Supporting Information

Why Lanthanide Er^{III} SIMs cannot Possess Huge Energy Barriers: A Theoretical Investigation

Fang Lu, Man-Man Ding, Jia-Xin Li, Bao-Lin Wang, and Yi-Quan Zhang*

Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China

h a		1	2	3					
ĸ	q	B(k, q)							
	-2	-0.6513×10^{-3}	0.2672	-0.2076×10^{-2}					
	-1	0.1693×10 ⁻¹	0.3437	0.4190×10 ⁻¹					
2	0	-0.3052×10^{1}	-0.3713×10^{1}	-0.2132×10^{1}					
	1	-0.5389×10^{-1}	0.5334×10 ⁻¹	-0.2480×10^{-2}					
	2	-0.9171×10 ⁻²	0.2402	0.2405×10 ⁻²					
	-4	0.2965×10 ⁻³	0.3783×10 ⁻²	0.6064×10 ⁻⁴					
	-3	0.6510×10 ⁻¹	0.1145×10 ⁻¹	-0.5133×10^{-1}					
	-2	-0.2498×10^{-4}	0.4954×10 ⁻³	-0.8158×10^{-5}					
	-1	-0.4655×10^{-4}	-0.1448×10 ⁻²	-0.8354×10^{-4}					
4	0	0.1269×10 ⁻²	0.2681×10 ⁻²	-0.7049×10^{-4}					
	1	0.2239×10 ⁻³	0.3858×10 ⁻³	0.8678×10 ⁻⁵					
	2	0.6390×10-4	-0.2706×10 ⁻³	-0.5762×10^{-4}					
	3	-0.2021×10^{-1}	-0.4705×10^{-1}	-0.8118×10 ⁻²					
	4	0.3105×10 ⁻⁵	0.8271×10 ⁻³	-0.2598×10 ⁻³					
	-6	0.2040×10 ⁻³	0.1379×10 ⁻³	0.2399×10 ⁻³					
	-5	-0.8209×10^{-5}	-0.7424×10^{-4}	0.1021×10 ⁻⁴					
	-4	-0.1989×10 ⁻⁵	-0.3237×10 ⁻⁴	-0.1431×10 ⁻⁵					
	-3	-0.4566×10 ⁻³	0.7310×10 ⁻⁴	0.3960×10 ⁻³					
	-2	0.2428×10 ⁻⁵	-0.3512×10^{-4}	-0.2054×10^{-5}					
	-1	0.3069×10 ⁻⁶	0.3375×10 ⁻⁵	0.4820×10 ⁻⁶					
6	0	-0.3248×10^{-5}	-0.2872×10^{-4}	0.4245×10^{-5}					
	1	-0.2251×10^{-5}	-0.2103×10^{-4}	0.1384×10 ⁻⁶					
	2	-0.3013×10^{-5}	0.2323×10 ⁻⁴	0.3327×10 ⁻⁵					
	3	0.2399×10 ⁻³	0.9674×10^{-4}	0.2589×10 ⁻³					
	4	0.1024×10 ⁻⁵	-0.3777×10 ⁻⁴	0.1800×10 ⁻⁵					
	5	0.1370×10 ⁻⁴	-0.2559×10 ⁻³	0.9634×10 ⁻⁵					
	6	-0.2288×10 ⁻³	0.3759×10 ⁻⁴	-0.2714×10 ⁻³					

Table S1. Calculated crystal field parameters of complexes 1–3 by CASSCF/RASSI-SO using CASSCF/RASSI-SO with MOLCAS 8.4.

θ		60°		65°			70°		
KDs	E/cm^{-1}	g	m_J	E/cm ⁻¹	g	m _J	E/cm ⁻¹	g	m_J
		0.002			0.001			0.000	
1	0.0	0.003	±15/2	0.0	0.001	±15/2	0.0	0.000	±15/2
		17.701			17.897			17.893	
		0.064			0.142			0.145	
2	10.5	0.069	±13/2	30.0	0.143	±13/2	66.2	0.146	±13/2
		15.063			15.367			15.454	
		0.328			0.211			0.161	
3	82.0	0.343	±11/2	114.6	0.218	±11/2	155.0	0.164	±11/2
		11.204			12.223			12.609	
		0.552			0.139			0.062	
4	127.1	0.571	±9/2	177.3	0.150	±9/2	228.5	0.069	±9/2
		7.050			8.341			9.315	
		8.976			8.275			7.302	
5	134.8	7.853	$\pm 1/2$	204.8	7.995	±5/2	276.9	7.180	$\pm 7/2$
		1.683			3.054			4.495	
		8.317			8.099			7.207	
6	253.9	7.569	±3/2	320.4	7.731	±3/2	387.6	7.035	$\pm 3/2$
		1.889			1.448			2.396	
		0.064			0.086			0.138	
7	265.0	0.780	±7/2	343.3	0.541	±7/2	430.3	0.377	$\pm 5/2$
		6.511			5.239			4.433	
		8.752			9.358			9.520	
8	277.5	7.878	$\pm 5/2$	364.2	8.596	±1/2	460.8	8.902	$\pm 1/2$
		2.319			1.229			1.030	
θ		74.8°			80°			85°	
KDs	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m _J	E/cm^{-1}	g	m_J
		0.000			0.000			0.000	
1	0.0	0.000	±15/2	0.0	0.000	±15/2	0.0	0.000	±15/2
		17.881			17.881			17.881	
		0.137			0.129			0.122	
2	109.4	0.137	±13/2	155.3	0.129	±13/2	191.5	0.122	±13/2
		15.477			15.479			15.470	
		0.134			0.117			0.109	
3	196.6	0.134	±11/2	237.9	0.117	±11/2	270.3	0.110	±11/2
		12.803			12.927			13.000	
		0.024			0.024			0.019	
4	272.6	0.029	±9/2	310.6	0.028	±9/2	338.4	0.023	±9/2
		9.923			10.298			10.486	

Table S2. Calculated energy levels (cm⁻¹), g (g_x , g_y , g_z) tensors and predominant m_J values of the lowest eight Kramers doublets (KDs) for **1** with the different included θ angles (degree) keeping the Er-N bond lengths (Å) fixed using CASSCF/RASSI-SO with MOLCAS 8.4.

