Electronic Supporting Information

Evidence of protonation induced intra-molecular metal-to-metal charge transfer in a highly symmetric cyanido bridged {Fe₂Ni₂} molecular square

Prashurya Pritam Mudoi^a, Bipul Sarma^a, Anup Choudhury^a and Nayanmoni Gogoi*^a

a. Department of Chemical Sciences, Tezpur University, Napaam 784028, Sonitpur, Assam, India, Email: ngogoi@tezu.ernet.in

Table of Contents:

Experimental details	S2
Figure S1. Molecular structure of compound 1	S3
Figure S2. FT-IR Spectrum of 1 as KBr disc	S4
Figure S3. FT-IR Spectra of 2 and 3 as KBr disc	S5
Figure S4. Powder X-ray diffraction pattern of compound 2	S6
Figure S5. Powder X-ray diffraction pattern of compound 3	S7
Figure S6. TGA pattern of compound 2	S8
Figure S7. TGA pattern of compound 3	S9
Figure S8. Variation of $1/\chi_M$ against temperature for compound 3	S10
Figure S9. Field dependence of magnetization of between 0-5 T for 3	S11
Figure S10. Comparison between UV-visible Spectra of 2 in solid state with solution	
state	S12
Figure S11. UV-visible Spectra of [Fe(bbp)(CN) ₃] ²⁻ and 3	S13
Figure S12. Comparison between UV-visible Spectra of 3 in solid state with s	olution
state	S14
Figure S13. ESI-mass spectrum of 3 in the m/z range 100-2000	S15
Figure S14. ESI-mass spectrum of 3 in the m/z range 1500-1800	S16
Figure S15. Cyclic voltammogram of 1 and K ₂ Ni(CN) ₄ ·H ₂ O	S17
Figure S16. Cyclic voltammogram of 3	S18
Figure S17. Acid dependence of the $Fe^{III}(\mu$ -CN)Ni ^{II} / $Fe^{II}(\mu$ -CN)Ni ^{III} fraction of 3.	S19
Figure S18. Base induced UV-visible Spectrum of 3 in DMSO medium	S20
Figure S19. Cyclic voltammogram of 3 on acid addition	S21
Figure S20. Cyclic voltammogram of 3 on various eq. of acid addition	S22
Figure S21. Possible sites for protonation in 3	S23
Table S1. Crystal data and refinement parameters of compound 1, 2 and 3	S24
Table S2. Selected bond lengths [Å] and bond angles [°] of 1	S25
Table S3. Selected bond lengths [Å] and bond angles [°] of 2	S26
Table S4. Selected bond lengths [Å] and bond angles [°] of 3	S27
Table S5. Comparison of structural properties of cyanido-bridged Fe ^{III} –Ni ^{II} square com	plexes
based on tricyanidoiron (III) building block	S28
Table S6. Magnetic parameters for selected square shaped cyanido-bridged Fe ^{III} –Ni ^{II}	
complexes	S29
Table S7. Electrochemical results of complexes 1, 2 & 3.	S30
References	S31

Figure S1: Molecular structure of compound 1. Counter ion BPh_4 units and aromatic hydrogen atoms are omitted for clarity.

Figure S2: FT-IR spectrum of compound 1 as KBr disc

Figure S3: FT-IR spectra of compound 2 and 3 as KBr disc

Figure S4: Experimental powder X-ray diffraction (PXRD) pattern of as synthesized **2** (blue solid line) compared with the respective X-ray diffraction pattern calculated from single-crystal X-ray data (black solid line).¹

Figure S5: Experimental powder X-ray diffraction pattern of as synthesized **3** (red solid line) compared with the respective X-ray diffraction pattern calculated from single-crystal X-ray data (black solid line).²

Figure S6: TGA pattern of compound $\boldsymbol{2}$ under N_2 atmosphere

Figure S7: TGA pattern of compound **3**.

Figure S8: Variation of $1/\chi_M$ against temperature for compound ${\bf 3}$

Figure S9: Field dependence of magnetization of between 0-5 T for **3** at 2 K.

Figure S10: Comparison between UV-visible spectra of as synthesized **2** and $1.56 \times 10^{-4} \text{ M}$ solution of **2** in dimethyl formamide recorded at room temperature.

