Supporting Information

Active Ga-catalysts for the ring opening homo- and copolymerization of cyclic esters, and copolymerization of epoxide and anhydrides

Swarup Ghosh,^[a] Eduard Glöckler,^[a] Alexander Tjaberings,^[b] André H. Gröschel,^[b] Christoph Wölper,^[a] Stephan Schulz*^[a]

^[a] Faculty of Chemistry, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstraße 7, S07 S03 C30, 45141 Essen, Germany.

^[b] Physical Chemistry, University of Münster and Center for Soft Nanoscience (SoN), Busso-Peus-Strasse 10, 48149 Münster, Germany.

Content

I. Spectroscopic Characterization of 1-3

Figures S1-S3. ¹H, ¹³C NMR, and IR spectra of 1.

Figures S4-S6. ¹H, ¹³C NMR and IR spectra of 2.

Figures S7-S9. ¹H, ¹³C NMR and IR spectra of 3.

Figures S10-S12. DOSY NMR spectra of 1-3.

II. Crystallographic Details

Table S1 Crystal data for compound 1 and 2

III. Polymerization Studies

Figure S13. Homonuclear decoupled ¹H-NMR spectrum of *rac*-PLA in CDCl₃ (methine H-atom region) obtained by reaction of *rac*-LA and **1** in ratio [monomer]:[Cat.]:[BnOH] = 200:1:4 at 100 °C in toluene.

Figure S14. Homonuclear decoupled ¹H-NMR spectrum of *rac*-PLA in CDCl₃ (methine H-atom region) obtained by reaction of *rac*-LA and **2** in ratio [monomer]:[Cat.]:[BnOH] = 200:1:4 at 100 °C in toluene.

Figure S15. Homonuclear decoupled ¹H-NMR spectrum of *L*-PLA in CDCl₃ (methine H-atom region) obtained by reaction of *L*-LA and **1** in ratio [monomer]:[Cat.]:[BnOH] = 200:1:4 at 100 °C in toluene.

Figure S16. ¹H-NMR spectrum of *rac*-PLA in CDCl₃ obtained by reaction of *rac*-LA and **1** in ratio [monomer]:[Cat.]:[BnOH] = 100:1:4 at 100 °C in toluene.

Figure S17. ¹H-NMR spectrum of PCL in CDCl₃ obtained by reaction of ε -CL and **1** in ratio [monomer]:[Cat.]:[BnOH] = 100:1:4 at 100 °C in toluene.

Figure S18. MALDI-ToF spectrum of *rac*-PLA obtained by reaction of *rac*-LA and **1** in ratio [monomer]:[Cat.]:[BnOH] = 100:1:4 at 100 °C in toluene.

Figure S19. MALDI-ToF spectrum of PCL obtained by reaction of ε -CL and **1** in ratio [monomer]:[Cat.]:[BnOH] = 100:1:4 at 100 °C in toluene.

Figure S20. IR spectrum of *rac*-PLA obtained by reaction of *rac*-LA and **1** in ratio [monomer]:[Cat.]:[BnOH] = 100:1:4 at 100 °C in toluene.

Figure S21. IR spectrum of of PCL in CDCl₃ obtained by reaction of ε -CL and **1** in ratio [monomer]:[Cat.]:[BnOH] = 100:1:4 at 100 °C in toluene.

Figure S22. ¹H NMR spectrum of PCL-b-PLLA copolymer in CDCl₃ obtained by reaction of ε -CL, *L*-LA and **1** in ratio [ε -CL]:[*L*-LA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S23. ¹³C NMR spectrum of PCL-b-PLLA copolymer in CDCl₃ obtained by reaction of ε -CL, *L*-LA and **1** in ratio [ε -CL]:[*L*-LA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S24. ¹H NMR spectrum of PLLA-b-PCL copolymer in CDCl₃ obtained by reaction of *L*-LA, ε -CL, and **1** in ratio [*L*-LA]:[ε -CL]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S25. ¹³C NMR spectrum of PLLA-b-PCL copolymer in CDCl₃ obtained by reaction of *L*-LA, ε -CL, and 1 in ratio [*L*-LA]:[ε -CL]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S26. ¹H NMR spectrum of poly(cyclohexenesuccinate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[SA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S27. ¹³C NMR spectrum of poly(cyclohexenesuccinate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[SA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S28. ¹H NMR spectrum of poly(cyclohexene malonate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[MA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S29. ¹³C NMR spectrum of poly(cyclohexene malonate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[MA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S30. GPC elugram of *rac*-PLA obtained by reaction of *rac*-LA and **1** in ratio [monomer]:[Cat.]:[BnOH] = 200:1:4 at 100 °C in toluene.

Figure S31. GPC elugram of PCL obtained by reaction of ε -CL and **1** in ratio [monomer]:[Cat.]:[BnOH] = 200:1:4 at 100 °C in toluene.

Figure S32. GPC elugram of PCL and PCL-*b*-PLLA obtained by the 1 in presence of BnOH at 100 °C in toluene.

Figure S33. GPC elugram of PLLA and PLLA-*b*-PCL obtained by the 1 in the presence of BnOH at 100 °C in toluene.

Figure S34. GPC elugram of poly(cyclohexenesuccinate) copolymer obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[SA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S35. DSC curve of PCL-*b*-PLLA obtained by reaction of ε -CL, *L*-LA and **1** in ratio [ε -CL]:[*L*-LA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S36. DOSY NMR (300 MHz, CDCl₃, 298 K) spectrum of PCL-b-PLLA diblock copolymer.

Figure S37. DOSY NMR (300 MHz, CDCl₃, 298 K) spectrum of poly[(cyclohexene succinate) copolymer.

Figure S38. DOSY NMR (300 MHz, CDCl₃, 298 K) spectrum of poly[(cyclohexene malonate) copolymer.

Figure S39. Plot of $M_n^{(obs)}$ (kg/mol) vs. conversion (%) for *rac*-LA and ε -CL using complex 1 in a ratio [Monomer]:[cat.]:[BnOH] = 200:200:1:4 in toluene at 100 °C.

Figure S40. GPC elugram of PLLA obtain by polymerization resumption experiment of enantiomeric pure *L*-LA and **1** in toluene at 100 °C, [monomer]:[cat.]:[BnOH] = $(200^{1st} + 200^{2nd})$:1:4.

Figure S41. GPC elugram of PCL obtain by polymerization resumption experiment of ε -CL and 1 in toluene at 100 °C, [monomer]:[cat.]:[BnOH] = (200^{1st} + 200^{2nd}):1:4.

Figure S42. COSY NMR spectrum of poly(cyclohexene succinate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[SA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S43. HMBC NMR spectrum of poly(cyclohexene succinate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[SA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S44. HSQC NMR spectrum of poly(cyclohexene succinate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[SA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S45. COSY NMR spectrum of poly(cyclohexene malonate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and 1 in ratio [CHO]:[MA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S46. HMBC NMR spectrum of poly(cyclohexene malonate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[MA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S47. HSQC NMR spectrum of poly(cyclohexene malonate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[MA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S48. ¹H NMR spectrum of 2 (blue color) and catalyst-2-OBn (red color) in CD_2Cl_2 . Catalyst-2-OBn obtained by reaction of catalyst -2 and BnOH in ratio [Cat-2]:[BnOH] = 1:4 at 23 °C in CD_2Cl_2 .

