Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

metal VBS	d(M-L1)	d(M-L2)	d(M-L3)	d(M-L4)	d(M-L5)	r(0)	beta
Mn1	2.091	1.976	1.934	1.874	1.947	1.76	0.37
	-0.331	-0.216	-0.174	-0.114	-0.187		
	-0.89459	-0.58378	-0.47027	-0.308108	-0.50541		
	0.408773	0.557784	0.624833	0.7348359	0.603261		
M(Ox.State)	2.929487						

metal VBS	d(M-L1)	d(M-L2)	d(M-L3)	d(M-L4)	d(M-L5)	d(M-L6)	r(0)	beta
Mn2	2.223	2.2277	2.099	2.187	2.152	2.225	1.79	0.37
	-0.433	-0.4377	-0.309	-0.397	-0.362	-0.435		
					-	-		
	-1.17027	-1.18297	-0.83514	-1.072973	0.97838	1.17568		
	0.310283	0.306367	0.433816	0.3419903	0.37592	0.30861		
M(Ox.State)	2.076986							

Table S1. Bond valence sum calculations to confirm the oxidation states of Mn ions in complex 3.

Figure S1. (a) Molecular structure of the model complex **3A**. Figures (b)-(d) show the models used to calculate the $J_{Mn(II)-Gd(III)}$, $J_{Mn(II)-Gd(III)}$ and $J_{Mn(I)-Mn(II)}$ pairwise interactions, respectively. In (b) the Mn(III) ion has been replaced by Ga(III). In (c) the Mn(II) ion has been replaced by Zn(II). In (d) the Gd(III) ion has been replaced with Y(III). Colour code is the same as in Figure 1.

Figure S2. (a)-(c) Spin density values on selected atoms for spin states S = 1, 3 and 4, respectively. Note that both experimental and computational studies suggest S = 4 as the ground spin state.

Figure S3. Magneto-structural plots performed by varying the average Mn^{II}/Mn^{III}-O-Gd^{III}–O dihedral angle with respect to the magnetic exchange coupling values $(\int_{Mn(III)}^{exchange} \int_{Mn(III)}^{exchange} = black$ solid squares and $J_{Mn(III)}^{exchange} = red solid squares$). For both models, the change in the magnetic exchange coupling values with respect to the change in Mn^{IIIII}-O-Gd^{III}–O dihedral angle are minimal.

Figure S4. Magneto-structural data calculated by varying the average $Mn^{II}/Mn^{III}-O-Gd^{III}$ angle with respect to the magnetic exchange coupling values, and average overlap integral values between SOMOs of {Mn(III/II)-3d} and {Gd(III)-4f} orbitals. Here, n = number of possible overlap integrals between the SOMOs (for $3d^{5}-4f^{7}$ systems, n = 35 and for $3d^{4}-4f^{7}$ systems, n = 28). The larger the average overlap integral value, the stronger the antiferromagnetic exchange interaction and vice versa.

Figure S5. (a)-(b) Molecular structures for models $\mathbf{3}_{Mn(II)-Mn(III)}$ -1 and $\mathbf{3}_{Mn(II)-Mn(III)}$ -2, respectively. Colour code is same as in Figure 1.

Figure S6. (a)-(b) Representative molecular orbitals showing Mn(II)d_{yz}|p|Mn(III)d_z² and Mn(II)d_x²-y²|p|Mn(III)d_z² for $\mathbf{3}_{Mn(II)-Mn(III)}$, and (c)-(d) Mn(II)d_{yz}|p|Mn(III)d_z² and Mn(II)d_{xz}|p|Mn(III)d_z² for $\mathbf{3}_{Mn(II)-Mn(III)}$ -2, respectively.

Figure S7. Representitive SOMOs for the Mn(II) (a)-(e), Mn(III) (f)-(i) and Gd(III) (j)-(p) ions.

Table S2. DFT computed overlap integral (OI) values corresponding to the $J_{Mn(II)-Gd(III)}^{exchange}$, $J_{Mn(II)-Gd(III)}^{exchange}$, $J_{Mn(II)-Gd(III)}^{exchange}$, $J_{Mn(II)-Gd(III)}^{exchange}$, and $J_{Mn(II)-Mn(III)}$ exchange pathways in complex **3**. Here α and β signify spin-up and spin-down orbitals, respectively, with the numbers relating to the corresponding SOMOs.