Figure S11: UV-visible spectra of $[Fe(bbp)(CN)_3]^2$ and **3** in DMSO medium

Figure S12: Comparison between UV-visible spectra of as synthesized **3** and 1.56 x 10^{-4} M solution of **3** in dimethyl sulphoxide recorded at room temperature.

Figure S13: ESI-mass spectrum of **3** in dimethyl sulphoxide in the m/z range 100-2000.

Figure S14: ESI-mass spectrum of **3** in dimethyl sulphoxide in the m/z range 1500-1800.

Figure S15: Cyclic voltammogram of 1 and $K_2Ni(CN)_4$ ·H₂O measured in 0.1 M electrolyte at a scan rate of 100 mV s⁻¹

Figure S16: Cyclic voltammogram of **3** measured in 0.1 M electrolyte at a scan rate of 100 mV $\rm s^{-1}$

Figure S17: Acid dependence (in equivalent) of the $\{Fe^{III}(\mu-CN)Ni^{II}\}/\{Fe^{II}(\mu-CN)Ni^{III}\}\$ fraction for **3** estimated from the absorption intensities at the bands 668 nm (blue) and 537 nm (pink).

Figure S18: UV-visible spectral evolution of complex **3** upon TEA addition to a TFA added [Fe₂Ni₂] in DMSO solution $(3.12 \times 10^{-4} \text{ M}; \text{ From purple to blue, the base addition is increasing with an interval of (i) 0.2 eq. up to1 eq. (ii) 0.4 eq. up to 7.8 eq.$

Figure S19: Cyclic voltammogram of **3** after acid addition measured in 0.1 M electrolyte at a scan rate of 100 mV s⁻¹.

Figure S20: Cyclic voltammogram of **3** after acid addition measured at a scan rate of 100 mV s^{-1} .Cyclic voltammogram is collected after a) 4.2 eq.; b) 6.2eq.and c) 8.2 eq. of TFA addition.

Figure S21: Possible sites for protonation in **3**

Compound	1	2	3
CCDC	2020458	1959339	1959340
Empirical formula	C ₈₄ H ₉₄ B ₂ Cl ₂ N ₁₄ Ni ₂	C ₄₄ H ₆₂ N ₂₂ Ni ₄ O ₄	C ₈₀ H ₉₆ Fe ₂ N ₃₀ Ni ₂ O ₁₀
Formula weight	1509.67	1197.88	1866.89
Temperature/K	296	100	100
Crystal system	Triclinic	Monoclinic	Monoclinic
Space group	P 1	$P 2_1/c$	C 2/c
a/Å	10.5897(5)	8.473(11)	28.33(10)
b/Å	11.6576(5)	20.53(3)	13.73(4)
c/Å	17.2621(7)	17.43(2)	26.51(8)
α/°	77.761(2)	90	90
β/°	77.184(2)	103.32(15)	105.62(6)
γ/°	87.782(2)	90	90
Volume/ Å ³	2030.62(16)	2950(7)	9931(54)
Ζ	1	2	4
Density (calc), mg/m ³	1.235	1.339	1.246
μ/ mm ⁻¹	0.582	1.314	0.725
F(000)	796	1232	3880
Crystal size, mm ³	0.36 x 0.18 x 0.09	0.26 x 0.21 x 0.13	0.16 x 0.12 x 0.08
Theta range for data	2.377 to 28.000°	2.319 to 27.000°	2.159 to 20.832°
collection			
Reflections collected	60784	79489	56669
Independent reflections	9771	6392	5152
Completeness to theta	99.9 %	99.0 %	98.9 %
Data/restraints/	9771 / 0 / 472	6392 / 0 / 335	5152 / 12 / 601
parameters			
Goodness-of-fit on F ²	0.940	1.021	0.924
Final R indeces	R1 = 0.0418, wR2=	R1 = 0.0561, wR2 =	R1 = 0.0804, wR2 =
$[1 \ge 2\sigma(1)]$	0.1244	0.1394	0.1814
R indices (all data)	R1 = 0.0708, wR2 =	R1 = 0.1062, wR2 =	R1 = 0.1942, wR2 =
	0.1489	0.1646	0.2414

