Stepwise Spin-State Switching in a Manganese(III)

Complex

Subrata Ghosh, Sukanya Bagchi, Mayurika Das, Sujit Kamilya and Abhishake Mondal*,[†]

[†]Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India

Correspondence to: mondal@iisc.ac.in

Table of Content:

Experimental Section	4
Materials and physical measurements	4
Synthesis of complex	4
Magnetic Measurements	6
X-ray crystallography	6
Spectroscopic studies	7
Table	. 20
Reference	. 35

List of Figures

Fig. S1. Picture of crystals for complex 1
Fig. S2. Comparison of the room temperature experimental PXRD pattern and the 240 K simulated one for 1
Fig. S3. TGA curve for 1 from 303 K to 573 K at a 10 K min ⁻¹ temperature rate under N_2 atmosphere7
Fig. S4. ATR spectrum of 1 at RT
Fig. S5. UV-vis-NIR spectra of 1 in MeCN with dilute (left) and concentrated (right) solution at room temperature
Fig. S6. Solid state UV-vis-NIR spectrum of 1 in KBr at room temperature
Fig. S7. Perspective view of unit cell in 1 at 240 K. Hydrogen atoms are omitted for clarity (Mn: Purple, C: grey, N: blue, O: red, Cl: green)
Fig. S8. Perspective view of unit cell packing along the <i>a</i> -axis in 1 at 240 K. Counter-anions and hydrogen atoms are omitted for clarity (Mn(HS), maroon, polyhedral environment)10
Fig. S9. Perspective view of unit cell in 1 at 120 K. Hydrogen atoms are omitted for clarity (Mn: Purple, C: grey, N: blue, O: red, Cl: green)
Fig. S10. Perspective view of unit cell packing along the <i>a</i> -axis in 1 at 120 K. Counter-anions and hydrogen atoms are omitted for clarity (Mn(intermediate), violet, polyhedral environment)
Fig. S11. Perspective view of unit cell in 1 at 100 K. Hydrogen atoms are omitted for clarity (Mn: Purple, C: grey, N: blue, O: red, Cl: green)
Fig. S12. Perspective view of unit cell packing along the <i>a</i> -axis in 1 at 100 K. Counter-anions and hydrogen atoms are omitted for clarity (Mn(LS), blue, polyhedral environment)
Fig. S13. Top: Perspective view of a fragment of the supramolecular structure displaying several weak interactions (red lines) in 1 at 240 K. Bottom: View of N–H···C interactions forming 1D chain in 1 at 240 K
Fig. S14. Perspective view of a fragment of the supramolecular structure displaying several weak interactions (red lines) in 1 at 120 K. Bottom: View of N–H····C interactions forming 1D chain in 1 at 120 K
Fig. S15. Top: Perspective view of a fragment of the supramolecular structure displaying several weak interactions (red lines) in 1 at 100 K. Bottom: View of N–H···C interactions forming 1D chain in 1 at 100 K
Fig. S16. Field dependence of the magnetization as <i>M vs H</i> plots for 1 at 100 K. The solid line is best fit.
Fig. S17 . Field dependence of the magnetization as M vs H (left) and M vs H/T (right) plots for 1 at 4 and 6 K. The solid lines are guide for the eyes
Fig. S18 . DSC plot of 1 shown between 180 and 140 K at a sweep rate of 5 K min ⁻¹ 16
Fig. S19. Cyclic voltammogram for oxidation of 1 in 0.2 M ($^{n}Bu_{4}N$)PF ₆ /MeCN with a scan rate of 100 mV s ⁻¹ . Arrow indicates the open circuit potential with the direction of the potential sweep

Fig. S20. Square wave voltammograms for 1 in 0.2 M (<i>"</i> Bu ₄ N)PF ₆ /MeCN. Arrows indicate the open circuit potential with the direction of the potential sweep
Fig. S21. Differential pulse voltammograms for 1 in 0.2 M ("Bu ₄ N)PF ₆ /MeCN. Arrows indicate the open circuit potential with the direction of the potential sweep
Fig. S22. Cyclic voltammogram for oxidation of NaBPh ₄ in 0.2 M ($^{n}Bu_{4}N$)PF ₆ /MeCN with a scan rate of 100 mV s ⁻¹ . Arrow indicates the open circuit potential with the direction of the potential sweep
Fig. S23. Square wave voltammogram for oxidation of $NaBPh_4$ in 0.2 M ("Bu ₄ N)PF ₆ /MeCN. Arrow indicates the open circuit potential with the direction of the potential sweep
Fig. S24. Precession images from 1 in the <i>hk0</i> at 240 K (monoclinic, a), 120 K (monoclinic, b), 120 K (triclinic, c) and 100 K (monoclinic, d)
Table S1. X-ray crystallography data for complex 1
Table S2. Selected bond distances (Å) and bond angles (°) in 1
Table S3: CShM analysis data for complex 1. 22
Table S4 . Spin crossover behaviors of $[Mn(X-sal_2-323)](BPh_4)$ (X = ligand substituent) complexes withassociated Mn-N/O bond distances23
Table S5 : Spin crossover behaviors of $[Mn(5Cl-sal_2-323)](Y)$ (Y = counteranion) complexes withassociated Mn-N/O bond distances24

Appendix: Check cif files for complex 1.