Figure S49. ¹H NMR spectrum **catalyst-2-OBn** in CD₂Cl₂ obtained by reaction of **2** and BnOH in ratio [**Cat-2**]:[BnOH] = 1:4 at 23 °C in CD₂Cl₂.

Figure S50. MALDI-ToF spectrum of poly(cyclohexene succinate) copolymer obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[SA]:[cat.]:[BnOH] = 100:200:1:4 at 100 °C in toluene at 100 °C.

Table S2 ROP of ε -CL initiated by complex 1 with varying [monomer]:[cat.]:[BnOH] molar ratios in toluene at 100 °C.

I. Spectroscopic Characterization of 1-3

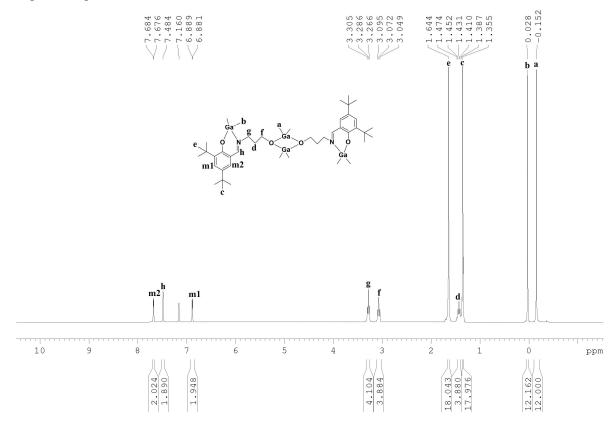


Figure S1: ¹H-NMR (300 MHz, C₆D₆, 300 K) spectrum of 1

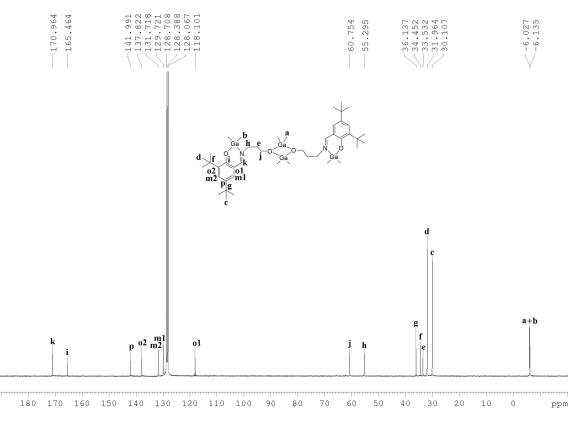


Figure S2: ¹³C-NMR (75 MHz, C₆D₆, 300 K) spectrum of 1

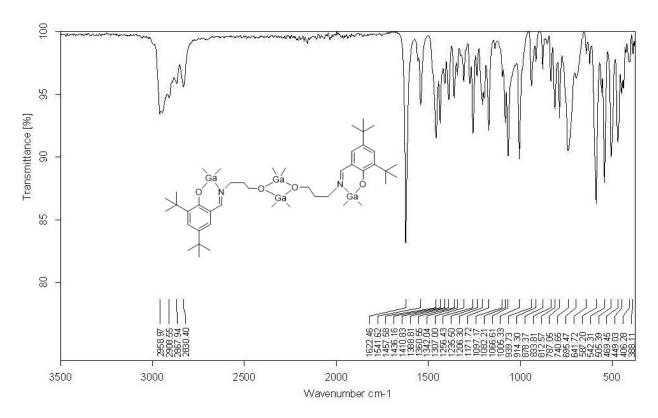


Figure S3: IR spectrum of 1

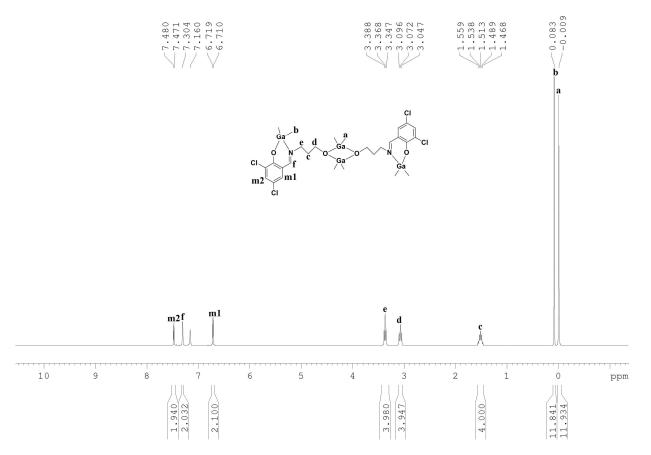


Figure S4: ¹H-NMR (300 MHz, C₆D₆, 300 K) spectrum of 2

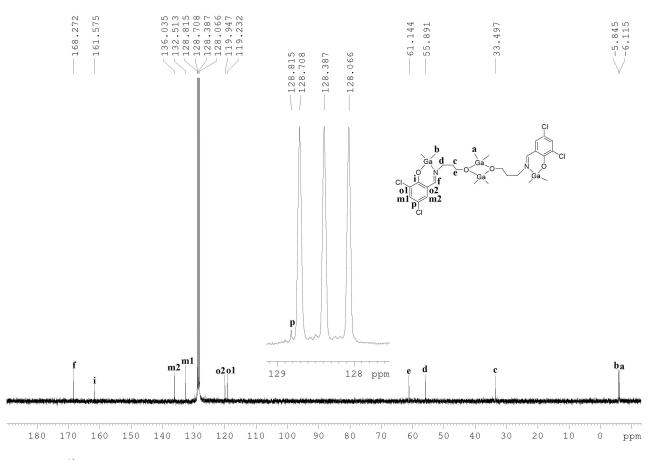


Figure S5: ¹³C-NMR (75 MHz, C₆D₆, 300 K) spectrum of 2

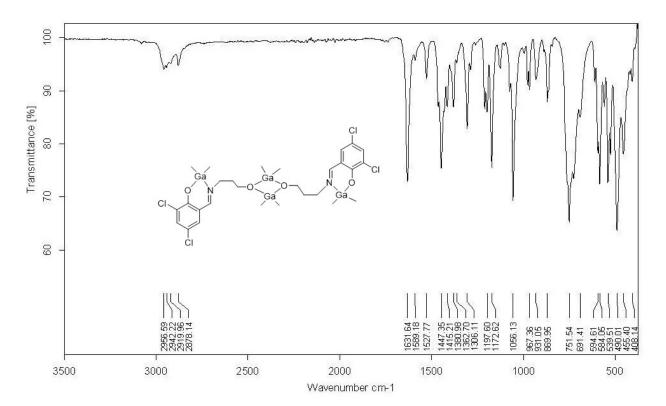
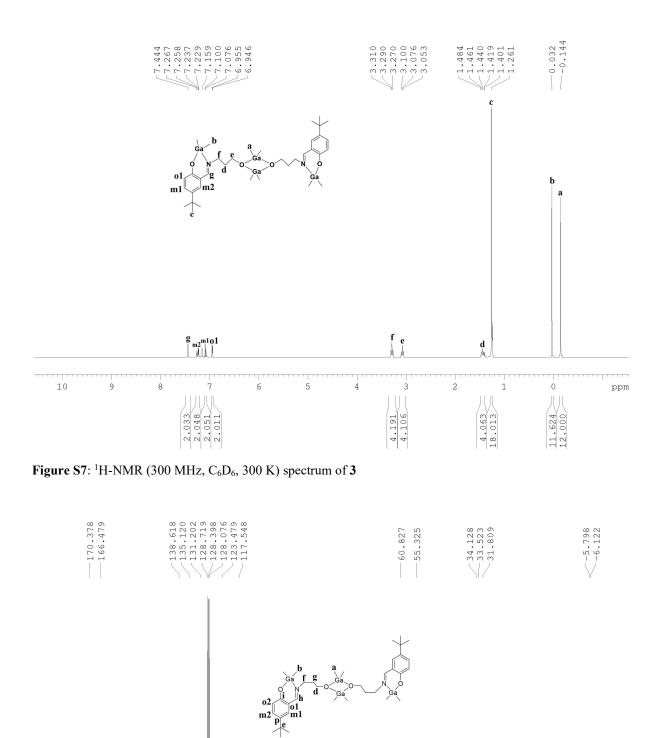




Figure S6: IR spectrum of 2

a b

e

Figure S8: ¹³C-NMR (75 MHz, C₆D₆, 300 K) spectrum of 3

p m1 | m2 |

h

0² 01

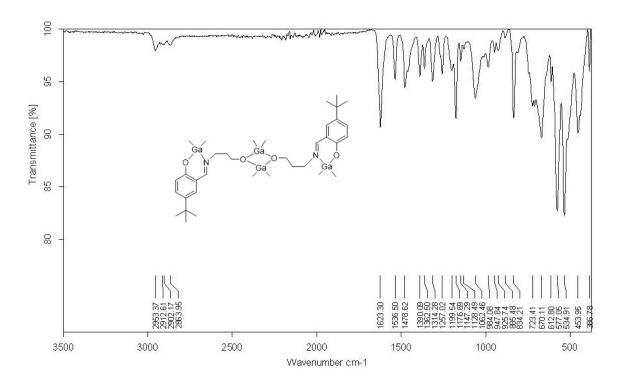


Figure S9: IR spectrum of 3

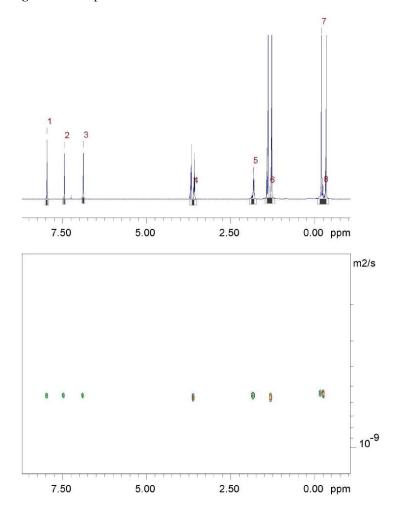


Figure S10. DOSY NMR spectrum of (300 MHz, CDCl₃, 298 K) spectrum of 1