		5.988			4.628			3.919	
5	338.6	5.942	±7/2	390.1	4.675	±7/2	425.6	3.955	±7/2
		5.871			6.914			7.397	
		5.975			4.613			3.959	
6	448.9	5.879	$\pm 3/2$	506.1	4.648	±5/2	549.9	3.988	$\pm 5/2$
		3.637			4.698			5.047	
		0.128			0.191			0.191	
7	512.5	0.238	$\pm 5/2$	589.6	0.240	±3/2	648.3	0.220	$\pm 3/2$
		3.957			3.676			3.549	
		9.556			9.673			9.704	
8	553.0	9.146	$\pm 1/2$	640.9	9.217	±1/2	708.7	9.282	$\pm 1/2$
		1.058			1.109			1.136	
θ		90°							
KDs	E/cm^{-1}	g	$\overline{m_J}$						
		0.000							
1	0.0	0.000	±15/2						
		17.866							
		0.113							
2	212.6	0.113	±13/2						
		15.455							
		0.102							
3	291.6	0.103	±11/2						
		13.039							
		0.013							
4	358.2	0.017	±9/2						
		10.565							
		3.874							
5	448.2	3.900	±7/2						
		7.489							
		3.891							
6	579.9	3.920	±5/2						
		5.093							
		0.159							
7	686.8	0.208	$\pm 3/2$						
		3.526							
		9.697							
8	753.0	9.323	±1/2						
		1.140							

Table S3. Wave functions with definite projection of the total moments $|m_J\rangle$ for the lowest two KDs for 1 with the different included θ angles (degree) keeping the Er-N bond lengths (Å) fixed using CASSCF/RASSI-SO with MOLCAS 8.4.

θ	E/cm^{-1}	wave functions
60°	0.0	97.45% ±15/2>+2.08% ±9/2>

	10.5	94.59% ±13/2>+4.36% ±7/2>
(50	0.0	99.82% ±15/2>
0.5	30.0	99.22% ±13/2>
709	0.0	99.75% ±15/2>
/0*	66.2	99.34% ±13/2>
71.00	0.0	99.59% ±15/2>
/4.8	109.4	99.69% ±13/2>
800	0.0	99.61% ±15/2>
80-	155.3	99.77% ±13/2>
950	0.0	99.62% ±15/2>
85	191.5	99.70% ±13/2>
0.00	0.0	99.42% ±15/2>
90*	212.6	99.53% ±13/2>

Figure S1. Magnetization blocking barriers for 1 with the different included θ angles keeping Er-N bond lengths fixed. The thick black lines represent the KDs as a function of their magnetic moments along the magnetic axes. The green lines correspond to diagonal matrix elements of their transversal magnetic moments; the blue lines represent Orbach relaxation processes. The path shown by the red arrows represent the most probable path for magnetic relaxation in the corresponding compounds. The numbers at each arrow stand for the mean absolute value of the corresponding matrix element of transition magnetic moment.

θ	60°			65°			70°		
KDs	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J
		0.005			0.001			0.001	
1	0.0	0.006	±15/2	0.0	0.001	±15/2	0.0	0.001	±15/2
		17.845			17.891			17.895	
		0.073			0.023			0.012	
2	84.4	0.087	±13/2	114.1	0.031	±13/2	143.5	0.017	±13/2
		15.196			15.360			15.411	
		0.004			0.027			0.015	
3	151.9	0.027	±11/2	187.6	0.036	$\pm 11/2$	220.5	0.036	±11/2
		12.254			12.644			12.860	
4	211.2	1.879	±9/2	254.4	1.186	±9/2	291.9	0.760	±9/2

Table S4. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and predominant m_J values of the lowest eight KDs for **2** with the different included θ angles (degree) keeping the Er-O bond lengths (Å) fixed using CASSCF/RASSI-SO with MOLCAS 8.4¹.

