A Dual-Function MOF for High Proton Conduction and Sensitive Detection of Ascorbic Acid

Shu-Fang Zhou,^a Biao-Biao Hao,^a Tian Lin,^a Chen-Xi Zhang^{*ab} and Qing-Lun

Wang^{*cd}

- a College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
- b Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
- c Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nan kai University, Tianjin 300071, P. R. China
- d College of Chemistry, Nan kai University, Tianjin 300071, P. R. China

Scheme S1. Molecular structure of Ascorbic Acid (AA)

Scheme S2. Molecular structure of H₄BDPP

Scheme S3. Schematic for encapsulating imidazole molecules into Eu-MOF via vaporization method.

complex	Eu-MOF
Formula	$C_{47}H_{41}Eu_2N_4O_{23}$
Mr	1333.76
T/K	155(40)
Crystal system	monoclinic
Space group	P2 ₁ /c
<i>a</i> / Å	15.1205(6)
b / Å	10.7089(7)
<i>c</i> / Å	15.3715(10)
lpha /°	90
eta /°	95.057
$\gamma/^{\circ}$	90
Ζ	2
Volume /Å ³	2479.3(2)
ho /g cm ⁻³	1.787
μ /mm ⁻¹	2.597
<i>F</i> (000)	1322.0
Crystal size /mm ³	0.20×0.18×0.12
2 <i>θ</i> /°	6.178 to 50.018
Reflections/ unique	15750/4361
$R_{(int)}$	0.1084
Data / restraints / parameters	4361/84/357
GOF on F^2	1.098
R_1 [I>2 δ (I)]	0.0648
$WR_2 [I > 2\delta(I)]$	0.1539
R_1 (all data)	0.0904
wR_2 (all data)	0.1848

Table S1. Crystal data and structure refinement for Eu-MOF

Table S2. Selected Bond Lengths (Å) and angles (°) of Eu-MOF

	Eu-MO	F	
Eu(4)- Eu(4)#1	4.0437(8)	Eu(4)-O(1)#2	2.641(6)
Eu(4)-O(9)	2.459(6)	Eu(4)-O(1)#3	2.366(6)
Eu(4)-O(22)	2.368(6)	Eu(4)-O(2)#2	2.454(7)
Eu(4)-O(24)	2.518(6)	O(1)-Eu(4)#6	2.641(6)
Eu(4)-O(29)	2.451(6)	O(1)-Eu(4)#7	2.366(6)
Eu(4)-O(44)	2.450(7)	O(2)-Eu(4)#6	2.454(7)
Eu(4)-O(51)	2.457(7)		
O(9)-Eu(4)-Eu(4)#1	66.23(14)	O(44)-Eu(4)-O(51)	71.7(3)
O(22)-Eu(4)-Eu(4)#1	68.41(15)	O(51)-Eu(4)-Eu(4)#1	114.47(18)
O(9)-Eu(4)-O(24)	68.89(19)	O(44)-Eu(4)-O(2)#2	76.9(2)
O(22)-Eu(4)-O(9)	133.2(2)	O(51)-Eu(4)-O(9)	138.6(3)

