Electronic Supporting Information (ESI) for

Modular *O*- vs *N*-coordination of Pyridylidene Amide Ligands to Iron Determines Activity in Alcohol Oxidation Catalysis

Dide G. A. Verhoeven and Martin Albrecht

Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland, martin.albrecht@dcb.unibe.ch.

1.	NMR spectra	
2.	IR spectra	
3.	Cyclic voltammograms	
4.	Catalysis	S11
5.	X-ray crystal structure data	S12
6.	References	

1. NMR spectra

Figure S2. APT ¹³C NMR spectrum (75 MHz, DMSO-*d*₆) of 1^{PF₆}.

S3

Figure S5. ¹H NMR spectrum (300 MHz, CD₃CN) of [Fe(pyPYA)Cl₂]₂ (**2**). Relaxation delay and acquisition time at 0.1 second.

Figure S6. ¹H NMR spectrum (300 MHz, CD₃CN) of [Fe(pyPYA)Cl₂]₂ (**2**) after one week exposure to air as a solid. Relaxation delay and acquisition time at 0.1 second.

Figure S7. ¹H NMR spectrum (300 MHz) of the reaction mixture in the synthesis of [Fe(pyPYA)Cl(py)₃]I (**3**). Measurement done without addition of a deuterated solvent (large signals originate from THF and pyridine). Inset: zoom of the paramagnetic signals. Relaxation delay and acquisition time at 0.1 second.

Figure S8. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of [Fe(pyPYA₂)Cl₂] (6). Relaxation delay and acquisition time at 0.1 second.

Figure S9. ¹H NMR spectrum (300 MHz, DMSO- d_6) of [Fe(pyPYA₂)₂](PF₆)₂ (7). Relaxation delay and acquisition time at 0.1 second.

Figure S10. ¹H NMR spectrum (300 MHz, CD_3CN/CH_3CN) of from the catalytic oxidation of 1-phenylethanol to acetophenone with mesitylene as internal standard (resonances labeled with * due to acetophenone, labeled with x due to 1-phenylethanol, and m for mesitylene). Unspecified signals arise from solvents and reaction products.

2. IR spectra

Figure S12. IR spectrum of [Fe(pyPYA)Cl₂]₂ (2).

Figure S13. IR spectrum of $[Fe(pyPYA)Cl(Py)_3]I(3)$.

Figure S14. IR spectrum of $[Fe(pyPYA_2)Cl_2]$ (6).

Figure S15. IR spectrum of [Fe(pyPYA₂)₂](PF₆)₂ (7).

Figure S16. Cyclic voltammogram of 2 in MeCN (vs SCE) at 0.25 V sec⁻¹, 3 scans, and NBu₄PF₆ as electrolyte.

Figure S17. Cyclic voltammogram and DPV (*vs* SCE) of Fe complexes at 0.5 V sec⁻¹, 20 scans, and NBu₄PF₆ as electrolyte. Left: [Fe(pyPYA₂)Cl₂] (**6**) in (anhydrous) DMF. Right: [Fe(pyPYA₂)₂](PF₆)₂ (**7**) in MeCN.

Table 51. Cyclic voltammetry values.						
Entry	Compound	Solvent	Е	vs SCE (V)	vs Fc ⁺ /Fc (V)	
1	2	MeCN	Epa	1.56	1.16	
			Epa	2.41	2.01	
2	6	DMF	E1/2	0.06	-0.46	
			E1/2	0.21	-0.31	
			Epa	1.16 ^b	0.64 ^b	
3	7	MeCN	E1/2	0.17	-0.25	
			E1/2	0.37	-0.05	

Table S1. Cyclic voltammetry values.^a

^a Measurements were performed with the reference electrode (*vs* SCE). Afterwards, 1 equivalent of ferrocene was added to the mixture and the measurement was performed again to calibrate the values *vs* Fc+/Fc. ^b This weakly reversible signal was attributed to oxidation of water from the solvent.

4. Catalysis

Figure S18. Time-conversion profile of the oxidation of 1-phenylethanol to acetophenone with 0.1 mol% catalyst loading at 25 °C (Table 1, entry 5-8).

