(57)
	03	2.4821(58)
	03	2.4826(58)
	09	2.7060(50)
	09	2.7062(50)
	02	2.7588(51)
	02	2.7590(51)

Table S14. Selected interatomic distances (Å) in $LiNd_5O_5(VO_4)_2$

	Nd1	Nd2	Nd3	Nd4	Nd5	V1	V2	Li1	∑va
01	0.44 ^{x2}				0.56 x ²				2.01
02		0.30					1.38	$0.07 {}^{x2}$	1.82
03				0.35			1.34	0.11 x2	1.92
04	0.15 x ²		0.32 ^{x2}		$0.33^{\ x2}$		1.25 x ²		4.09
05	0.43 ^{x2}	$0.47 {}^{x2}$		0.67 ^{x2}	0.53 ^{x2}				4.20
06					0.15	1.40		0.11 ^{x2}	1.77
07		0.30^{x2}		$0.37^{x2}\!+ 0.26^{x2}$		1.17^{x2}			4.19
08	0.40 ^{x2}	0.56^{x2}	$0.56^{x^2} + 0.50^{x^2}$						4.03
09			0.20			1.44		0.08 ^{x2}	1.79
∑vc	2.85	2.95	2.95	2.96	2.99	5.17	5.23	0.74	

Table S15. Bond-valence analysis (v.u.) for the crystal structure of $LiNd_5O_5(VO_4)_2$

 \sum va and \sum vc are the bond valence sums for anions and cations, respectively.

(R, b)⁽¹⁾ parameters being for Nd-O (2.103; 0.371), V-O (1.799; 0.388), Li-O (1.062; 0.642).

REFERENCE

1. O.C. Gagné, F.C. Hawthorne, Acta Cryst., 2015, B71, 562–578.