		1.989			1.191			0.777	
		9.266			9.968			10.355	
		6.991			2.587			2.081	
5	267.7	5.808	±7/2	325.6	4.835	±7/2	375.7	3.555	±7/2
		3.292			7.098			7.702	
		2.649			5.894			5.337	
6	336.2	3.907	$\pm 5/2$	406.9	4.849	$\pm 5/2$	471.0	4.970	±5/2
		7.377			1.517			0.722	
		1.806			2.036			2.326	
7	375.5	4.488	±3/2	464.8	3.946	±3/2	545.8	3.559	±3/2
		8.636			7.853			7.571	
		0.668			0.808			0.854	
8	404.3	3.210	±1/2	504.6	3.923	$\pm 1/2$	597.0	4.167	±1/2
		14.696			14.372			14.302	
θ		75.7°			80°			85°	
KDs	E/cm ⁻¹	g	m_J	E/cm ⁻¹	g	m_J	E/cm ⁻¹	g	m_J
		0.001			0.001			0.000	
1	0.0	0.001	±15/2	0.0	0.001	±15/2	0.0	0.000	±15/2
		17.887			17.879			17.868	
		0.019			0.024			0.028	
2	167.7	0.021	±13/2	176.1	0.026	±13/2	181.7	0.030	±13/2
		15.427			15.439			15.463	
		0.001			0.003			0.011	
3	248.1	0.031	±11/2	259.9	0.036	±11/2	261.4	0.037	±11/2
		13.000			13.063			13.093	
		0.467			0.356			0.275	
4	323.6	0.496	±9/2	339.8	0.392	±9/2	349.0	0.312	±9/2
		10.580			10.667			10.700	
		2.028			2.138			2.307	
5	418.6	2.952	±7/2	440.8	2.832	±7/2	454.2	2.820	±7/2
		7.976			8.031			7.999	
		5.496			5.487			5.440	
6	527.9	4.704	$\pm 5/2$	557.2	4.791	±5/2	573.9	4.955	±5/2
		0.369			0.305			0.298	
		2.204			2.888			2.891	
7	618.0	3.245	$\pm 3/2$	653.3	3.138	±3/2	671.9	3.258	±3/2
		7.009			8.052			8.570	
		0.921			0.804			0.740	
8	677.7	4.747	$\pm 1/2$	723.2	3.772	±1/2	746.3	3.350	±1/2
		13.889			14.671			14.972	
θ		90°							
KDs	E/cm^{-1}	g	m_J						
1	0.0	0.001	+15/2						
	0.0	0.001	±1 <i>J</i> /2						

		17.862	
		0.033	
2	193.9	0.034	±13/2
		15.493	
		0.023	
3	251.1	0.034	±11/2
		13.085	
		0.267	
4	352.1	0.294	±9/2
		10.659	
		2.405	
5	454.8	2.863	±7/2
		7.896	
		5.4360	
6	572.0	5.0334	$\pm 5/2$
		0.2783	
		2.737	
7	666.0	3.483	±3/2
		9.104	
		0.670	
8	740.5	2.928	±1/2
		15.245	

Table S5. Wave functions with definite projection of the total moments $|m_J\rangle$ for the lowest two KDs for **2** with the different included θ angles (degree) keeping the Er-O bond lengths (Å) fixed using CASSCF/RASSI-SO with MOLCAS 8.4.

θ	E/cm^{-1}	wave functions
(00	0.0	98.87% ±15/2>
00-	84.4	92.68% ±13/2>+4.05% ±7/2>
(50	0.0	99.62% ±15/2>
0.5	114.1	95.81% ±13/2>+2.13% ±7/2>
700	0.0	99.74% ±15/2>
/0*	143.5	97.64% ±13/2>
75 70	0.0	99.71% ±15/2>
/5./*	167.7	98.82% ±13/2>
800	0.0	99.60% ±15/2>
80-	176.1	99.18% ±13/2>
950	0.0	99.46% ±15/2>
85°	181.7	99.24% ±13/2>
008	0.0	99.40% ±15/2>
90°	193.9	99.07% ±13/2>

70°

0.74×10⁻³

-4

_____0 Μ (μ_B)

-5/2-

-7/2

-9/2-

-11/2

-8

-13/2

-15/2-

-12

720 -

660

600 ·

540 ·

480

420 ·

5 360 300

12 240 ·

180

120

60

0

-4

-8

-1/2-

-3/2-

-5/2-

-7/2

+1/2

-+3/2

-+5/2

+7/2

—+9/2

—+11/2

12

8

4

-+5/2

4

+7/2

-+9/2

-+11/2

8

+13/2

+15/2

12

Μ⁰(μ_B)

-12

Figure S2. Magnetization blocking barriers for **2** with the different included θ angles keeping the Er-O bond lengths fixed. The thick black lines represent the KDs as a function of their magnetic moments along the magnetic axes. The green lines correspond to diagonal matrix elements of their transversal magnetic moments; the blue lines represent Orbach relaxation processes. The path shown by the red arrows represent the most probable path for magnetic relaxation in the corresponding compounds. The numbers at each arrow stand for the mean absolute value of the corresponding matrix element of transition magnetic moment.

Table S6. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and predominant m_J values of the lowest eight KDs for **3** with the different included θ angles (degree) keeping the Er-C bond lengths (Å) fixed using CASSCF/RASSI-SO with MOLCAS 8.4¹.