Entry	Cat	Substrate	Product	Conversio	on (time)
S1 ^b	7	Phenyl ethanol	Acetophenone	98 (1 h)	
S2	none	Phenyl ethanol	Acetophenone	<5 (1 h)	90 (24 h)
S 3	1 ^{PF6}	Phenyl ethanol	Acetophenone	3 (1 h)	11 (24 h)
S4	4 ^{PF6}	Phenyl ethanol	Acetophenone	2 (1 h)	19 (24 h)
S 5	5 ^{PF6}	Phenyl ethanol	Acetophenone	1 (1 h)	6 (24 h)
S6 °	$5^{\mathbf{PF_6}} + \mathbf{FeCl}_2$	Phenyl ethanol	Acetophenone	36 (1 h)	86 (24 h)
S 7	FeCl ₂	Phenyl ethanol	Acetophenone	50 (1 h)	92 (24 h)
S8 ^d	FeCl ₂	Phenyl ethanol	Acetophenone	34 (1 h)	89 (24 h)
S9 ^b	7	Cyclohexanol	Cyclohexanone	73 (5 h)	75 (24 h)
S10	none	Cyclohexanol	Cyclohexanone	30 (5 h)	58 (24 h)
S11 ^b	7	4-phenyl-2-butanol	4-phenyl-2-butanone	51 (5 h)	53 (24 h)
S12	none	4-phenyl-2-butanol	4-phenyl-2-butanone	20 (5 h)	33 (24 h)
S13 ^b	7	Thioanisole	Methyl phenyl sulfoxide	57 (2 h)	72 (20 h)
S14	none	Thioanisole	Methyl phenyl sulfoxide	<1 (2 h)	17 (20 h)

Table S2. Comparison between catalyzed and blank oxidations.^a

^a General conditions: catalyst (5-7 μ mol, 1 mol%), MeCN (0.5 mL), substrate (100 eq), TBHP (2 x 100 eq, 5 M in decane) at the onset and t = 30 min, 80 °C, Ar atmosphere, yields determined by ¹H NMR spectroscopy. ^b [Fe] catalyst at 0.5 mol%. ^c 1 mol% of each FeCl₂ and **5**^{PF₆} were used; conversion reached 58% after 2 h. ^d Reaction performed at 50 °C.

5. X-ray crystal structure data

General description

A crystal was mounted in air at ambient conditions. All measurements were made on an Oxford Diffraction SuperNova area-detector diffractometer^{S1]} using mirror optics monochromated Mo Ka radiation ($\lambda = 0.71073$ Å) and Al filtered^{S2} (complexes 2 and 3) or on a *RIGAKU Synergy S* area-detector diffractometer^{S1} using mirror optics monochromated Cu K α radiation ($\lambda = 1.54184$ Å) (complexes 6 and 7).^{S2} Data reduction was performed using the CrysAlisPro^{S1} program. The intensities were corrected for Lorentz and polarization effects, and a numerical absorption correction based on gaussian integration over a multifaceted crystal model was applied. Data collection and refinement parameters are given for all complexes (Table S2-S7). The structure was solved by direct methods using SHELXT,^{S3} which revealed the positions of the non-hydrogen atoms of the title compound. All non-hydrogen atoms were refined anisotropically. All H-atoms were placed in geometrically calculated positions and refined using a riding model where each H-atom was assigned a fixed isotropic displacement parameter with a value equal to 1.2 Ueg of its parent atom (1.5 Ueg for methyl group). Refinement of the structure was carried out on F^2 using full-matrix least-squares procedures, which minimized the function $\Sigma w(F_o^2 -$ F_c^2)². The weighting scheme was based on counting statistics and included a factor to downweight the intense reflections. All calculations were performed using the SHELXL-2014/7^{S4} program in OLEX2.^{S5} Crystallographic data of the complexes reported in this paper have been deposited with the Cambridge Crystallographic Data Centre (CCDC) as supplementary publication numbers 2001555 (2), 2001556 **(3)**, 2001557 **(6)**, 2001558 **(7)**.

