Supporting Information

Exploratory studies on azido-bridged complexes (Ni²⁺ and Mn²⁺) as dual colourimetric chemosensors for S²⁻ and Ag⁺: combined experimental and theoretical outcomes with real field applications

Nithun Ranjan Pandit,^{¥a} Sourav Bej,^{¥b,c} Ananya Mondal,^{a,d} Meenakshi Ghosh,^d George E. Kostakis,^e Annie K. Powell,^f Priyabrata Banerjee^{*b,c} and Biplab Biswas^{*a}

- ^{b.}. Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India
- ^c Academy of Scientific & Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- ^{d.} Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata, 6, West Bengal, India
- ^{e.} School of Life Sciences, University of Sussex, Falmer, BN1 9QG, United Kingdom
- ^{f.} InstitutfürAnorganischeChemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, D-76131 Karlsruhe, Germany.
- + Footnotes relating to the title and/or authors should appear here

[¥]Equal Contribution

^{a.} Department of Chemistry, Presidency University, 86/1, College Street, Kolkata 700073, India

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Sl. No.	Description	Entry
1	Different coordination mades of oride on linear d	Cahama C1
1	Different coordination modes of azide co-ligand	Scheme SI
2	Thermo Gravimetric Analysis	Fig. S1
3	Different orientational view of BS-1	Fig. S2
4	Selected bond lengths and bond angles of BS-1	Table S1
5	Different orientational view of BS-2	Fig. S3
6	Sulphide mediated reduction scheme of azide centre	Scheme S2
7	Selected bond lengths and bond angles of BS-2	Table S2
8	B-H plot of BS-1 with S ²⁻	Fig. S4
9	Limit of detection of BS-1 for S ²⁻	Fig. S5
10	B-H plot of BS-1 with Ag ⁺	Fig. S6
11	Limit of detection of BS-1 for Ag ⁺	Fig. S7
12	Comparative study of BS-1 with different anions	Fig. S8
13	Comparative study of BS-1 with different cations	Fig. S9
14	Effect of pH	Fig. 810
15	B-H plot of BS-2 with Ag ⁺	Fig. S11
16	Limit of detection of BS-2 for Ag ⁺	Fig. S12
17	Comparative study of BS-2 with different cations	Fig. 813
18	Time-dependent response of BS-1 & BS-2 towards targeted analytes	Fig. S14
19	FT-IR of BS-1 with S ²⁻ and Ag ⁺	Fig. S15a & Fig. S15b
20	FT-IR of BS-2 with Ag ⁺	Fig. 816
21	ESI-MS of BS-1 with S ²⁻ through intermediate	Fig. 817
22	Geometry optimised structure of BS-2 with their HOMO-LUMO energy gap	Fig. S18
23	ESI-MS of BS-1 monomeric unit with S ²⁻	Fig. 819
24	ESI-MS of BS-1 with Ag ⁺	Fig. 820
25	ESI-MS of BS-2 with Ag ⁺	Fig. 821

Scheme S1 Different coordination modes of azide co-ligand

Fig. S1 Thermo Gravimetric Analysis of (A) BS-1 (B) BS-2 showing the stability of 225 0 C and 190 0 C respectively

ig. S2 (A) Dinuclear symmetrical structure of Ni^{II} (BS-1) (B) Scale like geometry of BS-1

cluster down the c-axis (C)) Packing of BS-1 cluster down the a-axis (D) Network of H-bonding in BS-1 cluster.

Table S1: Selected bond length of the BS-1							
Bond	Length in (Å)	Bond	Length in (Å)				
Ni(1)-O(1)	2.160(2)	Ni(1)-N(3)	2.100(2)				
Ni(1)-N(1)	2.087(2)	Ni(1)-N(6)	2.055(2)				
Ni(1)-N(2)	2.021(2)	Ni(1)-N(6)	2.107(2)				
Bond length associate to bridging azide of the BS-1							
Bond	Length in (Å)	Bond	Length in (Å)				
Ni(1)-N(6)	2.055(2)	N(6)-N(7)	1.201(3)				
Ni(1)-N(6)	2.107(2)	N(7)-N(8)	1.140(4)				
Bond length associate to terminal azide of the BS-1							
Bond		Length in (Å)					
Ni(1)-N(3)		2.100(2)					
N(3)-N(4)		1.155(4)					
N(4)-N(5)		1.167(5)					
Selected bond angles of the BS-1							
Bond angle	In (°)	Bond angle	In(°)				
N(3)-Ni(1)-N(1)	91.4(1)	N(6)-Ni(1)-N(1)	102.2(1)				
N(3)-Ni(1)-N(2)	91.5(1)	N(6)-Ni(1)-N(2)	177.93(9)				
N(3)-Ni(1)-N(6)	90.1(1)	N(6)-Ni(1)-N(3)	167.1(1)				
N(3)-Ni(1)-O(1)	88.35(9)	N(6)-Ni(1)-O(1)	101.12(8)				
Bond angles associate with bridging and terminal azide of the BS-1:							
Bond	Bond angle in (°)	Bond	Bond angle in(°)				
N(6)-Ni(1)-N(6)	77.62(9)	Ni(1)-N(3)-N(4)	120.6(2)				
Ni(1)-N(6)-N(7)	125.3(2)	Ni(1)-N(6)-Ni(1)	102.4(1)				
Bond lengths associate with Hydrogen bonding in BS-1:							
Bond		Length in (Å)					
O(2)-H(1)		1.801					

Fig. S3 (A) Dinuclear symmetrical structure of Mn^{II} (BS-2) (B) Packing of BS-2 cluster down the c-axis (C) Floral geometry BS-2 cluster down the a-axis (D) Network of H-bonding in BS-2 cluster.