Gd ^Ⅲ -α	Mn [။] -β	Ols	Gd ^Ⅲ - α	Mn ^{III} -β	Ols	Mn ^{II} - α	Mn ^{III} -β	Ols
4f(1)	d _{xz}	0.003	4f(1)	d _{xz}	0.003	d _{xz}	d _{xz}	0.024
	d _{yz}	0.010		d _{yz}	0.001		d _{yz}	0.009
	d _{xy}	0.010		d _{xy}	0.008		d _{xy}	0.090
	d_{x-y}^{2}	0.012		d _z ²	0.003		d _z ²	0.065
	d _z ²	0.009	4f(2)	d _{xz}	0.011	d _{yz}	d _{xz}	0.035
4f(2)	d _{xz}	0.001		d _{yz}	0.011		d _{yz}	0.001
	d _{yz}	0.013		d _{xy}	0.005		d _{xy}	0.027
	d _{xy}	0.003		d _z ²	0.005		d _z ²	0.102
	$d_{x^{2}-y^{2}}$	0.002	4f(3)	d _{xz}	0.004	d _{xy}	d _{xz}	0.009
	d _z ²	0.014		d _{yz}	0.010		d _{yz}	0.028
4f(3)	d _{xz}	0.001		d _{xy}	0.009		d _{xy}	0.024
	d _{yz}	0.006		d _z ²	0.010		d _z ²	0.004
	d _{xy}	0.001	4f(4)	d _{xz}	0.010	$d_{x^{2}-y^{2}}^{2}$	d _{xz}	0.053
	$d_{x^{2}-y^{2}}$	0.008		d _{yz}	0.006		d _{yz}	0.043
	d _z ²	0.003		d _{xy}	0.005		d _{xy}	0.096
4f(4)	d _{xz}	0.004		d _z ²	0.011		d _z ²	0.075
	d _{yz}	0.001	4f(5)	d _{xz}	0.011	d _z ²	d _{xz}	0.017
	d _{xy}	0.003		d _{yz}	0.003		d _{yz}	0.032
	$d_{x - y}^{2}$	0.007		d _{xy}	0.016		d _{xy}	0.008
	d _z ²	0.004		d _z ²	0.017		d _z ²	0.026
4f(5)	d _{xz}	0.004	4f(6)	d _{xz}	0.004			
	d _{yz}	0.001		d _{yz}	0.009			
	d _{xy}	0.003		d _{xy}	0.019			
	$d_{x^{2}-y^{2}}^{2}$	0.018		d _z ²	0.001			
	d _z ²	0.001	4f(7)	d _{xz}	0.000			
4f(6)	d _{xz}	0.002		d _{yz}	0.003			
	d _{yz}	0.016		d _{xy}	0.200			
	d _{xy}	0.005		d _z ²	0.013			
	$d_{x^{2}-y^{2}}^{2}$	0.002						
	d _z ²	0.011						
4f(7)	d _{xz}	0.001						
	d _{yz}	0.009						
	d _{xy}	0.006						
	d_{x-y}^{2}	0.001						
	d _z ²	0.006						

Table S3. DFT computed overlap integral (OI) values corresponding to the magneto-structural correlation developed from model $\mathbf{3}_{Mn(II)-Gd(III)}$ (Figure S1 (b)) with respect to the average Mn^{II}-O-Gd^{III} angle. Here α and β signify spin-up and spin-down orbitals, respectively. with the numbers relating to the corresponding SOMOs. Here, $\Sigma Sa(4f)b(3d)$ represents the total OIs between {Gd(III)4f⁷} and {Mn(II)3d⁵} SOMOs. n = number of possible overlap integrals between the SOMOs (for 3d⁵-4f⁷ systems, n = 35).