O(9)-Eu(4)-O(1)#2	71.8(2)	O(44)-Eu(4)-O(1)#2	114.5(2)
O(22)-Eu(4)-O(24)	143.2(2)	O(51)-Eu(4)-O(24)	72.7(2)
O(22)-Eu(4)-O(29)	146.0(2)	O(51)-Eu(4)-O(1)#2	136.3(2)
O(22)-Eu(4)-O(44)	78.9(2)	O(1)#2-Eu(4)-Eu(4)#1	33.90(14)
O(22)-Eu(4)-O(51)	72.3(2)	O(1)#3-Eu(4)-Eu(4)#1	38.51(14)
O(22)-Eu(4)-O2#2	91.2(2)	O(1)#3-Eu(4)-O(22)	78.6(2)
O(29)-Eu(4)- O(9)	74.5(2)	O(1)#3-Eu(4)-O(51)	84.3(2)
O(29)-Eu(4)-O(51)	99.8(2)	O(1)#3-Eu(4)-O(2)#2	121.5(2)
O(44)-Eu(4)- O(9)	135.6(2)	O(2)#2-Eu(4)-O(51)	146.7(3)
O(29)-Eu(4)-O(1)#2	123.0(2)	O(2)#2-Eu(4)-Eu(4)#1	84.05(13)
O(29)-Eu(4)-O(2)#2	77.5(2)	O(2)#2-Eu(4)-O(9)	73.3(2)
O(22)-Eu(4)-O(1)#2	67.3(2)	O(1)#3-Eu(4)-O(9)	73.3(2)
O(24)-Eu(4)-O(1)#2	139.3(2)	O(1)#3-Eu(4)-O(29)	134.5(2)
O(44)-Eu(4)- O(24)	100.7(2)	O(2)#2-Eu(4)-O(1)#2	51.16(19)
O(44)-Eu(4)- O(29)	67.4(2)	Eu(4)#7-O1-Eu(4)#6	107.6(2)
O(29) -Eu(4)- O(24)	52.7(2)	O(1)#3-Eu(4)-O(1)#2	72.4(2)
O(22)-Eu(4)-Eu(4)#1	117.58(16)	O(1)#3-Eu(4)-O(24)	86.8(2)
O(29)-Eu(4)-Eu(4)#1	139.94(16)	O(1)#3-Eu(4)-O(44)	151.1(2)
O(44)-Eu(4)-Eu(4)#1	141.56(15)	O(2)#2-Eu(4)-O(24)	124.8(2)

Symmetry Codes: #1 = -X, 2-Y,1-Z; #2 = -X, 1/2+Y, 1/2-Z; #3 = +X,3/2-Y,1/2+Z; #4 = 1-X, -1/2+Y, 1/2-Z; #5 = 1-X, 1/2+Y, 1/2-Z; #6 = -X, -1/2+Y, 1/2-Z; #7 = +X, 3/2-Y, -1/2+Z

Table S3. Comparison of the proton conductivity values of Im@Eu-MOF with other proton conducting materials containing guest molecules.

Materials	Conductivity (S·cm ⁻¹)	Conditions	References
Im@Eu-MOF	4.53×10-4	348 K, 98% RH	This work
Im-Cu@(NENU-3a)	3.16×10-4	70℃, 90% RH	40
Im@Td-PPI	9.04×10 ⁻⁵	90°C	39
Im@Td-PNDI	3.49×10 ⁻⁴	90°C	39
polyPtC-Im	1.5×10 ⁻⁵	120°C	21
[Zn(HPO ₄)(H ₂ PO ₄) ₂](ImH ₂) ₂	2.6×10-4	130°C	41
Im@[Al(μ_2 -OH)(1,4-ndc)]	2.2×10 ⁻⁵	120°C	34
Im@[Al(µ ₂ -OH)(1,4-bdc)]	1.0×10 ⁻⁷	120°C	34
OF⊂ Im	2.4×10 ⁻⁵	120°C	42

Figure S1. Coordination mode of the ligand in Eu-MOF

Figure S2. PXRD spectra of Eu-MOF in different states and experimental PXRD profiles of Im@Eu-MOF

Figure S3. FT-IR spectra of Eu-MOF, Im@Eu-MOF and imidazole

Figure S4. The TGA and DTG of Eu-MOF and Im@Eu-MOF

Figure S5. pore size distribution profiles for Eu-MOF and Im@Eu-MOF

Figure S6.Water uptake capacities of Im@Eu-MOF.

Figure S7. (a) Nyquist plats of Eu-MOF at different temperature and 98% RH; (b) Arrhenius plot of $Ln(\sigma T)$ against 1000/T of Eu-MOF under 98% RH (the black solid line represents the best fit of data).

Figure S8. Excitation spectrum of Eu-MOF

Figure S9. Image of Eu-MOF suspension in water after the addition of various analytes under irradiation of 254 nm UV light

Figure S10. Fluorescence intensity ratio histograms of Eu-MOF with the dropping of different analytes (green) and subsequent dropping of AA with the concentration of 10^{-2} mol L⁻¹ (red).

Figure S11. The PXRD of Eu-MOF after soaking in AA aqueous solution

Figure S12. The excitation spectra of Eu-MOF and the UV-vis absorbtion spectra of AA.