Experimental Section

Materials and physical measurements

All manipulations were carried out in air unless otherwise stated. Solvents were dried by standard methods and freshly distilled before to use. All chemicals were used as purchased from various chemical sources without further purification. The crystals of the complex were removed from the mother liquor and dried on filter paper to remove any adhering solvent molecules, before to measurement. The elemental analysis of C, H, and N were performed with Thermo Scientific Flash 2000 Organic Elemental Analyzer. Infrared (IR) spectra were recorded in the range of 4000 - 400cm⁻¹ on Bruker Tensor 27 spectrometer. UV-vis-NIR spectra were carried out in the region of 250 - 2000 nm on a Lambda 750 UV-vis-NIR spectrometer. The UV-vis spectroscopic measurements in solution were done in quartz cuvettes with a path length of 1 cm. Solid-state measurement was carried out by taking 5% sample by weight in KBr. Thermogravimetric analysis (TGA) was done on a Mettler Toledo TGA/SDTA851 analyzer with a heating rate of 10 K min⁻¹ under a nitrogen atmosphere ranging from 303 to 573 K. Differential scanning calorimetry (DSC) measurements were performed using Mettler Toledo DSC 823^e differential scanning calorimeter with a scan rate of 5 K min⁻¹ in a nitrogen atmosphere in the temperature range of 300 K to 140 K (lowest measurable temperature). Powder X-ray diffraction (PXRD) measurements were carried out on a PANalytical Empyrean diffractometer at 45 kV and 30 mA, under Cu-K α radiation ($\lambda = 1.54059$ Å). PXRD data analyses were done using PANalytical X'Pert HighScore Plus software.¹ Electrochemistry experiments (cyclic voltammetry (CV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV) measurements were performed with a Metrohm Autolab PGSTAT101 using platinum as working electrode with the sample (~1 mM) in acetonitrile with 0.2 M (^{*n*}Bu₄N)PF₆ as supporting electrolyte. Ferrocene was used as an internal reference.

Synthesis of complex

[Mn(5Cl-sal₂-323)](BPh₄) (1). Under an aerobic environment, a solution of 5-chloro-2hydroxybenzaldehyde (31.2 mg, 0.2 mmol) in a mixture of ethanol and acetonitrile (1:1, 5 mL) was added to a stirred solution of N,N'- bis(3-aminopropyl)ethylenediamine (17.4 mg, 0.1 mmol) in same solvents mixture (5 mL). The reaction mixture was stirred for 10 min to obtain a bright yellow solution. Then, a solution of manganese(II) chloride tetrahydrate (19.8 mg, 0.1 mmol) in ethanol/MeCN (1:1, 5 mL) was added; the solution color changed from yellow to deep brown indicating the aerobic oxidation of Mn(II) to Mn(III), and the reaction mixture was stirred for another 10 min. A solution of sodium tetraphenylborate (34.5 mg, 0.1 mmol) in ethanol/MeCN (1:1, 5 mL) was added and the reaction mixture was stirred for 2 h. After filtration, the brown filtrate was kept for slow evaporation to obtain analytically pure block shape crystals of **1** in 75% yield. Formula for 1: $C_{46}H_{46}BCl_2MnN_4O_2$ (MW. 823.52 gmol⁻¹): Anal. Calcd. C 67.09, H 5.63, N 6.80; found C 67.23, H 5.89, N 6.48; ATR-IR (only intensive bands): ν (cm⁻¹) = 3243, 3051, 1618, 1536, 1465, 1423, 1369, 1282, 1190, 1073, 1048, 979, 889, 861, 828, 803, 751, 733, 703, 666, 611, 583, 557, 488, 457, 447.

Scheme 1. Synthetic scheme for 1.

Fig. S1. Picture of crystals for complex 1.

Magnetic Measurements

The magnetic susceptibility measurements were carried out with Quantum Design MPMS-XL EverCool SQUID magnetometer, between 2 and 300 K for dc applied fields ranging from -5 T to 5 T for 1. Polycrystalline sample of 1 (25.67 mg) introduced in a polyethylene bag ($2.8 \times 0.75 \times 0.02$ cm) were subjected to measurements. The temperature dependent data were measured using 10000 Oe dc field. The isothermal magnetization data were acquired at 4 and 6 K. *M vs H* measurements were performed at 100 K to check for the presence of ferromagnetic impurities which were found to be absent. The magnetic data were corrected for the sample holder and the diamagnetic contribution.

X-ray crystallography

Single crystal X-ray structure analyses data of the complex 1 were collected with a Bruker SMART APEX CCD diffractometer equipped with graphite monochromated MoK α radiation ($\lambda = 0.71073$) Å). The single crystal was mounted on crystal mounting loop with the help of Paratone oil at 240 K followed by data collection. The same crystal was slowly cooled down to 120 K and 100 K with 2 K / min ramping rate, followed by data collection. Data integration and reduction were performed with the help of SAINT software and empirical absorption corrections were applied with SADABS programme.² The structures at 120 K and 240 K were solved using intrinsic phasing methods with ShelXT³ and refined with a full-matrix least-squares method on F^2 using ShelXL-2018⁴ in OLEX² GUI.⁵ The 100 K data was solved using charge flipping method and refined with L-M method using OLEX². All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms were labeled to ideal positions and refined isotropically. Hydrogen atoms were constrained by geometry. To handle the atomic position disorder of C atoms in the phenyl ring of BPh₄⁻ counter anion, C atoms of phenyl rings were refined with a free variable associated with the occupancy. The total sum occupancy for the different parts of the same C atoms was constrained to be 1. The PART instruction has been used to constrain the equivalent atomic displacement parameter. Additionally, RIGU, SIMU and ISOR restraints have also been used for appropriate carbon atoms with anisotropic refinement in ShelXL.