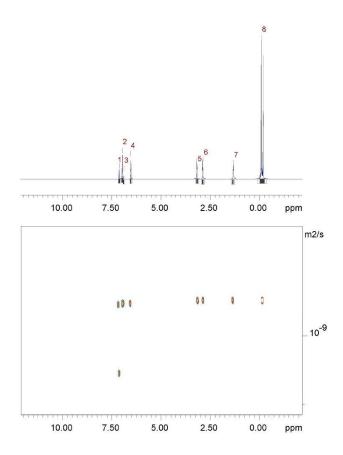
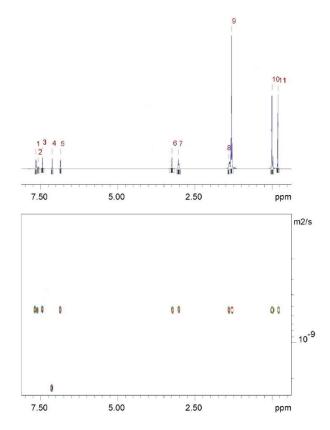
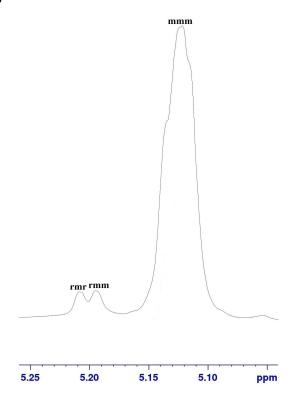
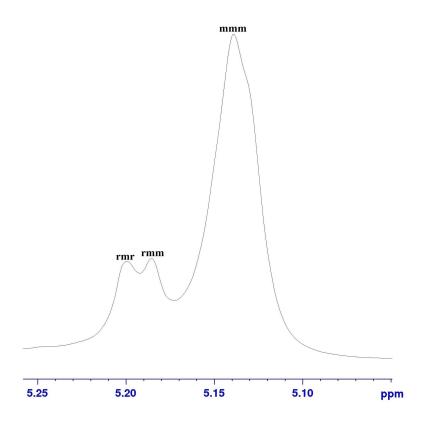


Figure S11. DOSY NMR spectrum of (300 MHz, C₆D₆, 298 K) spectrum of 2




Figure S12. DOSY NMR spectrum of (300 MHz, C₆D₆, 298 K) spectrum of 3

II. Crystallographic Details


Table S1 Crystal data for compound 1 and 2

Compounds	1	2	
Empirical formula	C _{60.33} H _{96.67} Ga ₄ N ₂ O ₄	$C_{28}H_{42}Cl_4Ga_4N_2O_4$	
Formula weight (Da)	1192.94	891.31	
T/K	100(2)	100(2)	
Wavelength (Å)	0.71073	1.54178	
Crystal system,	trigonal	monoclinic	
Space group	R -3:H	$P 2_1/n$	
a /Å	39.314(7)	7.8895(8)	
b/Å	39.314(7)	17.1647(17)	
c /Å	10.636(2)	13.2719(13)	
α (°)	90	90	
β (°)	90	93.448(4)	
γ (°)	120	90	
V (Å ³)	14237(6)	1794.0(3	
Z, Calculated density (g cm ⁻³)	9, 1.252	2, 1.650	
Absorption coefficient (mm ⁻¹)	1.727	6.447	
Crystal size (mm)	0.275 × 0.215 × 0.186	0.151 × 0.089 × 0.044	
Theta range for data collection (°)	1.794°- 33.288°	4.215°- 81.023°	
Reflections collected	64996	54968	
Independent reflections	11471	3917	
Data/restraints/parameters	8827/216/451	3917 / 0 / 194	
Goodness-of-fit on F^2	1.088	1.068	
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0429	R1 = 0.0274	
	wR2 = 0.0933	wR2 = 0.0718	
R indices (all data)	R1 = 0.0633	<i>R</i> 1 = 0.0293	
	wR2 = 0.0997	wR2 = 0.0738	