α	β	89.3 °	93.1°	100.6°	104.1°	107.1°	115.5°
		Ols	Ols	Ols	Ols	Ols	Ols
4f(1)	d _{xz}	0.002	0.009	0.018	0.018	0.017	0.002
	d _{yz}	0.019	0.021	0.018	0.016	0.015	0.009
	d _{xy}	0.028	0.026	0.022	0.019	0.016	0.007
	$d_{x^{2}-y^{2}}^{2}$	0.012	0.010	0.007	0.006	0.006	0.000
	d _z ²	0.001	0.000	0.002	0.002	0.003	0.003
4f(2)	d _{xz}	0.006	0.003	0.003	0.004	0.006	0.014
	d _{yz}	0.007	0.007	0.005	0.003	0.002	0.001
	d _{xy}	0.002	0.000	0.003	0.003	0.004	0.003
	$d_{x^{2}-y^{2}}$	0.010	0.007	0.003	0.002	0.002	0.000
	d _z ²	0.003	0.003	0.004	0.005	0.005	0.007
4f(3)	d _{xz}	0.001	0.003	0.008	0.008	0.009	0.016
	d _{yz}	0.002	0.005	0.003	0.002	0.001	0.001
	d _{xy}	0.011	0.012	0.008	0.004	0.001	0.010
	$d_{x^{2}-y^{2}}$	0.002	0.003	0.005	0.006	0.006	0.000
	d _z ²	0.001	0.002	0.004	0.004	0.005	0.008
4f(4)	d _{xz}	0.010	0.011	0.011	0.019	0.013	0.011
	d _{yz}	0.016	0.011	0.003	0.004	0.008	0.014
	d _{xy}	0.021	0.014	0.001	0.001	0.002	0.006
	$d_{x^{2}-y^{2}}$	0.011	0.010	0.009	0.004	0.002	0.000
	d _z ²	0.003	0.002	0.001	0.014	0.014	0.013
4f(5)	d _{xz}	0.015	0.025	0.022	0.004	0.004	0.015
	d _{yz}	0.035	0.025	0.002	0.000	0.001	0.002
	d _{xy}	0.016	0.011	0.001	0.006	0.011	0.021
	$d_{x^{2}-y^{2}}$	0.006	0.007	0.003	0.007	0.006	0.000
	d _z ²	0.008	0.012	0.014	0.003	0.003	0.006
4f(6)	d _{xz}	0.008	0.002	0.006	0.004	0.002	0.008
	d _{yz}	0.002	0.011	0.005	0.004	0.003	0.001
	d _{xy}	0.000	0.007	0.013	0.012	0.010	0.003
	$d_{x^{2}-y^{2}}$	0.010	0.003	0.011	0.011	0.010	0.000
	d _z ²	0.015	0.012	0.003	0.003	0.003	0.003
4f(7)	d _{xz}	0.002	0.000	0.013	0.013	0.010	0.013
	d _{yz}	0.008	0.007	0.012	0.010	0.008	0.004
	d _{xy}	0.001	0.003	0.007	0.008	0.009	0.012
	$d_{x^{-y}}^{2}$	0.010	0.013	0.006	0.005	0.003	0.000
	d _z ²	0.007	0.000	0.005	0.003	0.001	0.005
$\sum Sa(4)$	4 <i>f</i>)b(3d)	0.311	0.297	0.261	0.237	0.221	0.218
\sum Sa(4)	f)b(3d)/n	0.0089	0.0085	0.0075	0.0068	0.0063	0.0062

Table S4. DFT computed overlap integral (OI) values corresponding to the magneto-structural correlation developed from model $\mathbf{3}_{Mn(III)-Gd(III)}$ (Figure S1 (c)) with respect to average Mn^{III}-O-Gd^{III} angle. Here α and β signify spin-up and spin-down orbitals, respectively, with the numbers relating to the corresponding SOMOs. Here, $\Sigma Sa(4f)b(3d)$ represents the total OIs between {Gd(III)4f⁷} and {Mn(III)3d⁴} SOMOs. n = number of possible overlap integrals between the SOMOs (for 3d⁴-4f⁷ systems, n = 28).