Table S1: Crystal data and refinement parameters of compound 1-3

Bond Length [Å]		Boi	Bond angles [°]		
Ni(1)-N(1)	2.1669(17)	N(3)-Ni(1)-N(5)	158.59(8)		
Ni(1)-N(3)	2.0792(18)	N(3)-Ni(1)-N(7)	91.64(7)		
Ni(1)-N(5)	2.1170(18)	N(5)-Ni(1)-N(7)	85.50(7)		
Ni(1)-N(7)	2.1310(18)	N(3)-Ni(1)-N(1)	79.84(7)		
Ni(1)-Cl(1)	2.4951(6)	N(5)-Ni(1)-N(1)	78.75(6)		
Ni(1)-Cl(1)#1	2.3499(6)	N(7)-Ni(1)-N(1)	81.38(7)		

Table S2: Selected bond lengths [Å] and bond angles [°] of 1

Bond Length [Å]		Bond	Bond angles [°]		
Ni(1)-N(1)	2.178(4)	Ni(1)-N(8)-C(19)	164.9(3)		
Ni(1)-N(3)	2.087(4)	Ni(1)-N(9)-C(20)	166.3(3)		
Ni(1)-N(5)	2.130(5)	Ni(2)-C(21)-N(10)	178.4(5)		
Ni(1)-N(7)	2.162(4)	Ni(2)-C(22)-N(12)	176.6(4)		
Ni(1)-N(8)	2.028(5)	N(8)-Ni(1)-N(9)	89.85(15)		
Ni(1)-N(9)	2.084(4)	C(19)-Ni(2)-C(20)	91.16(18)		

Table S3: Selected bond lengths [Å] and bond angles [°] of ${\bf 2}$

Bond Length [Å] Bond angles [°]			
Ni(01)-N(1)	2.196(10)	N(1)-Ni(01)-N(3)	79.1(4)
Ni(01)-N(3)	2.141(11)	N(1)-Ni(01)-N(5)	78.4(4)
Ni(01)-N(5)	2.105(11)	N(1)-Ni(01)-N(7)	79.5(4)
Ni(01)-N(7)	2.119(10)	N(1)-Ni(01)-N(140)	92.2(4)
Ni(01)-N(13)	2.003(11)	C(38)-N(13)-Ni(01)	174.2(9)
Fe(02)-N(8)	1.958(10)	C(39)-N(140)-Ni(01)	176.3(9)
Fe(02)-N(9)	1.983(11)	N(8)-Fe(02)-C(38)	90.0(4)
Fe(02)-N(11)	1.979(11)	N(9)-Fe(02)-C(38)	87.6(5)
Fe(02)-C(38)	1.980(14)	N(11)-Fe(02)-C(38)	91.2(4)
Fe(02)#1-C(39)	1.958(15)	C(40)-Fe(02)-C(38)	177.4(5)
Fe(02)-C(40)	1.967(15)	C(39)#1-Fe(02)-C(38)	91.9(5)

Table S4: Selected bond lengths [Å] and bond angles [°] of ${\bf 3}$

Symmetry transformations used to generate equivalent atoms: #1 - x + 3/2, -y + 1/2, -z + 1 = x + 2, y, -z + 3/2