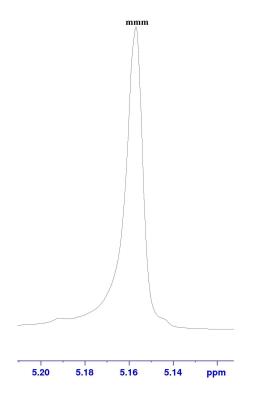

III. Polymerization Studies

Figure S13. Homonuclear decoupled ¹H-NMR spectrum of *rac*-PLA in CDCl₃ (methine H-atom region) obtained by reaction of *rac*-LA and **1** in ratio [monomer]:[Cat.]:[BnOH] = 200:1:4 at 100 °C in toluene.

Figure S14. Homonuclear decoupled ¹H-NMR spectrum of *rac*-PLA in CDCl₃ (methine H-atom region) obtained by reaction of *rac*-LA and **2** in ratio [monomer]:[Cat.]:[BnOH] = 200:1:4 at 100 °C in toluene.

Figure S15. Homonuclear decoupled ¹H-NMR spectrum of *L*-PLA in CDCl₃ (methine H-atom region) obtained by reaction of *L*-LA and **1** in ratio [monomer]:[Cat.]:[BnOH] = 200:1:4 at 100 °C in toluene.

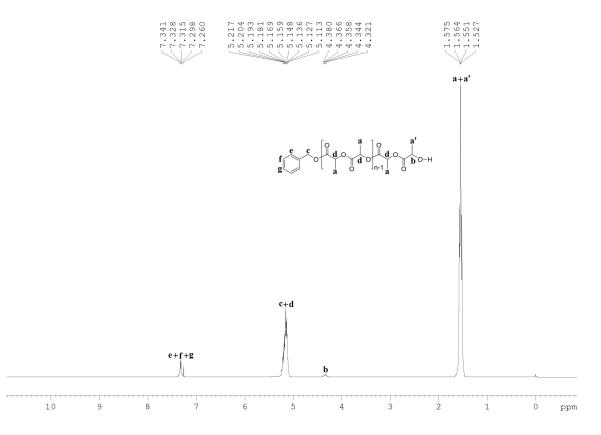
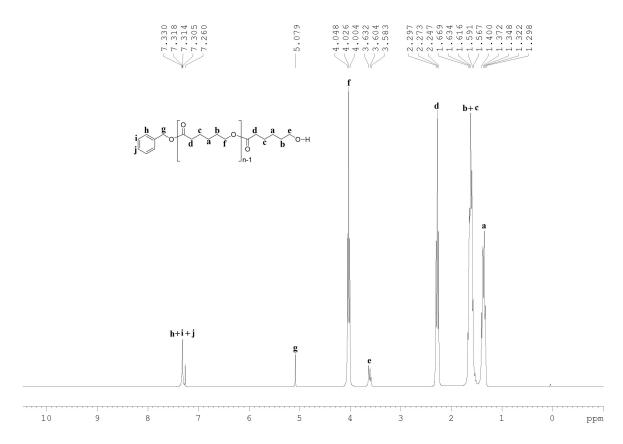
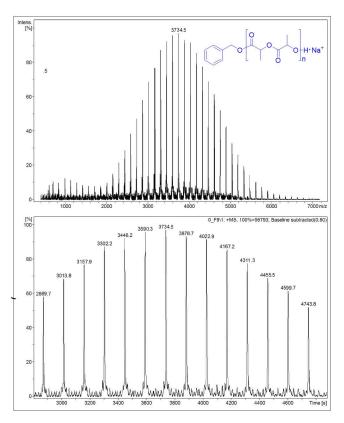
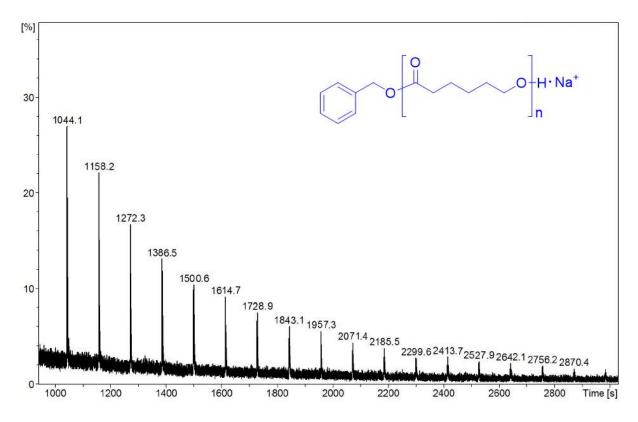
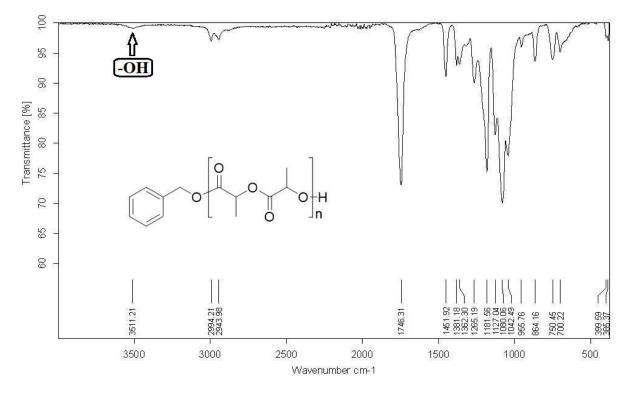
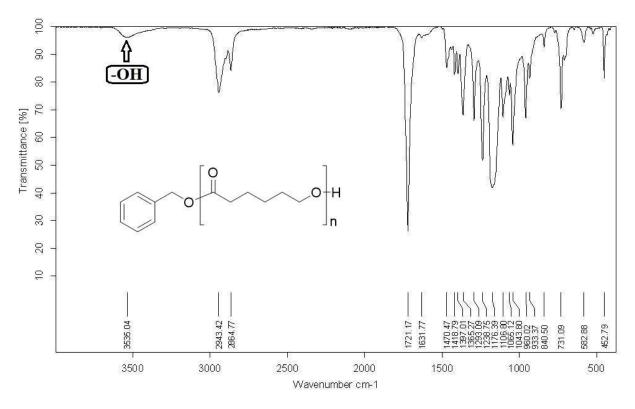
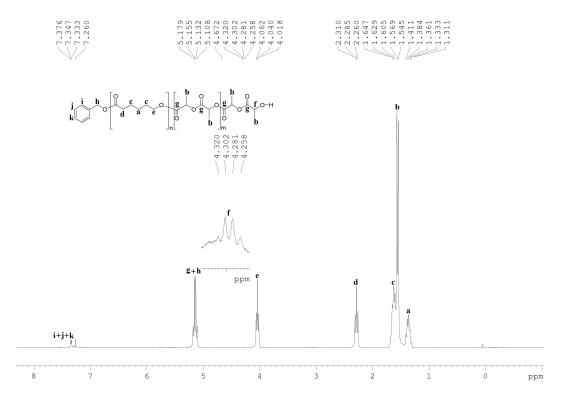