Scheme S2 Sulphide mediated reduction scheme of azide centre

Table S2: Selected bond length of BS-2:							
Bond	Length in (Å)	Bond	Length in (Å)				
Mn(1)-O(1)	2.240(1)	Mn(1)-N(3)	2.157(2)				
Mn(1)-N(1)	2.284(1)	Mn(1)-N(6)	2.216(1)				
Mn(1)-N(2)	2.265(1)	Mn(1)-N(6)	2.210(1)				
Bond length associate to bridging azide of BS-2:							
Bond	Length in (Å)	Bond	Length in (Å)				
Mn(1)-N(6)	2.216(1)	N(6)-N(7)	1.177(2)				
Mn(1)-N(6)	2.210(1)	N(7)-N(8)	1.161(2)				
Bond length associate to terminal azide of BS-2							
Bond		Length in (Å)					
Mn(1)-N(3)		2.157(2)					
N(3)-N(4)		1.159(2)					
N(4)-N(5)		1.173(2)					
Selected bond angles of BS-2							
Bond angle	In (°)	Bond angle	In(°)				
N(3)-Mn(1)-N(1)	90.75(5)	N(6)-Mn(1)-N(1)	113.80(5)				
N(3)-Mn(1)-N(2)	92.25(5)	N(6)-Mn(1)-N(2)	172.49(5)				
N(3)-Mn(1)-N(6)	166.71(6)	N(6)-Mn-(1)-N(3)	91.17(6)				
N(3)-Mn(1)-O(1)	91.03(5)	N(6)-Mn(1)-O(1)	113.80(5)				
Bond angles associate with bridging and terminal azide of BS-2:							
Bond angle	In (°)	Bond angle	In (°)				
N(6)-Mn(1)-N(6)	76.42(5)	Mn(1)-N(3)-N(4)	150.4(1)				
Mn(1)-N(6)-N(7)	126.9(1)	Mn(1)-N(6)-Mn(1)	103.58(6)				
Bond lengths associate with Hydrogen bonding in Complex BS-2							
Bond		Length in (Å)					
N(5)-O(1)		2.795					
N(5)-H(11)		1.988					

Fig. S4 Benesi–Hildebrand (B-H) plot for absorbance of S²⁻ with BS-1 for the association constant determination

Fig. S5 Change of absorbance as the function of the concentration of S2- for the calculation of LOD of the complex BS-1 towards S^{2-}

Fig. S6 Benesi–Hildebrand (B-H) plot for absorbance of Ag^{+-} with BS-1 for the constant association determination

Fig. S7 Change of absorbance as the function of the concentration of Ag^+ for the calculation of LOD of the complex BS-1 towards Ag^+ .

Fig. S8 (A) Comparative study of BS-1 with different anions in aqueous phase (B) Interference study of BS-1 with different anions in the aqueous phase

In continuation, the selectivity of **BS-1** for other cations apart from Ag^+ was also investigated for the detection of the toxic analyte from real field samples.

Fig.S9 (A) Comparative study of BS-1 in DMSO medium with different cations in organoaqueous phase (B) Interference study of BS-1 with different cations in organo-aqueous phase

Fig. S10 Effects of absorbance values of BS-1 with S2- at different pH.

Fig. S11 Benesi–Hildebrand (B-H) plot for absorbance of Ag⁺ with BS-2 for the association constant determination.

Fig. S12 change of absorbance as the function of the concentration of $Ag^{\scriptscriptstyle +}$ for the calculation of LOD of the complex BS-2 towards $Ag^{\scriptscriptstyle +}$

Fig. S13 (A) Comparative study of **BS-2** with different cations in organo-aqueous phase (B) Interference study of BS-2 with different cations in organo-aqueous phase

Fig. S14 Responding time of BS-1 & BS-2 with targeted analytes. (a) Absorbance intensity changes of BS-1 at 410 nm with concurrent addition of Ag^+ (b) Absorbance intensity changes of BS-1 at 315 nm on gradual addition of S^{2-} (c) Absorbance value at 270 nm changes of BS-2 with addition of Ag^+

Fig. S15(a) FT-IR plot of BS-1 after interaction with S²⁻ (b) FT-IR plot of BS-1 after interaction with Ag^+

Fig. S16 Ag-N stretching frequency at 2380 cm⁻¹ after interaction of BS-2 with Ag⁺

Fig. S17 ESI-MS data of BS-1---S²⁻ adduct through an intermediate $\{ [-NH-N=N-SH]^{\#} \}$ formation

Fig. S18 Geometry Optimised structure and HOMO-LUMO band gap of monomeric unit of chemosensor BS-2

Fig. S19 ESI-MS data of BS-1-monomeric unit after reduction by S^{2-}

Fig. S20 ESI-MS data of BS-1---Ag⁺ adduct through Ag-N bond formation

Fig. S21 ESI-MS data of BS-2---Ag⁺ adduct through Ag-N bond formation