Compounds	FeNi(Å)	N-Ni-N(°)	C-Fe-C(°)	Reference
[Fe(bbp)(CN) ₃ Ni(tpa)] ₂	5.163-5.172	90.16	91.87	This work
[(Tp)Fe(CN) ₃ Ni(tren)] ₂ (ClO ₄) ₂	5.042-5.156	91.40	86.80	26
[(Tp)Fe(CN) ₃ Ni(bipy) ₂] ₂ [(Tp)Fe(CN) ₃] ₂	5.090-5.099	90.92	87.90	26
[Fe(bbp)(CN) ₃ Ni(tren)] ₂	5.046-5.156	92.10	86.49	22
[(Tp*)Fe ^{III} (CN) ₃ Ni(4-Clbpy) ₂] ₂	5.063-5.085	90.32	87.86	32
[(Tp*)Fe ^{III} (CN) ₃ Ni(bipyrimidyl) ₂] ₂ (BF ₄) ₂	5.081	90.61	87.10	31
[(Tp)Fe ^{III} (CN) ₃ Ni (phen) ₂] ₂ (ClO ₄) ₂	5.086-5.116	91.03	88.60	31
[(pzTp)Fe(CN) ₃ Ni(dpa)](ClO ₄) ₂	5.089-5.100	93.18	85.36	25
[(Tp)Fe(CN) ₃ Ni(dmphen) ₂] ₂ (ClO ₄) ₂	5.166-5.170	86.58	88.26	30
[(pzTp)Fe(CN) ₃ Ni ^{II} (dmphen) ₂] ₂ (ClO ₄) ₂	5.150-5.168	86.28	88.79	30
[(Tp*)Fe ^{III} (CN) ₃ Ni(DMF) ₄] ₂ (OTf) ₂	5.249-5.255	93.81	84.98	27
[(MeTp)Fe(CN) ₃ Ni(tren)] ₂ (ClO ₄) ₂	5.047-5.153	92.00	86.66	33
[(<i>i</i> -BuTp)Fe(CN) ₃ Ni(tren)] ₂ (ClO ₄) ₂	5.047-5.189	89.91	88.08	33
[(Tp*)Fe(CN) ₃ Ni(bipy) ₂] ₂ (OTf) ₂	5.077-5.097	95.07	83.76	28
$[TpFe(CN)_3Ni(L^1)_2]_2(ClO_4)_2$	5.117-5.126	93.17	87.08	29
$[(i-BuTp)Fe(CN)_3Ni(L^2)_2]_2(ClO_4)_2$	5.120-5.134	91.45	87.13	29

Table S5: Comparison of structural properties of cyano-bridged Fe^{III}–Ni^{II} square complexes based on tricyanidoiron (III) building block

Abbreviations used for the ligands: Tp = hydrotris(pyrazol-1-yl)borate; tren = tris(2aminoethyl)amine; bipy = 2,2'-bipyridine; $Tp^* = hydrotris(3,5-dimethylpyrazolyl)borate);$ 4-Clbpy = 4-chlorine-2,2'-dibipyridine; phen = 1,10-phenanthroline; pzTp = tetrakis(pyrazol-1-yl)borate; dpa = 2,2'-dipyridyl amine; dmphen = 2,9-dimethyl-1,10-phenanthroline; MeTp = methyltris(pyrazolyl)borate; OTf = trifluoromethanesulfonate; PhTp = tris(pyrazolyl)phenylborate; *i*-BuTp = 2-methylpropyltris(pyrazolyl)borate; L¹ = 4,5-[1',4']dithiino[2',3'-b]quinoxaline-2-bis(2-pyridyl)methylene-1,3-dithiole; L² = dimethyl-2-[di(pyridin-2-yl)methylene]-1,3-dithiole-4,5-dicarboxylate. Table S6: Selected magneto-structural data for heterometallic tetranuclear $Fe^{III}\text{-}(\mu\text{-}CN)\text{-}Ni^{II}$ square complexes