α	β	89.4 °	93.8°	98.3 °	104.0°	110.5 °	115.5°	121.2 °
		Ols	Ols	Ols	Ols	Ols	Ols	Ols
4f(1)	d _{xz}	0.008	0.008	0.010	0.010	0.006	0.003	0.007
	d _{yz}	0.015	0.013	0.007	0.007	0.002	0.002	0.001
	d _{xy}	0.018	0.017	0.015	0.013	0.008	0.002	0.000
	d _z ²	0.013	0.018	0.020	0.021	0.027	0.027	0.025
4f(2)	d _{xz}	0.001	0.012	0.000	0.009	0.007	0.007	0.009
	d _{yz}	0.005	0.001	0.002	0.000	0.003	0.002	0.001
	d _{xy}	0.005	0.006	0.005	0.002	0.002	0.003	0.003
	d _z ²	0.009	0.006	0.001	0.002	0.007	0.007	0.007
4f(3)	d _{xz}	0.015	0.008	0.018	0.008	0.006	0.004	0.004
	d _{yz}	0.026	0.012	0.002	0.008	0.015	0.015	0.012
	d _{xy}	0.012	0.004	0.000	0.002	0.005	0.005	0.004
	d _z ²	0.001	0.006	0.007	0.007	0.011	0.011	0.007
4f(4)	d _{xz}	0.011	0.005	0.006	0.008	0.005	0.004	0.008
	d _{yz}	0.017	0.005	0.004	0.001	0.003	0.002	0.000
	d _{xy}	0.010	0.015	0.015	0.015	0.005	0.000	0.001
	d _z ²	0.014	0.016	0.018	0.019	0.020	0.020	0.017
4f(5)	d _{xz}	0.007	0.004	0.002	0.002	0.004	0.003	0.002
	d _{yz}	0.014	0.013	0.007	0.008	0.004	0.005	0.003
	d _{xy}	0.012	0.006	0.013	0.012	0.004	0.004	0.005
	d _z ²	0.005	0.012	0.009	0.014	0.014	0.013	0.012
4f(6)	d _{xz}	0.010	0.003	0.003	0.002	0.001	0.003	0.011
	d _{yz}	0.004	0.003	0.004	0.005	0.013	0.013	0.014
	d _{xy}	0.009	0.011	0.005	0.002	0.011	0.009	0.009
	d _z ²	0.031	0.022	0.010	0.005	0.008	0.004	0.003
4f(7)	d _{xz}	0.004	0.001	0.009	0.009	0.010	0.009	0.004
	d _{yz}	0.016	0.015	0.010	0.009	0.002	0.003	0.000
	d _{xy}	0.009	0.016	0.022	0.023	0.007	0.003	0.005
	d _z ²	0.016	0.022	0.025	0.021	0.011	0.007	0.004
$\sum Sa(4)$	f)b(3d)	0.317	0.280	0.249	0.244	0.221	0.190	0.178
\sum Sa(4f)	`)b(3d)/n	0.0113	0.0100	0.0089	0.0087	0.0079	0.0068	0.0064

Table S5. DFT computed overlap integral (OI) values corresponding to models $\mathbf{3}_{Mn(II)-Mn(III)}-1$ and $\mathbf{3}_{Mn(II)-Mn(III)}-2$, respectively (Figure S5). Here α and β signify spin-up and spin-down orbitals, respectively, with the numbers relating to the corresponding SOMOs. Here, $\sum Sa(3d)b(3d)$ represents the total OIs between {Mn(II)3d⁵} and {Mn(III)3d⁴} SOMOs. n = number of possible overlap integrals between the SOMOs (for 3d⁵-3d⁴ systems, n = 20).

Mn(III)- β	Mn(II)- α	3 _{Mn(II)-Mn(III)} -1	3 _{Mn(II)-Mn(III)} -2
		Ols	Ols
d _{xz}	d _{xz}	0.005	0.057
	d _{yz}	0.012	0.004
	d _{xy}	0.047	0.018
	$d_{x^{2}-y^{2}}^{2}$	0.016	0.013
	d _z ²	0.085	0.064
d _{yz}	d _{xz}	0.003	0.028
	d _{yz}	0.049	0.007
	d _{xy}	0.009	0.016
	$d_{x^{2}-y^{2}}^{2}$	0.004	0.039
	d _z ²	0.029	0.026
d _{xy}	d _{xz}	0.001	0.093
	d _{yz}	0.019	0.005
	d _{xy}	0.019	0.019
	$d_{x^{2}-y^{2}}^{2}$	0.003	0.026
	d_z^2	0.010	0.020
d _z ²	d _{xz}	0.038	0.017
	d _{yz}	0.139	0.246
	d _{xy}	0.043	0.188
	$d_{x^{2}-y^{2}}^{2}$	0.178	0.016
	d _z ²	0.030	0.022
$\sum Sa(3d)b(3d)$		0.739	0.924
$\sum Sa(3d)b(3d)/n$		0.037	0.046