Fig. S2. Comparison of the room temperature experimental PXRD pattern and the 240 K simulated one for 1.

Fig. S3. TGA curve for 1 from 303 K to 573 K at a 10 K min⁻¹ temperature rate under N₂ atmosphere.

Spectroscopic studies

Complex **1** was characterized by solid state IR spectroscopy at room temperature (Fig. S4). The IR spectrum shows characteristic C=N and N–H stretching vibrations of coordinated Schiff-base ligand at around 1618 cm⁻¹ and 3243 cm⁻¹ respectively, while the peak at around 730 and 705 cm⁻¹ suggested the presence of BPh₄⁻ anion in **1**. In addition, IR spectrum displays typical absorption of coordinated Schiff-base ligand at around 1595, 1540, 1460, 1423, 1370, 1280, 1072, 1048, 860, 705 and 560 cm⁻¹.

Fig. S4. ATR spectrum of 1 at RT.

Electronic absorption spectroscopic studies were carried out on **1** in solid-state as well as in solution at room temperature (Fig. S5 and S6). UV-vis-NIR spectra in acetonitrile exhibit one broad band along with two shoulders at around 1100 nm, 650 nm and 580 nm respectively which are attributed to *d*-*d* transitions (${}^{5}A_{1g} \rightarrow {}^{5}B_{1g}$, ${}^{5}A_{1g} \rightarrow {}^{5}E_{g}$ and ${}^{5}A_{1g} \rightarrow {}^{5}B_{2g}$) from HS Mn(III) ion in a tetragonally compress octahedral system. The higher molar coefficient of the later band could be explained by the tailing effect from nearby ligand-to-metal charge transfer (LMCT) transition. Apart from *d*-*d* transitions, UV-vis-NIR spectrum reveals phenolate ligand-based LMCT transition at around 520 nm, nitrogen donor ligand-based LMCT transition near 340 nm and intra-ligand charge transfer (ILCT) transition nearly at around 270 nm. The solid-state spectrum (Fig. S6) of **1** also exhibits very similar absorption bands with the solution spectrum, suggested that the complex well-preserved its identity upon dissolution.

Fig. S5. UV-vis-NIR spectra of 1 in MeCN with dilute (left) and concentrated (right) solution at room temperature.

Fig. S6. Solid state UV-vis-NIR spectrum of 1 in KBr at room temperature.

Fig. S7. Perspective view of unit cell in 1 at 240 K. Hydrogen atoms are omitted for clarity (Mn: Purple, C: grey, N: blue, O: red, Cl: green).

Fig. S8. Perspective view of unit cell packing along the *a*-axis in **1** at 240 K. Counter-anions and hydrogen atoms are omitted for clarity (Mn(HS), maroon, polyhedral environment).

Fig. S9. Perspective view of unit cell in 1 at 120 K. Hydrogen atoms are omitted for clarity (Mn: Purple, C: grey, N: blue, O: red, Cl: green).

Fig. S10. Perspective view of unit cell packing along the *a*-axis in 1 at 120 K. Counter-anions and hydrogen atoms are omitted for clarity (Mn(intermediate), violet, polyhedral environment).

Fig. S11. Perspective view of unit cell in 1 at 100 K. Hydrogen atoms are omitted for clarity (Mn: Purple, C: grey, N: blue, O: red, Cl: green).

Fig. S12. Perspective view of unit cell packing along the *a*-axis in 1 at 100 K. Counter-anions and hydrogen atoms are omitted for clarity (Mn(LS), blue, polyhedral environment).

Fig. S13. Top: Perspective view of a fragment of the supramolecular structure displaying several weak interactions (red lines) in **1** at 240 K. Bottom: View of N–H…C interactions forming 1D chain in **1** at 240 K.

Fig. S14. Perspective view of a fragment of the supramolecular structure displaying several weak interactions (red lines) in **1** at 120 K. Bottom: View of N–H…C interactions forming 1D chain in **1** at 120 K.

Fig. S15. Top: Perspective view of a fragment of the supramolecular structure displaying several weak interactions (red lines) in 1 at 100 K. Bottom: View of N–H···C interactions forming 1D chain in 1 at 100 K.

Fig. S16. Field dependence of the magnetization as M vs H plots for 1 at 100 K. The solid line is best fit.

Fig. S17. Field dependence of the magnetization as M vs H (left) and M vs H/T (right) plots for 1 at 4 and 6 K. The solid lines are guide for the eyes.

Fig. S18. DSC plot of 1 shown between 180 and 140 K at a sweep rate of 5 K min⁻¹.

Note: DSC data in the low-temperature region up to 100 K are not available due to the temperature limitation of our instrument.

Fig. S19. Cyclic voltammogram for oxidation of **1** in 0.2 M (*"*Bu₄N)PF₆/MeCN with a scan rate of 100 mV s⁻¹. Arrow indicates the open circuit potential with the direction of the potential sweep.

Fig. S20. Square wave voltammograms for **1** in 0.2 M (*ⁿ*Bu₄N)PF₆/MeCN. Arrows indicate the open circuit potential with the direction of the potential sweep.