[Fe(pyPYA)Cl₂]₂(2): The unit cell constants and an orientation matrix for data collection were obtained from a least-squares refinement of the setting angles of reflections in the range $1.9^{\circ} < \theta < 27.7^{\circ}$. A total of 1392 frames were collected using ω scans, with 4+4 seconds exposure time, a rotation angle of 1.0° per frame, a crystal-detector distance of 65.0 mm, at T = 173(2) K.

[Fe(pyPYA)Cl(Py)₃]I (3): The unit cell constants and an orientation matrix for data collection were obtained from a least-squares refinement of the setting angles of reflections in the range $1.6^{\circ} < \theta < 27.4^{\circ}$. A total of 723 frames were collected using ω scans, with 18+18 seconds exposure time, a rotation angle of 1.0° per frame, a crystal-detector distance of 65.0 mm, at T = 173(2) K.

[Fe(κ^{NNN} -pyPYA₂)Cl₂] (6): The unit cell constants and an orientation matrix for data collection were obtained from a least-squares refinement of the setting angles of reflections in the range 3.81° < θ < 77.175°. A total of 2400 frames were collected using ω scans, with 3.05 second exposure time (12 seconds for high-angle reflections), a rotation angle of 0.5° per frame, a crystal-detector distance of 65.0 mm, at T = 173(2) K. The intensities were corrected for Lorentz and polarization effects, and an absorption correction based on the multi-scan method using SCALE3 ABSPACK in *CrysAlisPro*^{S1} was applied.

[Fe(κ^{ONO} -pyPYA₂)Cl₂] (8): The unit cell constants and an orientation matrix for data collection were obtained from a least-squares refinement of the setting angles of reflections in the range 4.0° < θ < 76.8°. A total of 3196 frames were collected using ω scans, with 0.25 and 1.0 seconds exposure time, a rotation angle of 0.5° per frame, a crystal-detector distance of 34.0 mm, at T = 173(2) K.

	[Fe(pyPYA)Cl ₂] ₂ (2)	[Fe(pyPYA)Cl(Py) ₃]I (3)
CCDC No	2001555	2001556
Empirical formula	$C_{24}H_{22}Cl_4Fe_2N_6O_2$	C ₂₇ H ₂₆ ClFeIN ₆ O
Formula weight	679.97	668.74
Temperature/K	173.00(10)	173.01(10)
Crystal system	triclinic	monoclinic
Space group	P-1	$P2_1/c$
a/Å	7.4259(3)	19.64797(16)
b/Å	8.5641(3)	15.77189(15)
c/Å	10.8957(4)	9.27194(8)
α/°	82.941(3)	90
β/°	84.961(3)	97.2461(8)
γ/°	77.506(3)	90
Volume/Å ³	670.04(4)	2850.29(4)
Z	1	4
$\rho_{calc}g/cm^3$	1.685	1.558
μ/mm^{-1}	1.517	1.737
F(000)	344.0	1336.0
Crystal size/mm ³	$0.358 \times 0.221 \times 0.046$	$0.249 \times 0.216 \times 0.043$
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3.774 to 56.238	3.322 to 56.312
Index ranges	$-9 \le h \le 9, -11 \le k \le 11, -14 \le l \le 14$	$-25 \le h \le 25, -19 \le k \le 20, -11 \le l \le 11$
Reflections collected	14261	30955
Independent reflections	$3046 [R_{int}=0.0354, R_{sigma}=0.0271]$	6497 [Rint=0.0314, Rsigma=0.0252]
Data/restraints/parameters	3046/0/173	6497/0/335
Goodness-of-fit on F ²	1.039	1.044
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0269, wR_2 = 0.0627$	$R_1 = 0.0315, wR_2 = 0.0743$
Final R indexes [all data]	$R_1 = 0.0330, wR_2 = 0.0666$	$R_1 = 0.0409, wR_2 = 0.0791$
Largest diff. peak/hole / e Å ⁻³	0.43/-0.30	0.93/-0.33

 Table S3. Crystal data and structure refinement for complexes 2, 3, 6, and 8.