θ	60°		65°			69.3°			
KDs	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J
		0.001			0.000			0.000	
1	0.0	0.001	±15/2	0.0	0.000	±15/2	0.0	0.000	±15/2
		17.765			17.789			17.819	
		0.320			0.294			0.293	
2	16.7	0.323	±13/2	49.4	0.295	±13/2	81.6	0.293	$\pm 13/2$
		15.280			15.375			15.406	
		0.280			0.165			0.185	
3	73.5	0.287	±11/2	117.9	0.169	±11/2	155.7	0.186	±11/2
		11.728			12.472			12.702	
		8.927			0.037			0.019	
4	92.5	8.803	$\pm 1/2$	160.6	0.054	$\pm 9/2$	208.4	0.030	±9/2
		1.821			8.325			9.193	
		0.052			8.705			8.290	
5	97.8	0.072	±9/2	169.5	8.600	$\pm 5/2$	232.1	8.230	$\pm 5/2$
		6.882			2.820			3.665	
		6.092			8.334			8.180	
6	207.4	5.568	$\pm 3/2$	289.9	7.976	$\pm 1/2$	353.3	8.006	$\pm 3/2$
		3.874			1.492			1.429	
		0.109			0.032			0.046	
7	212.4	0.398	±7/2	297.7	0.409	±7/2	372.7	0.243	±7/2
		6.379			4.813			3.979	
		5.779			9.055			9.415	
8	216.9	5.502	$\pm 5/2$	305.9	8.575	$\pm 3/2$	389.0	9.076	$\pm 1/2$
		4.475			1.749			1.037	
θ	75°			80°			85°		
KDs	E/cm ⁻¹	g	m_J	E/cm ⁻¹	g	m_J	E/cm ⁻¹	g	m _J
		0.000			0.000			0.000	
1	0.0	0.000	±15/2	0.0	0.000	±15/2	0.0	0.000	±15/2
		17.871			17.907			17.920	
2	126.6	0.284	+13/2	162.7	0.268	+13/2	102.1	0.246	+13/2
	120.0	0.284	-13/2	102.7	0.268	+13/2	172.1	0.246	+13/2

		15.437			15.458			15.465	
		0.205			0.210			0.202	
3	204.2	0.207	$\pm 11/2$	242.4	0.212	±11/2	274.9	0.203	$\pm 11/2$
		12.866			12.946			12.996	
		0.007			0.005			0.004	
4	263.7	0.019	$\pm 9/2$	304.3	0.015	±9/2	339.0	0.013	$\pm 9/2$
		9.881			10.191			10.356	
		7.582			6.940			6.422	
5	307.6	7.549	±7/2	363.1	6.914	±7/2	408.7	6.400	±7/2
		4.810			5.609			6.131	
		7.539			6.930			6.425	
6	432.0	7.459	$\pm 3/2$	492.6	6.872	±3/2	543.5	6.379	$\pm 5/2$
		2.421			3.221			3.740	
		0.057			0.066			0.072	
7	470.7	0.135	$\pm 5/2$	547.8	0.108	±5/2	612.2	0.096	$\pm 3/2$
		3.428			3.253			3.214	
		9.516			9.575			9.605	
8	498.5	9.293	±1/2	584.9	9.376	±1/2	657.2	9.414	$\pm 1/2$
		1.011			1.067			1.101	
$\overline{\ }\theta$		90°					1		
KDs	E/cm^{-1}	g	<i>m</i> ₁						
		0.000							
1	0.0	0.000	±15/2						
-		17.908							
		0.220							
2	211.3	0.220	±13/2						
-		15.457	-10/2						
		0.182							
3	299.7	0.183	+11/2						
5	277.1	13 025	-11/2						
		0.006							
4	367.7	0.013	+9/2						
-	507.7	10.438	-72						
<u> </u>		6,006							
5	113.6	6 1 1 0	+7/2						
5	-+5.0	6 301	11/2						
		6 1 2 2							
6	502.0	6.001	+5/2						
U	382.0	2.074	±3/2						
		3.974							
7	1	1 00/9		1					
/	(50.5	0.000	12/2						
7	659.5	0.099	$\pm 3/2$						
/	659.5	0.099 3.247	±3/2						
8	659.5 710.0	0.099 3.247 9.621	±3/2 ±1/2						

	1.111	
--	-------	--

Table S7. Wave functions with definite projection of the total moments $|m_J\rangle$ for the lowest two KDs for **3** with the different included θ angles (degree) keeping the Er-C bond lengths (Å) fixed using CASSCF/RASSI-SO with MOLCAS 8.4.

θ	E/cm^{-1}	wave functions
609	0.0	98.24% ±15/2>
00-	16.7	97.52% ±13/2>
(50	0.0	98.36% ±15/2>
655	49.4	98.64% ±13/2>
(0.20	0.0	98.66% ±15/2>
09.3	81.6	98.99% ±13/2>
750	0.0	99.31% ±15/2>
/5*	126.6	99.33% ±13/2>
200	0.0	99.78% ±15/2>
80-	162.7	99.57% ±13/2>
950	0.0	99.96% ±15/2>
85-	192.1	99.65% ±13/2>
0.09	0.0	99.80% ±15/2>
90-	211.3	99.52% ±13/2>

Figure S3. Magnetization blocking barriers for 3 with the different included θ angles keeping the Er-C bond lengths fixed. The thick black lines represent the KDs as a function of their magnetic moments along the magnetic axes. The green lines correspond to diagonal matrix elements of their transversal magnetic moments; the blue lines represent Orbach relaxation processes. The path shown by the red arrows represent the most probable path for magnetic relaxation in the corresponding compounds. The numbers at each arrow stand for the mean absolute value of the corresponding matrix element of transition magnetic moment.

θ		40°		50°			60°		
KDs	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J
		0.015			0.000			0.000	
1	0.0	0.021	±15/2	0.0	0.001	±15/2	0.0	0.000	±15/2
		14.423			17.062			17.826	
		6.918			0.479			0.018	
2	19.3	6.912	±7/2	39.5	0.480	±13/2	52.7	0.019	±13/2
		5.366			14.507			15.394	
		5.823			0.259			0.047	
3	57.3	5.787	±3/2	116.2	0.266	±11/2	159.2	0.049	±11/2
		0.115			11.323			12.672	
4	75.9	0.013	±5/2	151.5	9.443	±1/2	246.1	0.055	±9/2

Table S8. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and predominant m_J values of the lowest eight KDs for simple model Er(NH₂)₃ with the different included θ angles (degree) keeping the Er-N bond lengths (Å) fixed using CASSCF/RASSI-SO with MOLCAS 8.4.