Fig. S21. Differential pulse voltammograms for **1** in 0.2 M (*"*Bu₄N)PF₆/MeCN. Arrows indicate the open circuit potential with the direction of the potential sweep.

Cyclic voltammograms and square wave voltammogram of NaBPh₄ show an irreversible at around E_{pc} = 0.51 V vs Fc/Fc⁺ (Fig. S22 and S23).

Fig. S22. Cyclic voltammogram for oxidation of NaBPh₄ in 0.2 M ("Bu₄N)PF₆/MeCN with a scan rate of 100 mV s⁻¹. Arrow indicates the open circuit potential with the direction of the potential sweep.

Fig. S23. Square wave voltammogram for oxidation of NaBPh₄ in 0.2 M (*ⁿ*Bu₄N)PF₆/MeCN. Arrow indicates the open circuit potential with the direction of the potential sweep.

Fig. S24. Precession images from 1 in the *hk0* at 240 K (monoclinic, a), 120 K (monoclinic, b), 120 K (triclinic, c) and 100 K (monoclinic, d)

Table

Table S1. X-ray crystallography data for complex	: 1.
--	------

Complex		1	
CCDC no	2015524	2015521	2015472
temp (K)	240	120	100
empirical formula	$C_{46}H_{46}BCl_2MnN_4O_2$	$C_{46}H_{46}BCl_2MnN_4O_2$	$C_{46}H_{46}BCl_2MnN_4O_2$
formula wt	823.52	823.52	823.52
cryst syst	Monoclinic	Monoclinic	Monoclinic
space group	$P2_1/n$	$P2_1/n$	$P2_1/n$
<i>a</i> (Å)	14.3566(10)	14.2615(10)	14.2627(5)
<i>b</i> (Å)	21.8039(15)	21.6350(14)	21.6172(8)
<i>c</i> (Å)	14.4656(11)	14.4098(10)	14.4837(5)
α (deg)	90	90	90
β (deg)	116.203(3)	116.523(2)	116.711(2)
$\gamma(\text{deg})$	90	90	90
<i>V</i> , Å ³	4062.8(5)	3978.2(5)	3989.1(3)
Ζ	4	4	4
$d_{\rm calcd} ~({ m g~cm^{-3}})$	1.346	1.375	1.365
$\mu(\mathrm{mm}^{-1})$	0.501	0.511	0.510
<i>F</i> (000)	1720	1720	1723
$\theta_{\rm max}$ (deg)	25	26.50	30.74
completeness (%)	100	100	99.6
no. of. rflns collected	7143	8238	12377
no. of. Indep rflns	4763	5405	10956
goodness of fit on F^2	1.014	1.128	1.054
final R indices ($I > 2\sigma(I)$)	R1 = 0.0456	R1 = 0.0768	R1 = 0.0438
	wR2 = 0.0940	wR2 = 0.1560	wR2 = 0.0937
final R indices (all data)	R1 = 0.0840	R1 = 0.1117	R1 = 0.0505
	wR2 = 0.1148	wR2 = 0.1648	wR2 = 0.0976

		1		
	240 K	120 K	100 K	
Mn(1)-N(1)	2.168(3)	2.111(4)	2.0752(14)	
Mn(1)-N(2)	2.179(3)	2.112(4)	2.0809(13)	
Mn(1)-N(3)	2.060(3)	2.013(4)	2.0010(14)	
Mn(1)-N(4)	2.095(3)	2.034(5)	2.0085(14)	
Mn(1)-O(1)	1.853(2)	1.858(3)	1.8750(11)	
Mn(1)-O(2)	1.864(2)	1.864(3)	1.8667(11)	
N(1)-Mn(1)-N(2)	81.05(11)	82.73(17)	83.91(5)	
N(1)-Mn(1)-N(3)	164.19(11)	167.96(17)	169.98(5)	
N(1)-Mn(1)-N(4)	85.90(11)	87.91(18)	88.96(6)	
N(1)-Mn(1)-O(1)	84.79(10)	84.92(16)	84.92(5)	
N(1)-Mn(1)-O(2)	93.01(10)	91.93(16)	91.79(5)	
N(2)-Mn(1)-N(3)	85.06(11)	86.89(17)	87.80(6)	
N(2)-Mn(1)-N(4)	165.13(11)	169.12(18)	171.39(6)	
N(2)-Mn(1)-O(1)	93.21(10)	91.98(16)	91.62(5)	
N(2)-Mn(1)-O(2)	86.85(10)	87.10(15)	91.65(5)	
N(3)-Mn(1)-N(4)	108.74(10)	102.98(18)	87.10(5)	
N(3)-Mn(1)-O(1)	88.49(9)	89.39(16)	89.70(5)	
N(3)-Mn(1)-O(2)	93.74(10)	93.61(16)	93.42(5)	
N(4)-Mn(1)-O(1)	92.67(10)	92.70(16)	92.53(5)	
N(4)-Mn(1)-O(2)	86.74(10)	87.69(16)	88.31(5)	
O(1)-Mn(1)-O(2)	177.76(10)	176.81(16)	176.59(5)	

 Table S2. Selected bond distances (Å) and bond angles (°) in 1.

Continuous Shape Measures (CShM) Analysis:

Continuous Shape Measures (CShM) analysis was carried out to determine the geometry around Mn(III) ion. Based on the values obtained, the idealized polyhedron was matched with the actual coordination spheres. The smallest value is symbolic of proximity of actual coordination sphere and idealized polyhedron.