	$[Fe(\kappa^{NNN}-pyPYA_2)Cl_2] (6)$	$[Fe(\kappa^{ONO}-pyPYA_2)Cl_2(8)$
CCDC No	2001557	2001558
Empirical formula	C23H29Cl2FeN5O4S2	C23H29Cl2FeN5O4S2
Formula weight	630.38	630.38
Temperature/K	173.00(10)	173.00(10)
Crystal system	monoclinic	monoclinic
Space group	I2/a	P21/m
a/Å	20.82730(10)	7.80925(5)
b/Å	13.99670(10)	18.68619(9)
c/Å	19.10800(10)	9.50696(5)
α/°	90	90
β/°	95.4270(10)	93.6941(5)
γ/°	90	90
Volume/Å ³	5545.27(6)	1384.422(13)
Z	8	2
$\rho_{calc}g/cm^3$	1.510	1.512
µ/mm ⁻¹	7.875	7.886
F(000)	2608.0	652.0
Crystal size/mm ³	$0.15 \times 0.075 \times 0.025$	$0.321 \times 0.141 \times 0.03$
Radiation	$CuK\alpha (\lambda = 1.54184)$	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	7.62 to 154.35	9.322 to 154.378
Index ranges	$-26 \le h \le 26, -17 \le k \le 16, -24 \le l \le 21$	$-8 \le h \le 9, -17 \le k \le 23, -11 \le l \le 12$
Reflections collected	21839	15141
Independent reflections	5651 [Rint= 0.0383, Rsigma= 0.0290]	2995 [Rint= 0.0241, Rsigma= 0.0166]
Data/restraints/parameters	5651/0/340	2995/0/178
Goodness-of-fit on F ²	1.091	1.047
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0323, wR_2 = 0.0891$	$R_1 = 0.0334, wR_2 = 0.0890$
Final R indexes [all data]	$R_1 = 0.0351, wR_2 = 0.0909$	$R_1 = 0.0341, wR_2 = 0.0896$
Largest diff. peak/hole / e Å ⁻³	0.39/-0.37	0.78/-0.73

Table S3 continued. Crystal data and structure refinement for complexes 2, 3, 6, and 8.

Table S4. Bond lengths for 2.				
Atom	Length/Å	Atom	Length/Å	
Fe1-Cl1	2.2961(6)	N3-C10	1.354(2)	
Fe1-Cl2'	2.6662(5)	N3-C12	1.476(2)	
Fe1-Cl2	2.3464(5)	C1–C2	1.382(3)	
Fe1–N1	2.1142(16)	C2–C3	1.382(3)	
Fe1–N2	2.1639(15)	C3–C4	1.379(3)	
O1–C6	1.229(2)	C4–C5	1.385(3)	
N1C1	1.341(2)	C5–C6	1.511(3)	
N1-C5	1.350(2)	C7–C8	1.418(3)	
N2-C6	1.361(2)	C7–C11	1.411(3)	
N2-C7	1.378(2)	C8–C9	1.362(3)	
N3-C9	1.346(3)	C10-C11	1.365(3)	

'1-x,1-y,1-z

To calculate the C–C bond alteration between C_{α} – C_{β} and C_{β} – C_{γ} the following formula was used: $\Delta d = (C7-C8 + C7-C11)/2 - (C8-C9 + C10-C11)/2$ (1.418 + 1.411)/2 - (1.362 + 1.365)/2 = 0.051 Å

Table S5. Bond lengths for 3.

Atom	Length/Å	Atom	Length/Å
Fe1–Cl1	2.3914(8)	C2–C3	1.358(6)
Fe1–O1	2.0927(18)	C3–C4	1.391(5)
Fe1–N1	2.189(2)	C4–C5	1.385(4)
Fe1–N4	2.278(2)	C5–C6	1.504(4)
Fe1–N5	2.195(2)	C7–C8	1.400(4)
Fe1–N6	2.240(2)	C7–C11	1.405(4)
O1–C6	1.272(3)	C8–C9	1.355(4)
N1C1	1.341(4)	C10–C11	1.354(4)
N1-C5	1.344(4)	C13–C14	1.387(4)
N2-C6	1.308(3)	C14–C15	1.354(5)
N2-C7	1.377(4)	C15–C16	1.356(5)
N3–C9	1.348(4)	C16–C17	1.381(5)
N3-C10	1.344(3)	C18–C19	1.380(4)
N3-C12	1.474(4)	C19–C20	1.369(4)
N4-C13	1.329(4)	C20–C21	1.360(4)
N4C17	1.320(4)	C21–C22	1.386(4)
N5-C18	1.331(4)	C23–C24	1.386(4)
N5-C22	1.331(3)	C24–C25	1.380(4)
N6-C23	1.347(4)	C25–C26	1.362(4)
N6-C27	1.338(3)	C26–C27	1.377(4)
C1–C2	1.372(5)		