		0.019			8.918			0.062	
		4.434			1.323			9.245	
		7.700			0.236			8.079	
5	104.8	7.617	±1/2	163.3	0.264	±7/2	284.4	7.979	±5/2
		0.127			5.682			3.684	
		1.770			6.780			7.909	
6	188.0	1.781	±9/2	232.1	6.366	$\pm 3/2$	378.8	7.555	±3/2
		11.106			3.856			1.587	
		0.016			0.055			0.069	
7	229.5	0.045	±13/2	241.9	0.363	±9/2	395.6	0.503	±7/2
		13.075			8.901			4.847	
		2.206			6.788			9.532	
8	241.4	2.281	±11/2	256.4	6.517	$\pm 5/2$	413.7	8.862	±1/2
		11.954			5.325			1.163	
θ		70°			74.8°			80°	
KDs	E/cm ⁻¹	g	m_J	E/cm ⁻¹	g	m_J	E/cm ⁻¹	g	m_J
		0.000			0.000			0.000	
1	0.0	0.000	±15/2	0.0	0.000	±15/2	0.0	0.000	±15/2
		17.858			17.829			17.860	
		0.049			0.174			0.076	
2	103.4	0.049	±13/2	118.0	0.174	±13/2	215.6	0.076	±13/2
		15.484			15.457			15.484	
		0.063			0.154			0.079	
3	239.3	0.063	±11/2	225.6	0.155	±11/2	309.1	0.079	±11/2
		12.901			12.843			12.978	
		0.020			0.019			0.013	
4	331.8	0.025	±9/2	321.8	0.024	±9/2	388.3	0.016	±9/2
		10.117			10.011			10.424	
		5.631			5.622			3.766	
5	407.5	5.664	±7/2	399.4	5.662	±7/2	484.1	3.789	±7/2
		6.160			6.043			7.323	
		5.582			5.695			3.760	
6	523.1	5.516	$\pm 3/2$	517.3	5.625	$\pm 3/2$	624.1	3.788	±5/2
		3.862			3.734			5.004	
		0.128			0.117			0.134	
7	593.8	0.238	±5/2	592.0	0.186	±5/2	739.2	0.189	±3/2
		4.042			3.831			3.722	
8		9.613			9.518			9.648	
	638.8	9.203	$\pm 1/2$	640.1	9.177	±1/2	809.7	9.310	±1/2
L		1.093			1.050			1.132	
$\bigtriangledown \theta$		90°							
KDs	E/cm^{-1}	g	m_J						
1	0.0	0.000	+15/2						
1	0.0	0.000	+13/2						

		17.859	
		0.108	
2	233.7	0.108	±13/2
		15.478	
		0.098	
3	322.6	0.099	±11/2
		12.983	
		0.012	
4	398.2	0.015	±9/2
		0.460	
		3.119	
5	499.4	3.143	±7/2
		7.561	
		3.175	
6	644.8	3.195	±5/2
		5.238	
		0.141	
7	772.1	0.174	±3/2
		3.632	
		9.641	
8	850.1	9.315	±1/2
		1.135	

Table S9. Wave functions with definite projection of the total moments $| m_J \rangle$ for the lowest two KDs for simple model Er(NH₂)₃ with the different included θ angles (degree) keeping the Er-N bond lengths (Å) fixed using CASSCF/RASSI-SO with MOLCAS 8.4.

θ	E/cm^{-1}	wave functions
409	0.0	56.95% ±15/2>+37.72% ±9/2>
40*	19.3	$12.21\% \pm 13/2 > +40.00\% \pm 7/2 > +41.11\% \pm 1/2 > +6.43\% \pm 5/2 >$
500	0.0	88.44% ±15/2>+11.02% ±9/2>
30*	39.5	86.59% ±13/2>+12.56% ±7/2>
600	0.0	98.71% ±15/2>
00-	52.7	98.27% ±13/2>
700	0.0	99.20% ±15/2>
/0*	103.4	99.67% ±13/2>
74.99	0.0	98.85% ±15/2>
/4.8	118.0	99.50% ±13/2>
800	0.0	99.29% ±15/2>
805	215.6	99.87% ±13/2>
0.00	0.0	99.30% ±15/2>
90*	233.7	99.84% ±13/2>

Figure S4. Magnetization blocking barriers for simple model $Er(NH_2)_3$ with the different included θ angles keeping the Er-N bond lengths fixed. The thick black lines represent the KDs as a function of their magnetic moments along the magnetic axes. The green lines correspond to diagonal matrix elements of their transversal magnetic moments; the blue lines represent Orbach relaxation processes. The path shown by the red arrows represent the most probable path for magnetic relaxation in the corresponding compounds. The numbers at each arrow stand for the mean absolute value of the corresponding matrix element of transition magnetic moment.