	χ _M T (a/b)	Max $\chi_M T$	M _S			
Compounds	at RT		(μβ)	g	J/K	Ref.
[Fe(bbp)(CN) ₃ Ni(tpa)] ₂	3.44 a	5.90 a	5.60	2.2	5.92	This work
[(Tp)Fe(CN) ₃ Ni(tren)] ₂ (ClO ₄) ₂	3.57 b	5.69 b	4.97	2.22	6.4	26
$[(Tp)Fe(CN)_3Ni(bipy)_2]_2[(Tp)Fe(CN)_3]_2$	6.81 b	208.6 b	9.52	2.67	10.5	26
[Fe(bbp)(CN) ₃ Ni(tren)] ₂	3.52 a	5.24 a	6.34	2.23	4.4	22
[(Tp*)Fe ^{III} (CN) ₃ Ni(4-Clbpy) ₂] ₂	3.28 a	10.60 a	3.84	2.07	6.7	32
[(Tp*)Fe ^{III} (CN) ₃ Ni(bipyrimidyl) ₂] ₂ (BF ₄) ₂	3.54 a	13.89 a	6.32	2	-	31
$[(Tp)Fe^{III}(CN)_3Ni(phen)_2]_2(CIO_4)_2$	3.63 a	6.55 a	6.46	2	-	31
[(pzTp)Fe(CN) ₃ Ni(dpa)](ClO ₄) ₂	3.28 a	9.60 a	6.48	2.23	10.1	25
[(Tp)Fe(CN) ₃ Ni(dmphen) ₂] ₂ (ClO ₄) ₂	4.09 a	8.26 a	6.55	2.30-2.21	30.7-27.0	30
[(pzTp)Fe(CN) ₃ Ni ^{II} (dmphen) ₂] ₂ (ClO ₄) ₂	3.72 a	13.03 a	6.60	2.39- 2.20	24.4-17.9	30
[(Tp*)Fe ^{III} (CN) ₃ Ni(DMF) ₄] ₂ (OTf) ₂	4.1 b	8.27 b	6.11	2.20	7.6	27
[(PhTp)Fe(CN) ₃ Ni(tren)] ₂ (ClO ₄) ₂	3.72 b	6.97 b	5.84	2.284	6.0	33
[(MeTp)Fe(CN) ₃ Ni(tren)] ₂ (ClO ₄) ₂	3.76 b	5.98 b	5.19	2.305	4	33
[(i-BuTp)Fe(CN) ₃ Ni(tren)] ₂ (ClO ₄) ₂	3.76 b	7.25 b	5.66	2.285	7.8	33
[(Tp*)Fe(CN) ₃ Ni(bipy) ₂] ₂ (OTf) ₂	3.8 a	7.7 a	6.00	2.29	9.4	28
[TpFe(CN) ₃ Ni(L ¹) ₂] ₂ (ClO ₄) ₂	3.34 b	5.79	4.40	2.14	6.1	29
$[(i-BuTp)Fe(CN)_3Ni(L^2)_2]_2(ClO_4)_2$	3.35 b	6.14	4.32	2.14	6.0	29

*Where, $a=cm^3 mol^{-1} K \& b = emu mol^{-1} K$, M= Magnetization, H= Magnetic Field, J= exchange interaction.

Complex	E _{pa} (V)	E _{pc} (V)	E _{1/2} (V)	$\Delta E_p(V)$
K ₂ Ni(CN) ₄ .H ₂ O	-0.63	-0.88	-0.76	0.25
	1.03	0.74	0.89	0.29
(TBA) ₂ [Fe(bbp)(CN) ₃]	-0.63	-0.77	-0.70	0.14
1	0.61	-	-	-
	1.10	-	-	-
	-0.67	-0.95	-0.81	0.28
2	0.94	0.85	0.89	0.09
	0.64	-	-	-
	-0.66	-0.94	-0.8	0.28
3	-0.64	-0.82	-0.73	0.18
	-0.39	-0.56	-0.47	0.18
	-0.16	-0.32	-0.24	0.16
	0.23	0.09	0.16	0.14
3	-0.36	-0.55	-0.45	0.19
(after acid addition)	0.20	0.10	0.15	0.10
	0.33	0.28	0.30	0.05
	0.49	0.43	0.46	0.06

Table S7: Electrochemical results of compound 1, 2 & 3

 E_{pa} =oxidative peak potential. E_{pc} = reductive peak potential. $E_{1/2} = (E_{pc} + E_{pa})/2$,

 $\Delta E_p = E_{pa} - E_{pc.}$

References:

- X. Jiang, B. Tao, X. Yu, Y. Wang and H. Xia, *RSC Advances*, 2015, 5(25), 19034-19040.
- P. -F. Zhuang, Y. -J. Zhang, H. Zheng, C. -Q. Jiao, L. Zhao, J. -L. Wang, C. He, C.-Y. Duan and T. Liu, *Dalton Trans.*, 2015, 44, 3393-3398.
- B. Nowicka, M. Reczyński, M. Rams, W. Nitek, J. Żukrowski, C. Kapusta and B. Sieklucka, *Chem. Commun.*, 2015, 51, 11485-11488.
- 4. J. Kim, S. Han, K. I. Pokhodnya, J. M. Migliori and J. S. Miller, *Inorg. Chem.*, 2005, **44(20)**, 6983-6988.