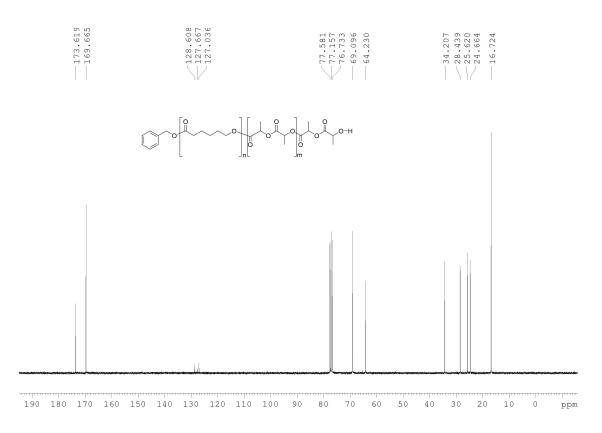
Figure S16. ¹H-NMR spectrum of *rac*-PLA in CDCl₃ obtained by reaction of *rac*-LA and 1 in ratio [monomer]:[Cat.]:[BnOH] = 100:1:4 at 100 °C in toluene.

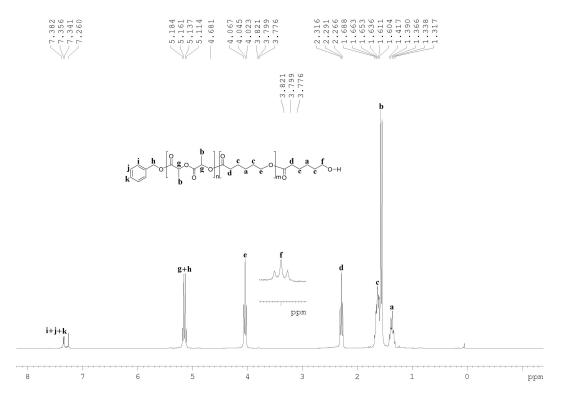
Figure S17. ¹H-NMR spectrum of PCL in CDCl₃ obtained by reaction of ε -CL and **1** in ratio [monomer]:[Cat.]:[BnOH] = 100:1:4 at 100 °C in toluene.

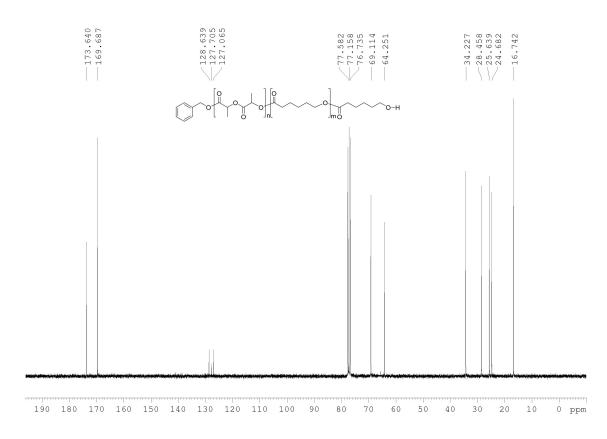




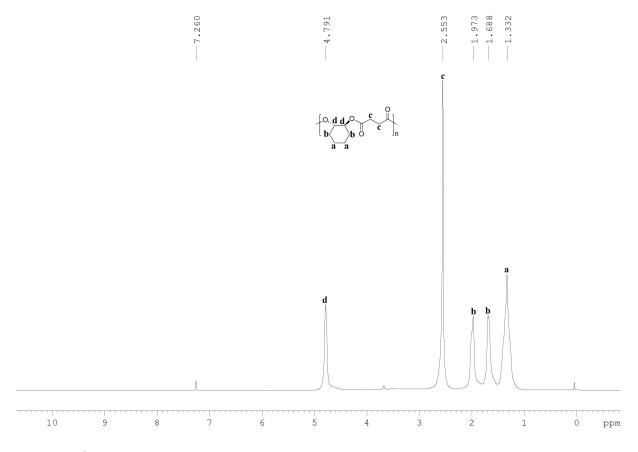

Figure S18. MALDI-ToF spectrum of *rac*-PLA obtained by reaction of *rac*-LA and 1 in ratio [monomer]:[Cat.]:[BnOH] = 100:1:4 at 100 °C in toluene.

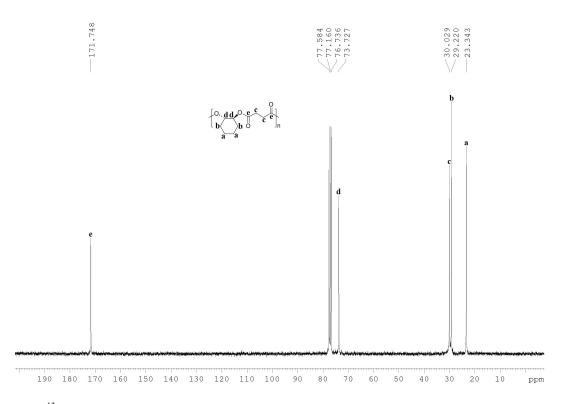

Figure S19. MALDI-ToF spectrum of ε -PCL obtained by reaction of ε -CL and **1** in ratio [monomer]:[Cat.]:[BnOH] = 100:1:4 at 100 °C in toluene.

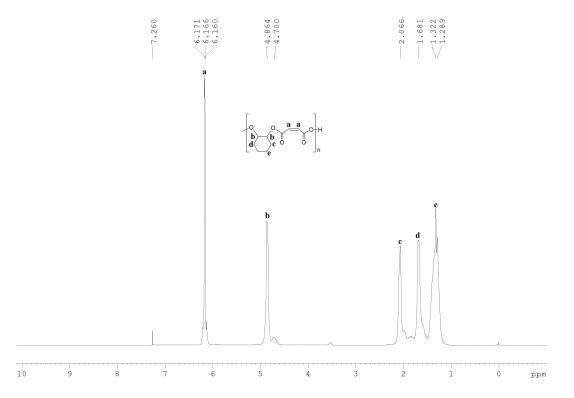

Figure S20. IR spectrum of *rac*-PLA obtained by reaction of *rac*-LA and **1** in ratio [monomer]:[Cat.]:[BnOH] = 100:1:4 at 100 °C in toluene.