Complex	Temp.	Structure					
		HP - 6	PPY - 6	OC - 6	TPR - 6	JPPY - 6	
2	240 K	32.110	24.624	1.281	11.344	27.401	
	120 K	32.463	26.495	0.691	12.864	29.427	
	100 K	32.699	27.525	0.464	13.643	30.577	

Table S3: CShM analysis data for complex 1.

HP - 6: Hexagon (D6h), PPY - 6 = Pentagonal pyramid, OC - 6: Octahedron (Oh), TPR - 6: Trigonal prism (D3h), JPPY - 6 = Johnson pentagonal pyramid J2 (C5v);

Octahedral Distortion Parameters

 Σ is the sum of the deviation from 90° of the 12 *cis*-angles of the MnN₄O₂ octahedron; Θ is the sum of the deviation from 60° of the 24 trigonal angles of the projection of the MnN₄O₂ octahedron onto the trigonal faces; ζ is the distance distortion parameter, which is the sum of deviation from individual M-N/O bond distances with respect to the mean metal-ligand bond distance.

Complex X	$T_{1/2}(K)^{a}$	Т (К) ^b	Mn–O (Å)	Mn–N (Å)	Spin State	Ref.
[Mn(5Cl-sal ₂ - 323)](BPh ₄)	$T_{1/2}(1) = 168 \text{ K}$ $T_{1/2}(2) = 103 \text{ K}$ Two-step and	100	1.8753(13)-1.8661(13)	2.0742(18)-2.0808(16) 2.0005(17)-2.0085(17)	LS	This work
X = 5-Cl	complete	120	1.856(4)-1.864(4) 1.865(4)-1.861(4)	2.139(5)-2.121(5) 2.047(5)2.022(5) 2.098(5)-2.101(5) 2.005(5)-2.018(5)	HS]:[LS] (1:1)	
		240	1.8650(19)-1.8540(19)	2.167(3)-2.179(3) 2.060(2)-2.095(3)	HS	
[Mn(3,5-diBr- sal ₂ (323))](BP	$T_{1/2} \downarrow = 82$ $T_{1/2} \uparrow = 90$ $\Delta T = 8 K \text{ hysteretic}$	25	1.868(14)-1.908(15)	2.008(18)-2.08(2), 2.058(16)-1.99(2)	HS:LS (1:1)	6
h ₄)	and abrupt	83	1.875(7)-1.892(7)	2.002(8)-2.082(9) 2.059(8)-2.002(10)	HS:LS (1:1)	
X = 3,5-diBr	(1:1)	110	1.868(2)-1.879(2)	2.101(3)-2.262(3) 2.209(3)-2.094(3)	HS	
		150	1.866(3)-1.879(3)	2.098(3)-2.259(4) 2.206(4)-2.090(4)	HS	
		250	1.864(3)-1.879(3)	2.102(4)-2.232(5) 2.218(5)-2.075(5)	HS	
		293	1.866(3)-1.876(4)	2.104(4)-2.230(5) 2.221(5)-2.079(5)	HS	
[Mn(3-OEt- Sal- 323)](BPh ₄) X = 3-OEt	HS	100	1.8687(10)-1.8586(10)	2.0950(11)-2.2479(12)	HS	7
[Mn(3-OMe- sal ₂ - 323)](BPh ₄) X = 3-OMe	HS	100	1.8516(18)-1.8829(18)	2.065(2)-2.256(2)	HS	7

Table S4. Spin crossover behaviors of $[Mn(X-sal_2-323)](BPh_4)$ (X = ligand substituent) complexes with associated Mn–N/O bond distances

a: spin crossover temperature; b: structure analyses temperature

Table	S5 :	Spin	crossover	behaviors	of	$[Mn(5Cl-sal_2-323)](Y)$	(Y	=	counteranion)	complexes	with
associa	ted N	Mn-N	/O bond di	stances							

Complex X	T _{1/2} (K) ^a	T (K) ^b	Mn–O (Å)	Mn–N (Å)	Spin State	Ref.
[Mn(5Cl-sal ₂ - 323)](BPh ₄)	$T_{1/2}(1) = 168 \text{ K}$ $T_{1/2}(2) = 103 \text{ K}$ Two-step and	100	1.8753(13)-1.8661(13)	2.0742(18)-2.0808(16) 2.0005(17)-2.0085(17)	LS	This work
$Y = BPh_4$	complete	120	1.856(4)-1.864(4) 1.865(4)-1.861(4)	2.139(5)-2.121(5) 2.047(5)2.022(5) 2.098(5)-2.101(5) 2.005(5)-2.018(5)	HS]:[LS] (1:1)	
		240	1.8650(19)-1.8540(19)	2.167(3)-2.179(3) 2.060(2)-2.095(3)	HS	
[Mn(5Cl-sal ₂ -	$T_{1/2}\downarrow = 73, T_{1/2}\uparrow = 123;$	100	1.872(2)-1.884(2)	2.089(3)-2.222(3)	HS	8
323)](TCNQ) _{1.5} . 2MeCN ^c	$\Delta T_{1/2} = 50$ hysteretic and abrupt; One step and complete	220	1.871(2)-1.881(2)	2.095(2)-2.220(2)	HS	
$\mathbf{Y} = \mathbf{T}\mathbf{C}\mathbf{N}\mathbf{Q}_{1.5}$						
[Mn(5-Cl-Sal- 323)](NO ₃)	~ 200 gradual and incomplete	100	1.8690(12)-1.8737(12) 1.8726(12)-1.8767(12)	2.0695(14)–2.2613(14) 2.0628(15)–2.1929 (15)	HS	9
$Y = NO_3$		293	1.876(2) 1.878(2)–1.879(2)	2.091(2)–2.244(3) 2.100(3)–2.206(3)	HS	
[Mn(5-Cl-Sal- 323)]ClO ₄	>281 gradual and incomplete	100	1.8608(13) 1.8787(13)	2.1071(16)–2.2201(17) 1.9826(17)–2.0484 (18)	[HS]:[LS] (1:1)	9
$Y = CIO_4$		260	1.8641(16)–1.8641(16) 1.8726(15)	2.1055(19)-2.219(2)	HS	