To calculate the C–C bond alteration between C_{α} – C_{β} and C_{β} – C_{γ} the following formula was used: $\Delta d = (C7-C8 + C7-C11)/2 - (C8-C9 + C10-C11)/2$ (1.400 + 1.405)/2 - (1.355 + 1.354)/2 = 0.048 Å

10010 801 20	ing rengins for et		
Atom	Length/Å	Atom	Length/Å
Fe1-Cl2	2.3377(5)	N23-C21	1.357(2)
Fe1-Cl3	2.3205(5)	N36-C35	1.352(2)
Fe1-N20	2.2476(14)	N36-C31	1.341(3)
Fe1-N12	2.0696(14)	N36-C37	1.476(2)
Fe1-N23	2.2559(14)	O22–C21	1.233(2)
O19–C18	1.231(2)	C33–C34	1.414(2)
N20-C33	1.370(2)	C33–C32	1.419(2)
N20-C18	1.363(2)	C13–C18	1.508(2)
N12-C13	1.338(2)	C13–C14	1.387(2)
N12-C17	1.339(2)	C26–C27	1.420(2)
N29-C28	1.348(3)	C26–C25	1.412(2)
N29-C30	1.469(2)	C34–C35	1.366(2)
N29-C24	1.357(2)	C32–C31	1.367(3)
N23-C26	1.374(2)	C17–C21	1.511(2)
		C17–C16	1.385(2)
		C14-C15	1.385(3)
		C27–C28	1.365(3)
		C16–C15	1.390(3)
		C24–C25	1.360(3)

To calculate the C–C bond alteration between C_{α} – C_{β} and C_{β} – C_{γ} the following formula was used: $\Delta d = (C25-C26 + C26-C27 + C32-C33 + C33-C34)/4 - (C24-C25 + C27-C28 + C31-C32 + C34-C35)/4 = 0.052$ Å

Table S7. Bond lengths for 8.

	0			
Atom	Length/Å	Atom	Length/Å	
Fe1–Cl1	2.3563(7)	N2-C7	1.329(2)	
Fe1-Cl2	2.2759(8)	N3–C8	1.3387(19)	C10
Fe1–O1	2.1797(12)	C1–C2	1.412(2)	C9
Fe1-N3	2.109(2)	C2–C3	1.376(3)	N3 C8 N2
O1–C7	1.259(2)	C3–C4	1.392(3)	
N1-C1	1.373(2)	C4–C5	1.361(3)	Fe1 O1
N1-C5	1.359(2)	C7–C8	1.504(2)	
N1-C6	1.478(2)	C8–C9	1.391(2)	
N2C1	1.353(2)	C9–C10	1.391(2)	

To calculate the C–C bond alteration the following formula was used: $\Delta d = (C1-C2 + C3-C4)/2 - (C2-C3 + C4-C5)/2$ (1.412 + 1.392)/2 - (1.376 + 1.361)/2 = 0.034 Å

Figure S19. Comparison of calculated powder diffraction pattern for complex 8 (red) and measured data of complex 7 (blue).

6. References

- S1. Oxford Diffraction, 2018. CrysAlisPro, Version 1.171.40.39a. Oxford Diffraction Ltd., Yarnton, Oxfordshire, UK.
- S2. P. Macchi, H. B. Bürgi, A. S. Chimpri, J. Hauser and Z. Gal, Low-energy contamination of Mo microsource X-ray radiation: analysis and solution of the problem, *J. Appl. Cryst*, 2011, 44, 763–771.
- S3. G. M. Sheldrick, SHELXT Integrated space-group and crystal-structure determination, *Acta Cryst.* 2015, A71, 3–8.
- S4. G. M. Sheldrick, Crystal structure refinement with SHELXL, Acta Cryst. 2015, C71, 3-8.
- S5. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339–341.