Er-N		1.80 Å			1.90 Å			2.00 Å		
KDs	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J	
		0.005			0.036			0.000		
1	0.0	0.013	±15/2	0.0	0.063	±15/2	0.0	0.000	±15/2	
		15.068			17.009			17.702		
		7.021			1.204			0.302		
2	121.7	6.987	±7/2	194.6	4.506	±9/2	241.3	0.303	±13/2	
		5.302			10.944			15.246		
		0.018			0.669			0.285		
3	170.8	0.062	±11/2	207.3	3.423	±7/2	283.2	0.287	±11/2	
		12.125			11.914			12.935		
		1.697			0.894			0.010		
4	179.5	1.740	±9/2	236.3	4.276	±13/2	320.5	0.017	$\pm 9/2$	
		11.706			11.043			10.570		
		1.522			1.920			4.223		
5	266.1	1.531	±13/2	294.8	3.592	±11/2	404.2	4.245	±7/2	
		13.713			12.344			7.378		
		7.371			3.241			4.258		
6	452.5	7.288	±3/2	487.8	4.287	±3/2	568.3	4.305	$\pm 5/2$	
		2.316			8.600			4.888		
		0.037			3.603			0.066		
7	597.0	0.181	±5/2	643.6	2.788	±5/2	710.0	0.149	$\pm 3/2$	
		3.366			1.490			3.602		
		9.397			9.876			9.585		
8	705.1	9.175	±1/2	746.5	8.902	±1/2	800.7	9.370	$\pm 1/2$	
		0.891			1.024			1.130		
Er-N		2.10 Å			2.20 Å			2.30 Å		
KDs	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J	
		0.000			0.000			0.000		
1	0.0	0.000	±15/2	0.0	0.000	±15/2	0.0	0.000	±15/2	
		17.810			17.862			17.892		
		0.155			0.116			0.093		
2	230.8	0.155	±13/2	214.5	0.116	±13/2	196.7	0.093	±13/2	
		15.398			15.451			15.480		
3	295.4	0.147	±11/2	292.5	0.105	±11/2	281.6	0.081	±11/2	

Table S10. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and predominant m_J values of the lowest eight KDs for **1** with the different Er-N bond lengths (Å) keeping the θ of 90° using CASSCF/RASSI-SO with MOLCAS 8.4.