a: spin crossover temperature; b: structure analyses temperature; c: TCNQ = 7,7,8,8,-tetracyanoquinodimethane

Appendix: Check cif files for complex 1.

Temperature: 240 K

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 240K

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 240K

Bond precision:	C-C = 0.0053 A	D	Wavelength	=0.71073
Cell: Temperature:	a=14.3566(10) alpha=90 240 K	b=21.8039 beta=116.2	(15) 203(3)	c=14.4656(11) gamma=90
	Calculated		Reported	
Volume	4062.8(5)		4062.8(5)	
Space group	P 21/n		P 1 21/n	1
Hall group	-P 2yn		-P 2yn	
Mojety formula	С24 Н20 В, С22 Н	26 Cl2 Mn	C22 H26 C	12 Mn N4 O2, C24
Molety Iolmula	N4 O2		H20 B	
Sum formula	C46 H46 B Cl2 Mn	N4 O2	С46 Н46 В	Cl2 Mn N4 O2
Mr	823.52		823.52	
Dx,g cm-3	1.346		1.346	
Z	4		4	
Mu (mm-1)	0.501		0.501	
F000	1720.0		1720.0	
F000′	1723.06			
h,k,lmax	17,25,17		17,25,17	
Nref	7143		7143	
Tmin,Tmax	0.897,0.937		0.651,0.7	46
Tmin'	0.810			
Correction meth AbsCorr = MULTI	od= # Reported T -SCAN	Limits: Tn	nin=0.651 ;	Imax=0.746
Data completene	ss= 1.000	Theta(ma	ax)= 24.99	9
R(reflections)=	0.0456(4763)	wR2(ref	lections)=	0.1148(7143)
S = 1.014	Npar=	738		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C

RINTA01_ALERT_3_C The va	alue of Rint is great	er than 0.	.12			
Rint given	0.128					
PLAT088_ALERT_3_C Poor Da	ata / Parameter Ratio			•	9.68	Note
PLAT332_ALERT_2_C Large 1	Phenyl C-C Range	C29	-C34B	•	0.18	Ang.
PLAT420_ALERT_2_C D-H Wit	thout Acceptor	N1 -	H1	•	Please	Check
PLAT420_ALERT_2_C D-H Wit	thout Acceptor	N2 -	H2	•	Please	Check

Alert level G

PLAT003_ALERT_2_G Number of Uiso or	: Uij Restrained no	on-H Atoms	10	Report
PLAT020_ALERT_3_G The Value of Rint	t is Greater Than	0.12	0.128	Report
PLAT042_ALERT_1_G Calc. and Reporte	ed MoietyFormula St	trings Differ	Please	Check
PLAT164_ALERT_4_G Nr. of Refined C-	H H-Atoms in Heav	y-Atom Struct.	2	Note
PLAT178_ALERT_4_G The CIF-Embedded	.res File Contain	s SIMU Records	1	Report
PLAT186_ALERT_4_G The CIF-Embedded	.res File Contain	s ISOR Records	3	Report
PLAT187_ALERT_4_G The CIF-Embedded	.res File Contain	s RIGU Records	2	Report
PLAT301_ALERT_3_G Main Residue Dis	sorder	(Resd 1)	96%	Note
PLAT793_ALERT_4_G Model has Chirali	ty at N1	(Centro SPGR)	R	Verify
PLAT793_ALERT_4_G Model has Chirali	ty at N2	(Centro SPGR)	R	Verify
PLAT794_ALERT_5_G Tentative Bond Va	alency for Mn1	(I) .	0.85	Info
PLAT811_ALERT_5_G No ADDSYM Analysi	s: Too Many Exclu	ded Atoms	!	Info
PLAT860_ALERT_3_G Number of Least-S	Squares Restraints		423	Note
PLAT883_ALERT_1_G No Info/Value for	_atom_sites_solu	tion_primary .	Please	Do !
PLAT909_ALERT_3_G Percentage of I>2	sig(I) Data at The	eta(Max) Still	37%	Note
PLAT978_ALERT_2_G Number C-C Bonds	with Positive Res	idual Density.	1	Info

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 5 ALERT level C = Check. Ensure it is not caused by an omission or oversight 16 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 6 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 18/09/2020; check.def file version of 20/08/2020