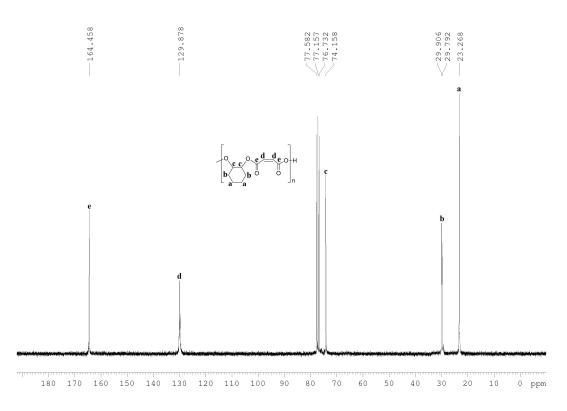

Figure S21. IR spectrum of of PCL in CDCl₃ obtained by reaction of ε -CL and **1** in ratio [monomer]:[Cat.]:[BnOH] = 100:1:4 at 100 °C in toluene.

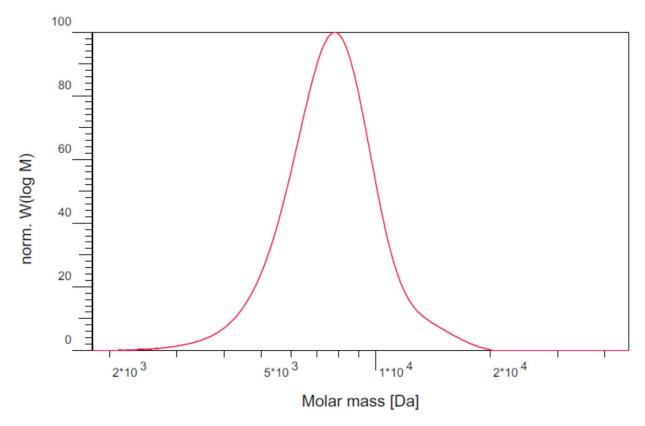

Figure S22. ¹H NMR spectrum of PCL-b-PLLA copolymer in CDCl₃ obtained by reaction of ε -CL, *L*-LA and **1** in ratio [ε -CL]:[*L*-LA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.


Figure S23. ¹³C NMR spectrum of PCL-b-PLLA copolymer in CDCl₃ obtained by reaction of ε -CL, *L*-LA and **1** in ratio [ε -CL]:[*L*-LA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.


Figure S24. ¹H NMR spectrum of PLLA-b-PCL copolymer in CDCl₃ obtained by reaction of *L*-LA, ε -CL, and **1** in ratio [*L*-LA]:[ε -CL]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.


Figure S25. ¹³C NMR spectrum of PLLA-b-PCL copolymer in CDCl₃ obtained by reaction of *L*-LA, ε -CL, and 1 in ratio [*L*-LA]:[ε -CL]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.


Figure S26. ¹H NMR spectrum of poly(cyclohexene succinate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[SA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.


Figure S27. ¹³C NMR spectrum of poly(cyclohexene succinate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[SA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

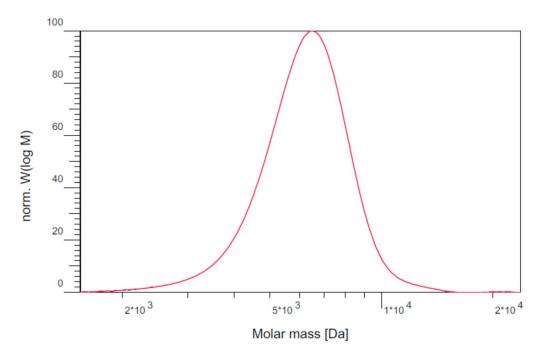

Figure S28. ¹H NMR spectrum of poly(cyclohexene malonate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[MA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S29. ¹³C NMR spectrum of poly(cyclohexene malonate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[MA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S30. GPC elugram of *rac*-PLA obtained by reaction of *rac*-LA and **1** in ratio [monomer]:[Cat.]:[BnOH] = 200:1:4 at 100 °C in toluene.

Figure S31. GPC elugram of PCL obtained by reaction of ε -CL and **1** in ratio [monomer]:[Cat.]:[BnOH] = 200:1:4 at 100 °C in toluene.

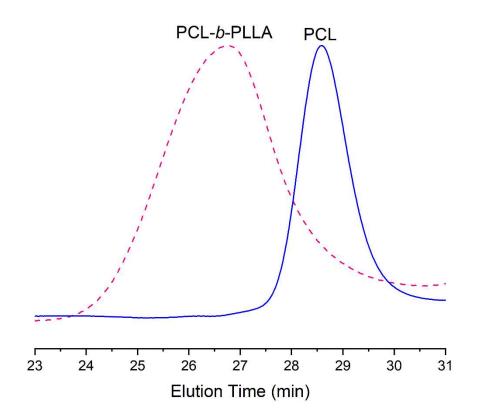


Figure S32. GPC elugram of PCL and PCL-*b*-PLLA obtained by the 1 in presence of BnOH at 100 °C in toluene.

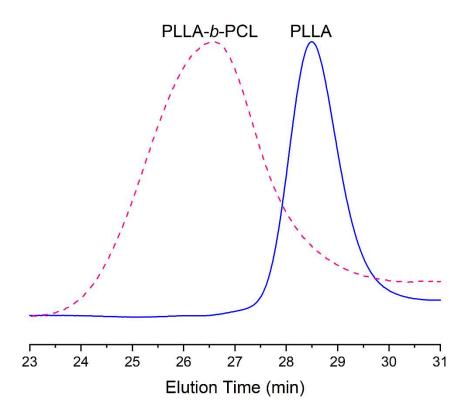
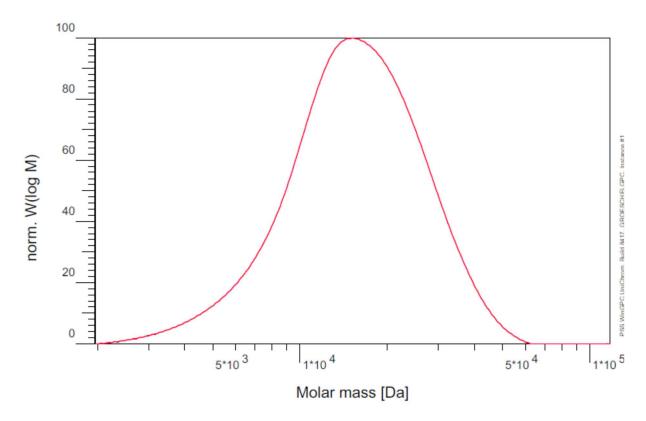
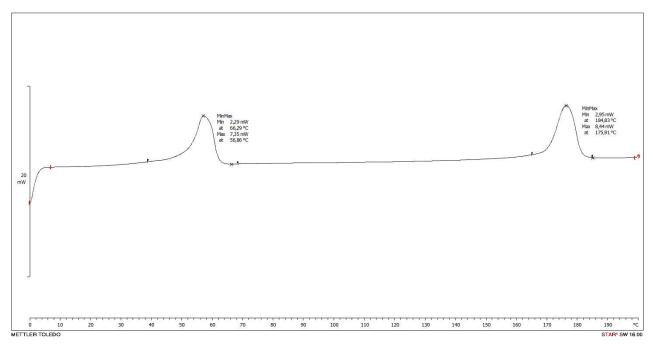




Figure S33. GPC elugram of PLLA and PLLA-*b*-PCL obtained by the 1 in the presence of BnOH at 100 °C in toluene.