		0.148			0.106			0.082	
		13.003			13.036			13.058	
		0.008			0.008			0.009	
4	350.4	0.014	±9/2	358.3	0.013	±9/2	353.4	0.012	$\pm 9/2$
		10.564			10.564			10.572	
		3.778			3.863			3.980	
5	440.6	3.796	±7/2	448.4	3.881	±7/2	440.8	3.998	$\pm 7/2$
		7.515			7.493			7.467	
		3.788			3.877			3.998	
6	586.8	3.822	±5/2	581.5	3.903	±5/2	561.4	4.017	$\pm 5/2$
		5.108			5.097			5.070	
		0.076			0.084			0.090	
7	712.1	0.140	±3/2	690.2	0.134	±3/2	655.4	0.131	$\pm 3/2$
		3.563			3.528			3.509	
		9.605			9.619			9.630	
8	790.7	9.390	±1/2	757.5	9.400	±1/2	713.0	9.408	$\pm 1/2$
		1.140			1.141			1.141	
Er-N		2.40 Å	1		2.50 Å			2.60 Å	
KDs	E/cm^{-1}	g	m _J	E/cm ⁻¹	g	m_J	E/cm^{-1}	g	m_J
		0.000			0.000			0.000	
1	0.0	0.000	±15/2	0.0	0.000	±15/2	0.0	0.000	±15/2
		17.910			17.923			17.932	
		0.076			0.062			0.050	
2	179.3	0.076	±13/2	163.1	0.062	±13/2	148.6	0.050	$\pm 13/2$
		15.498			15.512			15.521	
		0.064			0.050			0.039	
3									
	267.1	0.065	±11/2	251.2	0.051	±11/2	235.2	0.040	±11/2
	267.1	0.065 13.076	±11/2	251.2	0.051 13.090	±11/2	235.2	0.040 13.102	±11/2
	267.1	0.065 13.076 0.008	±11/2	251.2	0.051 13.090 0.008	±11/2	235.2	0.040 13.102 0.008	±11/2
4	267.1 341.5	0.065 13.076 0.008 0.012	±11/2 ±9/2	251.2 326.0	0.051 13.090 0.008 0.011	±11/2 ±9/2	235.2	0.040 13.102 0.008 0.010	±11/2 ±9/2
4	267.1 341.5	0.065 13.076 0.008 0.012 10.587	±11/2 ±9/2	251.2 326.0	0.051 13.090 0.008 0.011 10.605	±11/2 ±9/2	235.2	0.040 13.102 0.008 0.010 10.624	±11/2 ±9/2
4	267.1 341.5	0.065 13.076 0.008 0.012 10.587 4.013	±11/2 ±9/2	251.2 326.0	0.051 13.090 0.008 0.011 10.605 3.968	±11/2 ±9/2	235.2 309.0	0.040 13.102 0.008 0.010 10.624 3.866	±11/2 ±9/2
4	267.1 341.5 425.1	0.065 13.076 0.008 0.012 10.587 4.013 4.030	±11/2 ±9/2 ±7/2	251.2 326.0 405.2	0.051 13.090 0.008 0.011 10.605 3.968 3.984	±11/2 ±9/2 ±7/2	235.2 309.0 383.8	0.040 13.102 0.008 0.010 10.624 3.866 3.880	±11/2 ±9/2 ±7/2
4	267.1 341.5 425.1	0.065 13.076 0.008 0.012 10.587 4.013 4.030 7.474	±11/2 ±9/2 ±7/2	251.2 326.0 405.2	0.051 13.090 0.008 0.011 10.605 3.968 3.984 7.512	±11/2 ±9/2 ±7/2	235.2 309.0 383.8	0.040 13.102 0.008 0.010 10.624 3.866 3.880 7.569	±11/2 ±9/2 ±7/2
4	267.1 341.5 425.1	0.065 13.076 0.008 0.012 10.587 4.013 4.030 7.474 4.031	±11/2 ±9/2 ±7/2	251.2 326.0 405.2	0.051 13.090 0.008 0.011 10.605 3.968 3.984 7.512 3.985	±11/2 ±9/2 ±7/2	235.2 309.0 383.8	0.040 13.102 0.008 0.010 10.624 3.866 3.880 7.569 3.881	±11/2 ±9/2 ±7/2
4	267.1 341.5 425.1 533.5	0.065 13.076 0.008 0.012 10.587 4.013 4.030 7.474 4.031 4.046	±11/2 ±9/2 ±7/2 ±5/2	251.2 326.0 405.2 502.4	0.051 13.090 0.008 0.011 10.605 3.968 3.984 7.512 3.985 3.997	±11/2 ±9/2 ±7/2 ±5/2	235.2 309.0 383.8 470.7	0.040 13.102 0.008 0.010 10.624 3.866 3.880 7.569 3.881 3.892	±11/2 ±9/2 ±7/2 ±5/2
4	267.1 341.5 425.1 533.5	0.065 13.076 0.008 0.012 10.587 4.013 4.030 7.474 4.031 4.046 5.074	±11/2 ±9/2 ±7/2 ±5/2	251.2 326.0 405.2 502.4	0.051 13.090 0.008 0.011 10.605 3.968 3.984 7.512 3.985 3.997 5.109	±11/2 ±9/2 ±7/2 ±5/2	235.2 309.0 383.8 470.7	0.040 13.102 0.008 0.010 10.624 3.866 3.880 7.569 3.881 3.892 5.166	±11/2 ±9/2 ±7/2 ±5/2
4	267.1 341.5 425.1 533.5	0.065 13.076 0.008 0.012 10.587 4.013 4.030 7.474 4.031 4.046 5.074 0.096	±11/2 ±9/2 ±7/2 ±5/2	251.2 326.0 405.2 502.4	0.051 13.090 0.008 0.011 10.605 3.968 3.984 7.512 3.985 3.997 5.109 0.102	±11/2 ±9/2 ±7/2 ±5/2	235.2 309.0 383.8 470.7	0.040 13.102 0.008 0.010 10.624 3.866 3.880 7.569 3.881 3.892 5.166 0.106	±11/2 ±9/2 ±7/2 ±5/2
4 5 6 7	267.1 341.5 425.1 533.5 615.1	0.065 13.076 0.008 0.012 10.587 4.013 4.030 7.474 4.031 4.046 5.074 0.096 0.129	<pre>±11/2 ±9/2 ±7/2 ±5/2 ±3/2</pre>	251.2 326.0 405.2 502.4 573.6	0.051 13.090 0.008 0.011 10.605 3.968 3.984 7.512 3.985 3.997 5.109 0.102 0.130	$\pm 11/2$ $\pm 9/2$ $\pm 7/2$ $\pm 5/2$ $\pm 3/2$	235.2 309.0 383.8 470.7 533.3	0.040 13.102 0.008 0.010 10.624 3.866 3.880 7.569 3.881 3.892 5.166 0.106 0.130	$\pm 11/2$ $\pm 9/2$ $\pm 7/2$ $\pm 5/2$ $\pm 3/2$
4 5 6 7	267.1 341.5 425.1 533.5 615.1	0.065 13.076 0.008 0.012 10.587 4.013 4.030 7.474 4.031 4.046 5.074 0.096 0.129 3.501	$\pm 11/2$ $\pm 9/2$ $\pm 7/2$ $\pm 5/2$ $\pm 3/2$	251.2 326.0 405.2 502.4 573.6	0.051 13.090 0.008 0.011 10.605 3.968 3.984 7.512 3.985 3.997 5.109 0.102 0.130 3.501	$\pm 11/2$ $\pm 9/2$ $\pm 7/2$ $\pm 5/2$ $\pm 3/2$	235.2 309.0 383.8 470.7 533.3	0.040 13.102 0.008 0.010 10.624 3.866 3.880 7.569 3.881 3.892 5.166 0.106 0.130 3.506	$\pm 11/2$ $\pm 9/2$ $\pm 7/2$ $\pm 5/2$ $\pm 3/2$
4 5 6 7	267.1 341.5 425.1 533.5 615.1	0.065 13.076 0.008 0.012 10.587 4.013 4.030 7.474 4.031 4.046 5.074 0.096 0.129 3.501 9.640	<pre>±11/2 ±9/2 ±7/2 ±5/2 ±3/2</pre>	251.2 326.0 405.2 502.4 573.6	0.051 13.090 0.008 0.011 10.605 3.968 3.984 7.512 3.985 3.997 5.109 0.102 0.130 3.501 9.651	$\pm 11/2$ $\pm 9/2$ $\pm 7/2$ $\pm 5/2$ $\pm 3/2$	235.2 309.0 383.8 470.7 533.3	0.040 13.102 0.008 0.010 10.624 3.866 3.880 7.569 3.881 3.892 5.166 0.106 0.130 3.506 9.660	<pre>±11/2 ±9/2 ±7/2 ±5/2 ±3/2</pre>
4 5 6 7 8	267.1 341.5 425.1 533.5 615.1 6664.5	0.065 13.076 0.008 0.012 10.587 4.013 4.030 7.474 4.031 4.046 5.074 0.096 0.129 3.501 9.640 9.414	$\pm 11/2$ $\pm 9/2$ $\pm 7/2$ $\pm 5/2$ $\pm 3/2$ $\pm 1/2$	251.2 326.0 405.2 502.4 573.6 616.2	0.051 13.090 0.008 0.011 10.605 3.968 3.984 7.512 3.985 3.997 5.109 0.102 0.130 3.501 9.651 9.418	$\pm 11/2$ $\pm 9/2$ $\pm 7/2$ $\pm 5/2$ $\pm 3/2$ $\pm 1/2$	235.2 309.0 383.8 470.7 533.3 570.3	0.040 13.102 0.008 0.010 10.624 3.866 3.880 7.569 3.881 3.892 5.166 0.106 0.130 3.506 9.660 9.422	$\pm 11/2$ $\pm 9/2$ $\pm 7/2$ $\pm 5/2$ $\pm 3/2$ $\pm 1/2$
4 5 6 7 8	267.1 341.5 425.1 533.5 615.1 664.5	0.065 13.076 0.008 0.012 10.587 4.013 4.030 7.474 4.031 4.046 5.074 0.096 0.129 3.501 9.640 9.414 1.143	$\pm 11/2$ $\pm 9/2$ $\pm 7/2$ $\pm 5/2$ $\pm 3/2$ $\pm 1/2$	251.2 326.0 405.2 502.4 573.6 616.2	0.051 13.090 0.008 0.011 10.605 3.968 3.984 7.512 3.985 3.997 5.109 0.102 0.130 3.501 9.651 9.418 1.146	$\pm 11/2$ $\pm 9/2$ $\pm 7/2$ $\pm 5/2$ $\pm 3/2$ $\pm 1/2$	235.2 309.0 383.8 470.7 533.3 570.3	0.040 13.102 0.008 0.010 10.624 3.866 3.880 7.569 3.881 3.892 5.166 0.106 0.130 3.506 9.660 9.422 1.151	$\pm 11/2$ $\pm 9/2$ $\pm 7/2$ $\pm 5/2$ $\pm 3/2$ $\pm 1/2$