Datablock 240K - ellipsoid plot

Temperature: 120K checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 120K

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 120K

Bond precision:	C-C = 0.0082 A	\overline{V}	Navelength:	=0.71073
Cell:	a=14.2615(10) alpha=90	b=21.6350 beta=116.5	(14) 523(2)	c=14.4098(10) gamma=90
Temperature:	120 K			
	Calculated		Reported	
Volume	3978.2(5)		3978.2(5)	
Space group	P 21/n		P 1 21/n	1
Hall group	-P 2yn		-P 2yn	
Moiety formula	C22 H26 Cl2 Mn N H20 B	4 02, C24	C22 H26 C 1(C24 H20	l2 Mn N4 O2, B1)
Sum formula	C46 H46 B Cl2 Mn	N4 O2	С46 Н46 В	Cl2 Mn N4 O2
Mr	823.52		823.52	
Dx,g cm-3	1.375		1.375	
Z	4		4	
Mu (mm-1)	0.511		0.511	
F000	1720.0		1720.0	
F000′	1723.06			
h,k,lmax	17,27,18		17,27,18	
Nref	8237		8238	
Tmin,Tmax Tmin'	0.895,0.936 0.807		0.651,0.7	46
Correction meth AbsCorr = MULTI	od= # Reported T -SCAN	Limits: Tm	nin=0.651 5	Imax=0.746
Data completene	ss= 1.000	Theta(ma	ax)= 26.49	9
R(reflections)=	0.0768(5405)	wR2(ref]	lections)=	0.1648(8238)
S = 1.128	Npar=	731		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C

RINTA01_ALERT_3_C	The value of Rint is grea	ter than 0.12		
Rint g:	iven 0.136			
PLAT020_ALERT_3_C	The Value of Rint is Great	er Than 0.12	 0.136	Report
PLAT332_ALERT_2_C	Large Phenyl C-C Range	C29A -C34A	0.18	Ang.
PLAT332_ALERT_2_C	Large Phenyl C-C Range	C35A -C40A	0.17	Ang.
PLAT332_ALERT_2_C 1	Large Phenyl C-C Range	С29В -С34В	0.25	Ang.
PLAT332_ALERT_2_C	Large Phenyl C-C Range	C35B -C40B	0.22	Ang.
PLAT341_ALERT_3_C	Low Bond Precision on C-C	Bonds	 0.00816	Ang.
PLAT420_ALERT_2_C 1	D-H Without Acceptor	N1H1	Please	Check
PLAT420_ALERT_2_C 1	D-H Without Acceptor	N2H2	Please	Check
PLAT906_ALERT_3_C	Large K Value in the Analy	sis of Variance	 11.869	Check
PLAT906_ALERT_3_C	Large K Value in the Analy	sis of Variance	 2.657	Check
PLAT977_ALERT_2_C (Check Negative Difference	Density on H25A	-0.31	eA-3