Figure S34. GPC elugram of poly(cyclohexenesuccinate) copolymer obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[SA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S35. DSC curve of PCL-*b*-PLLA obtained by reaction of ε -CL, *L*-LA and **1** in ratio [ε -CL]:[*L*-LA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

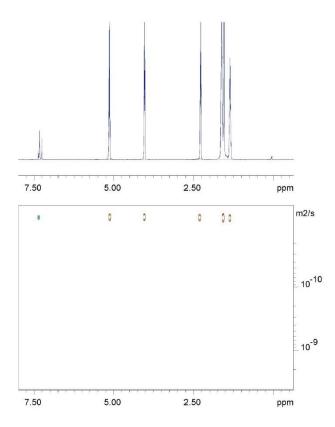


Figure S36. DOSY NMR (300 MHz, CDCl₃, 298 K) spectrum of PCL-b-PLLA diblock copolymer.

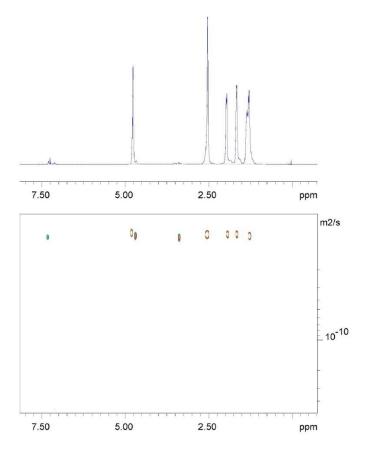
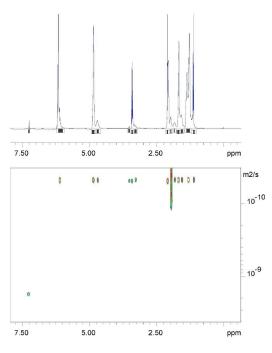
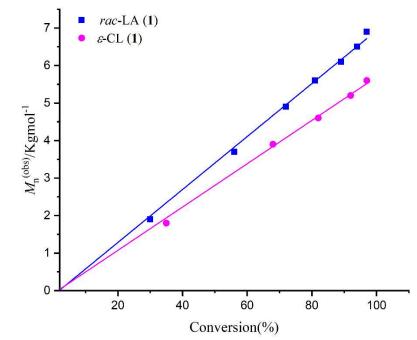
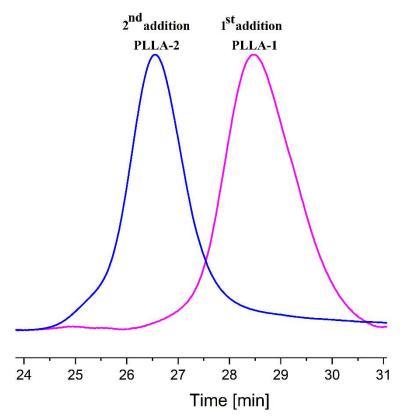
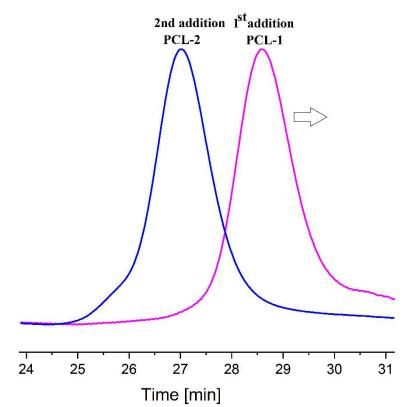
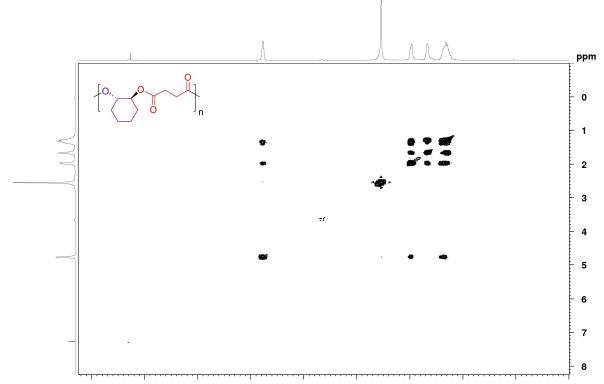
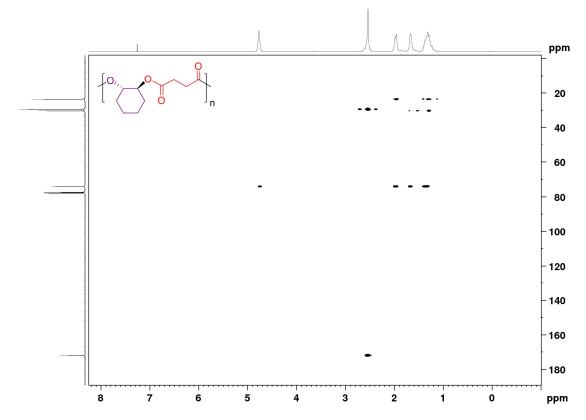


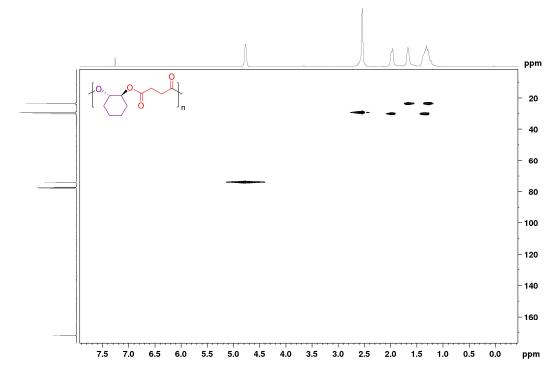
Figure S37. DOSY NMR (300 MHz, CDCl₃, 298 K) spectrum of poly[(cyclohexene succinate) copolymer.

