Supporting Information

Heterojunction structured MnCO₃@NiO composites and their

enhanced electrochemical performance

Zexian Zhang^a, Tao Mei*^a, Kai Yang^a, Jing Li^a, Zhi Tao^a, Yuting xiong^b, Liangbiao Wang*^b

a Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University. Wuhan 430062, PR China. Email: meitao@hubu.edu.cn; Fax: +86 27 8866 1729; Tel: +86 27 8866 2132

b School of Chemistry and Environment Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China. Email: lbwang@jsut.edu.cn

Contents

Fig. S1. TG image of MnCO₃@NiO.

Fig. S2. XRD patterns of pristine MnCO₃ after sintering in 280 °C for 3 h.

Fig. S3. (a) SEM image of MnCO₃@NiO, (b),(c),(d) respectively represented C, Mn, Ni element, derived from (a).

Fig. S4. TEM image of MnCO₃@NiO.

Fig. S5. The CV curves at the scanning rate of 0.01 mV s⁻¹ of MnCO₃ and NiO, respectively.

Fig. S6. Nyquist plots of the AC impedance spectra for MnCO₃ and MnCO₃@NiO₁

Fig. S7. The discharge capacity and the coulombic efficiency of the (a) $MnCO_3$ and

(b) NiO at 1.0 A g^{-1} . The rate performance of (c) MnCO₃ and (d) NiO.

Fig. S8. The capacities of three samples in this work at 1.0 A g^{-1} rate.

Fig.S9. FESEM images of $MnCO_3$ @NiO in an electrode (a) before cycling and (b) after cycling at 1.0 A g⁻¹ over 300 cycles.

Tab. S1 The EDX results of the C, Mn and Ni element of the obtained $MnCO_3@NiO$ Tab. S2 Compare the obtained $MnCO_3@NiO$ with the reported $MnCO_3$ and NiO as the cathode for LIBs

Fig. S1. TG image of MnCO₃@NiO.

Fig. S2. XRD patterns of pristine $MnCO_3$ after sintering in 280 $^\circ C$ for 3 h.

Fig. S3. (a) SEM image of MnCO₃@NiO, (b),(c),(d) respectively represented C, Mn, Ni element, derived from (a).

Fig. S4. TEM image of MnCO₃@NiO.

Fig. S5. The CV curves at the scanning rate of 0.01 mV s^{-1} of MnCO₃ and NiO, respectively.

Fig. S6. Nyquist plots of the AC impedance spectra for MnCO₃ and MnCO₃@NiO.

Fig. S7. The discharge capacity and the coulombic efficiency of the (a) $MnCO_3$ and (b) NiO at 1.0 A g⁻¹. The rate performance of (c) $MnCO_3$ and (d) NiO.

Fig. S8. The capacities of three samples in this work at 1.0 A g^{-1} rate.

Fig.S9. FESEM images of $MnCO_3$ @NiO in an electrode (a) before cycling and (b) after cycling at 1.0 A g⁻¹ over 300 cycles.

Element	Wt%	At%
СК	10.52	36.62
MnK	48.29	36.66
NiK	41.19	12.54
Matrix	Correction	ZAF

Tab. S1 The EDX results of the C,Mn and Ni element of the obtained MnCO₃@NiO.

Composites	Current	Cycle	Specific capacity	Ref.
	density	number	(mAh g ⁻¹)	
	$(C/mA g^{-1})$			
MnCO ₃ flower	0.2 C	200	384	1
MnCO ₃ spheres	100 mA g ⁻¹	100	656	2
MnCO ₃ microdumbbells	0.5 C	100	775	3
NiO nano octahedron	359 mA g ⁻¹	200	793	4
NiO nanofiber	80 mA g ⁻¹	100	784	5
NiO nanowall array	500 mA g ⁻¹	50	564	6
NiO nanowalls	0.1 C	50	844	7
NiO nanorods	100 mA g ⁻¹	60	700	8
NiO nanoflowers	0.1 C	50	552	9
NiO nanospheres	100 mA g ⁻¹	60	518	10
MnCO ₃ @NiO	100 mA g ⁻¹	300	900	Our work

Tab. S2 Compare the obtained $MnCO_3$ (a)NiO with the reported $MnCO_3$ and NiO as the anode for LIBs.

References:

- Y.L. Mu, L. Wang, Y. Zhao, M.J. Liu, W. Zhang, J.T. Wu, X. Lai, G.Y. Fan, J. Bi, D.J. Gao, Electrochim. Acta 251 (2017) 119-128.
- L. Xiao, S.Y. Wang, Y.F. Wang, W. Meng, B.H. Deng, D.Y. Qu, Z.Z. Xie, J.P. Liu, ACS Appl. Mater. Interfaces 8 (2016) 25369-25378.
- L. Zhang, T. Mei, X.B. Wang, J.Y. Wang, J.H. Li, W.L. Xiong, Y. Chen, M. Hao, CrystEngComm 17 (2015) 6450-6455.
- 4. C.Z. Wang, Y.J. Zhao, D.Z. Su, C.H. Ding, L. Wang, D. Yan, J.B. Li, H.B. Jin, Electrochim. Acta 231 (2017) 272-278.
- V. Aravindan, P. Suresh Kumar, J. Sundaramurthy, W.C. Ling, S. Ramakrishna, S. Madhavi, J. Power Sources 227 (2013) 284-290.
- 6. F. Cao, G.X. Pan, P.S. Tang, H.F. Chen, Mater. Res. Bull. 48 (2013) 1178-1183.
- 7. Q. Wang, C.Y. Zhang, W.F. Shan, L.L. Xing, X.Y. Xue, Mater. Lett. 118 (2014) 66-68.
- Q. Li, G. Huang, D.M. Yin, Y.M. Wu, L.M. Wang, Part. Part. Syst. Char. 33 (2016) 764-770.
- 9. Y.B. Mollamahale, Z. Liu, Y.D. Zhen, Z.Q. Tian, D. Hosseini, L.W. Chen, P.K. Shen, Int. J. Hydrogen Energy 42 (2017) 7202-7211.
- 10. G.H. Zhang, Y.J. Chen, B.H. Qu, L.L. Hu, L. Mei, D.N. Lei, Q. Li, L.B. Chen, Q.H. Li, T.H. Wang, Electrochim. Acta 80 (2012) 140-147.