Alert level G		
PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms	3	Report
PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms	2	Report
PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ	Please	Check
PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large	18.12	Why ?
PLAT186_ALERT_4_G The CIF-Embedded .res File Contains ISOR Records	1	Report
PLAT187_ALERT_4_G The CIF-Embedded .res File Contains RIGU Records	3	Report
PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Mn1N4 .	6.0	s.u.
PLAT302_ALERT_4_G Anion/Solvent/Minor-Residue Disorder (Resd 2)	100%	Note
PLAT302_ALERT_4_G Anion/Solvent/Minor-Residue Disorder (Resd 3)	100%	Note
PLAT304_ALERT_4_G Non-Integer Number of Atoms in (Resd 2)	26.69	Check
PLAT304_ALERT_4_G Non-Integer Number of Atoms in (Resd 3)	18.31	Check
PLAT793_ALERT_4_G Model has Chirality at N1 (Centro SPGR)	R	Verify
PLAT793_ALERT_4_G Model has Chirality at N2 (Centro SPGR)	R	Verify
PLAT794_ALERT_5_G Tentative Bond Valency for Mn1 (I) .	0.91	Info
PLAT811_ALERT_5_G No ADDSYM Analysis: Too Many Excluded Atoms	!	Info
PLAT860_ALERT_3_G Number of Least-Squares Restraints	414	Note
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	1	Info

```
0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
12 ALERT level C = Check. Ensure it is not caused by an omission or oversight
17 ALERT level G = General information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
11 ALERT type 2 Indicator that the structure model may be wrong or deficient
6 ALERT type 3 Indicator that the structure quality may be low
8 ALERT type 4 Improvement, methodology, query or suggestion
3 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of apaper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 18/09/2020; check.def file version of 20/08/2020

Datablock 120K - ellipsoid plot

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 100K

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 100K

Bond precision:	C-C = 0.0024 A	W	avelength=	0.71073
Cell: Temperature:	a=14.2627(5) b alpha=90 b 100 K	=21.6172(eta=116.7	8) 11(2)	c=14.4837(5) gamma=90
-				
	Calculated		Reported	
Volume	3989.1(3)		3989.1(3)	
Space group	P 21/n		P 1 21/n 1	
Hall group	-P 2yn		-P 2ybc (x	-
Moiety formula	C22 H26 C12 Mn N4 H20 B	02, C24	C22 H26 Cl H20 B	2 Mn N4 O2, C24
Sum formula	C46 H46 B Cl2 Mn N	14 02	С46 Н46 В	Cl2 Mn N4 O2
Mr	823.52		823.57	
Dx, g cm-3	1.371		1.365	
Z	4		4	
M_{11} (mm-1)	0.510		0.510	
F000	1720.0		1723.2	
F000'	1723.06		1,10,11	
h.k.lmax	20.31.20		20.30.20	
Nref	12432		12377	
Tmin.Tmax	0.896.0.936		0.651.0.74	6
Tmin'	0.807			-
Correction metho AbsCorr = MULTI	od= # Reported T Li -SCAN	imits: Tm	in=0.651 Tr	max=0.746
Data completene:	ss= 0.996	Theta (ma	x) = 30.740	
R(reflections)=	0.0438(10956)	wR2(refl	ections)=	0.0976(12377)
S = 1.054	Npar= 7	47		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C

PLAT126_ALERT_1_C Error in o	r Uninterpretable H	all Symbol	-P 2YBC	(X-Z,Y
PLAT221_ALERT_2_C Solv./Anio	n Resd 2 C Ueq(max)/Ueq(min) Range	5.1	Ratio
PLAT223_ALERT_4_C Solv./Anio	n Resd 2 H Ueq(max)/Ueq(min) Range	5.1	Ratio
PLAT420_ALERT_2_C D-H Withou	t Acceptor N1	н1 .	Please	Check
PLAT420_ALERT_2_C D-H Withou	t Acceptor N2	н2 .	Please	Check
PLAT906_ALERT_3_C Large K Va	lue in the Analysis	of Variance	2.807	Check

Alert level G

PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms	50	Report
PLAT068_ALERT_1_G Reported F000 Differs from Calcd (or Missing)	Please	Check
PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large	5.57	Why ?
PLAT164_ALERT_4_G Nr. of Refined C-H H-Atoms in Heavy-Atom Struct.	2	Note
PLAT186_ALERT_4_G The CIF-Embedded .res File Contains ISOR Records	2	Report
PLAT187_ALERT_4_G The CIF-Embedded .res File Contains RIGU Records	2	Report
PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Mn1N1 .	9.0	s.u.
PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Mn1N4 .	10.3	s.u.
PLAT302_ALERT_4_G Anion/Solvent/Minor-Residue Disorder (Resd 2)	100%	Note
PLAT302_ALERT_4_G Anion/Solvent/Minor-Residue Disorder (Resd 3)	100%	Note
PLAT304_ALERT_4_G Non-Integer Number of Atoms in (Resd 2)	30.78	Check
PLAT304_ALERT_4_G Non-Integer Number of Atoms in (Resd 3)	14.22	Check
PLAT432_ALERT_2_G Short Inter XY Contact Cl1C26B	3.25	Ang.
-x,-y,1-z = 3_	556 Chec	ck
PLAT769_ALERT_4_G CIF Embedded explicitly supplied scattering data	Please	Note
PLAT793_ALERT_4_G Model has Chirality at N1 (Centro SPGR)	R	Verify
PLAT793_ALERT_4_G Model has Chirality at N2 (Centro SPGR)	R	Verify
PLAT794_ALERT_5_G Tentative Bond Valency for Mn1 (I) .	0.93	Info
PLAT811_ALERT_5_G No ADDSYM Analysis: Too Many Excluded Atoms	!	Info
PLAT860_ALERT_3_G Number of Least-Squares Restraints	444	Note
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .	Please	Do !
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	50	Note
PLAT960_ALERT_3_G Number of Intensities with I < - 2*sig(I)	5	Check
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	19	Info
PLAT982_ALERT_1_G The Mn-f' = 0.3478 Deviates from IT-value =	0.3368	Check
PLAT983_ALERT_1_G The Cl-f"= 0.1603 Deviates from IT-Value =	0.1585	Check
PLAT983_ALERT_1_G The Mn-f"= 0.7326 Deviates from IT-Value =	0.7283	Check

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 6 ALERT level C = Check. Ensure it is not caused by an omission or oversight 26 ALERT level G = General information/check it is not something unexpected 6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 9 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 12 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 18/09/2020; check.def file version of 20/08/2020 Datablock 100K - ellipsoid plot

Reference

- 1. T. Degen, M. Sadki, E. Bron, U. König and G. Nénert, *Powder Diffr.*, 2014, **29**, S13-S18.
- 2. G. M. Sheldrick, SADABS Version 2.03, Bruker Analytical X-Ray Systems, Madison, WI, USA, 2000.
- 3. G. M. Sheldrick, *Acta Crystallogr A Found Adv*, 2015, **71**, 3-8.
- 4. G. Sheldrick, *Acta Crystallogr., Sect. C: Struct. Chem*, 2015, **71**, 3-8.
- 5. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.
- V. B. Jakobsen, E. Trzop, L. C. Gavin, E. Dobbelaar, S. Chikara, X. Ding, K. Esien, H. Muller-Bunz, S. Felton, V. S. Zapf, E. Collet, M. A. Carpenter and G. G. Morgan, *Angew. Chem. Int. Ed.*, 2020, 59, 13305-13312.
- 7. B. Gildea, M. M. Harris, L. C. Gavin, C. A. Murray, Y. Ortin, H. Muller-Bunz, C. J. Harding, Y. Lan, A. K. Powell and G. G. Morgan, *Inorg. Chem.*, 2014, **53**, 6022-6033.
- 8. A. V. Kazakova, A. V. Tiunova, D. V. Korchagin, G. V. Shilov, E. B. Yagubskii, V. N. Zverev, S. C. Yang, J. Y. Lin, J. F. Lee, O. V. Maximova and A. N. Vasiliev, *Chem. Eur. J.*, 2019, **25**, 10204-10213.
- 9. B. Gildea, L. C. Gavin, C. A. Murray, H. Müller-Bunz, C. J. Harding and G. G. Morgan, *Supramol. Chem.*, 2012, **24**, 641-653.