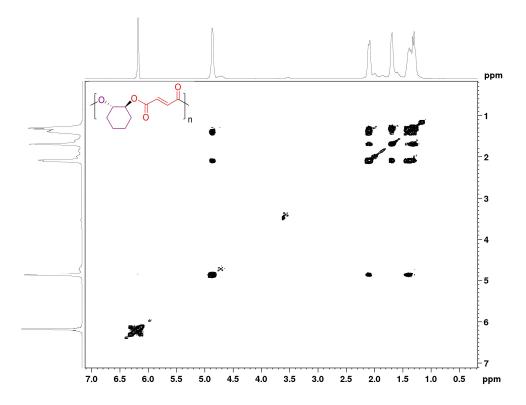




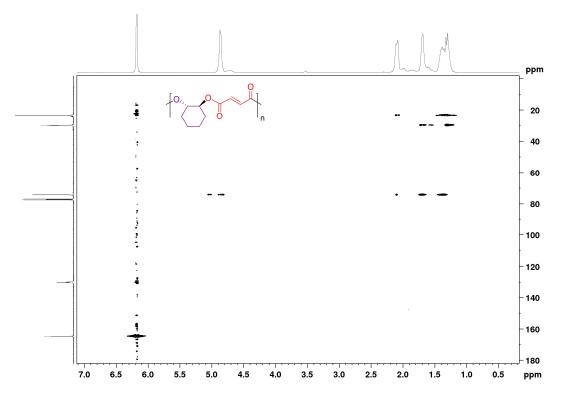

Figure S38. DOSY NMR (300 MHz, CDCl₃, 298 K) spectrum of poly[(cyclohexene malonate) copolymer.


Figure S39. Plot of $M_n^{(obs)}$ (kg/mol) vs. conversion (%) for *rac*-LA and ε -CL using complex 1 in a ratio [Monomer]:[cat.]:[BnOH] = 200:200:1:4 in toluene at 100 °C.


Figure S40. GPC elugram of PLLA obtain by polymerization resumption experiment of enantiomeric pure *L*-LA and **1** in toluene at 100 °C, [monomer]:[cat.]:[BnOH] = $(200^{1st} + 200^{2nd})$:1:4.


Figure S41. GPC elugram of PCL obtain by polymerization resumption experiment of ε -CL and **1** in toluene at 100 °C, [monomer]:[cat.]:[BnOH] = $(200^{1st} + 200^{2nd})$:1:4.


Figure S42. COSY NMR spectrum of poly(cyclohexene succinate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[SA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.


Figure S43. HMBC NMR spectrum of poly(cyclohexene succinate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[SA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

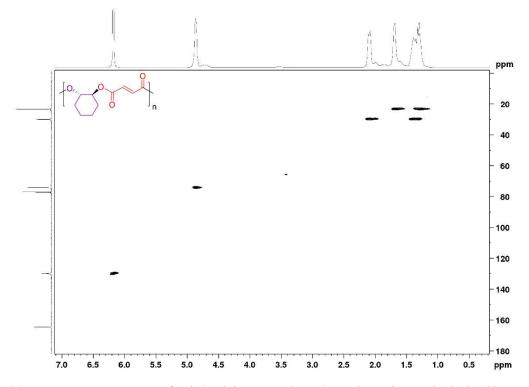

Figure S44. HSQC NMR spectrum of poly(cyclohexene succinate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[SA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S45. COSY NMR spectrum of poly(cyclohexene malonate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[MA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S46. HMBC NMR spectrum of poly(cyclohexene malonate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[MA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S47. HSQC NMR spectrum of poly(cyclohexene malonate) copolymer in CDCl₃ obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[MA]:[cat.]:[BnOH] = 200:200:1:4 at 100 °C in toluene.

Figure S48. ¹H NMR spectrum of 2 (blue color) and catalyst-2-OBn (red color) in CD_2Cl_2 . Catalyst-2-OBn obtained by reaction of catalyst -2 and BnOH in ratio [Cat-2]:[BnOH] = 1:4 at 23 °C in CD_2Cl_2 .

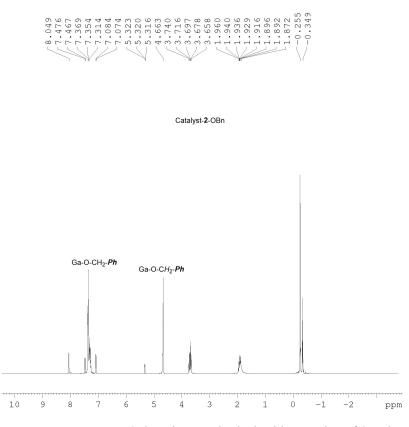
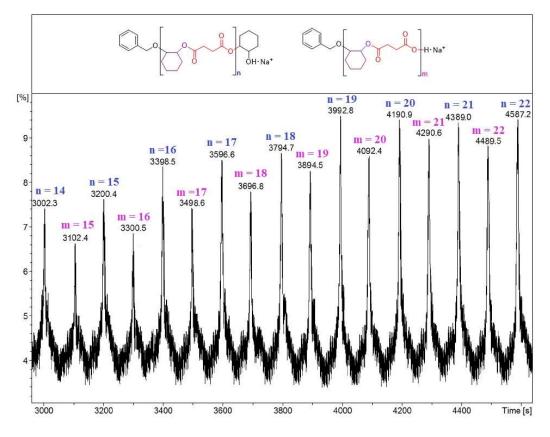



Figure S49. ¹H NMR spectrum catalyst-2-OBn in CD_2Cl_2 obtained by reaction of 2 and BnOH in ratio [Cat-2]:[BnOH] = 1:4 at 23 °C in CD_2Cl_2 .

Figure S50. MALDI-ToF spectrum of poly(cyclohexene succinate) copolymer obtained by reaction of CHO, SA, and **1** in ratio [CHO]:[SA]:[cat.]:[BnOH] = 100:200:1:4 at 100 °C in toluene at 100 °C.

Entry	[M]:[cat.]:[BnOH]	Time min	Conv. ^a	$M_{ m n}^{ m b(theo)}$ Kg/mol	$M_{ m n}^{ m cal(GPC)c}$ Kg/mol	PDI
1	200:1:1	60	 99	22.7	22.1	1.12
1	200.1.1	00	,,,	22.7	22.1	1.12
2	200:1:4	15	98	5.7	5.6	1.07
3	500:1:8	20	95	6.9	6.3	1.10
4	1000:1:10	40	95	10.9	10.2	1.13
5	5000:1:10	300	90	51.47	49.4	1.16
6	10000:1:10	720	90	102.8	100.3	1.18
7 ^d	$(200^{1st} + 200^{2nd}):1:4$	$15^{1st} + 10^{2nd}$	97	5.7 ^{1st} , 11.1 ^{2nd}	5.6 ^{1st} , 10.9 ^{2nd}	1.07 ^{1st} , 1.09 ^{2nd}

Table S2 ROP of ε -CL initiated by complex 1 with varying [monomer]:[cat.]:[BnOH] molar ratios in toluene at 100 °C.

^aMonomer conversion as determined by ¹H NMR analysis. ^bM_n, ^{theo} = {[M_w(monomer) x [Monomer]/[Cat] x Conv./number eq of BnOH} + M_n (BnOH). ^c M_n ^{cal(GPC)} values were determined by GPC analysis in THF using polystyrene standards. ^dPolymerization resumption experiment of ε -CL in toluene at 100 °C, [monomer]:[cat.]:[BnOH] = (200^{1st} + 200^{2nd}):1:4.