KDs	E/cm^{-1}	g	m_J
		0.000	
1	0.0	0.000	±15/2
		17.939	
		0.040	
2	135.8	0.040	±13/2
		15.529	
		0.031	
3	220.0	0.032	±11/2
		13.113	
		0.007	
4	291.8	0.009	±9/2
		10.6431	
		3.725	
5	362.1	3.738	±7/2
		7.638	
		3.738	
6	440.1	3.748	±5/2
		5.234	
		0.109	
7	495.5	0.130	±3/2
		3.513	
		9.668	
8	527.8	9.426	±1/2
		1.156	

Table S11. Wave functions with definite projection of the total moments $|m_j\rangle$ for the lowest two KDs for **1** with the different Er-N bond lengths (Å) keeping the θ of 90° using CASSCF/RASSI-SO with MOLCAS 8.4.

θ	E/cm^{-1}	wave functions
1.00 Å	0.0	66.66% ±15/2>+30.06% ±9/2>
1.80 A	121.7	64.87% ±7/2>+19.66% ±5/2>+7.13% ±1/2>+7.45% ±13/2>
1.00 Å	0.0	88.28% ±15/2>+9.56% ±9/2>
1.90 A	194.6	$17.80\% \pm 13/2 > + 26.03\% \pm 11/2 > + 29.00\% \pm 9/2 > + 14.38\% \pm 7/2 > + 5.30\% \pm 5/2 > - 5.30\% \pm 5/2 > $
2.00 Å	0.0	97.86% ±15/2>
2.00 A	241.3	97.57% ±13/2>
2.10 Å	0.0	98.95% ±15/2>
2.10 A	230.8	99.07% ±13/2>
2 20 Å	0.0	99.40% ±15/2>
2.20 A	214.5	99.52% ±13/2>
2 20 Å	0.0	99.61% ±15/2>
2.30 A	196.7	99.69% ±13/2>
2 40 Å	0.0	99.74% ±15/2>
2.40 A	179.3	99.79% ±13/2>

Figure S5. Magnetization blocking barriers for **1** with the different Er-N bond lengths keeping the θ of 90°. The thick black lines represent the KDs as a function of their magnetic moments along the magnetic axes. The green lines correspond to diagonal matrix elements of their transversal magnetic moments; the blue lines represent Orbach relaxation processes. The path shown by the red arrows represent the most probable path for magnetic relaxation in the corresponding compounds. The numbers at each arrow stand for the mean absolute value of the corresponding matrix element of transition magnetic moment.

Er-0		1.80 Å		1.90 Å			2.00 Å		
KDs	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J
		0.083			0.008			0.001	
1	0.0	0.210	±15/2	0.0	0.016	±15/2	0.0	0.002	$\pm 15/2$
		17.177			17.724			17.840	
		2.183			0.281			0.058	
2	112.4	3.269	±13/2	142.4	0.316	±13/2	153.2	0.061	±13/2
		13.574			15.436			15.487	
		2.312			0.242			0.045	
3	139.9	2.996	±11/2	211.5	0.303	±11/2	244.9	0.057	±11/2
		11.211			12.977			13.071	
4	106.0	0.882	10/2	202.2	0.450	10/2	220.2	0.297	10/2
4	190.0	1.016	±9/2	293.2	0.514	±9/2	339.3	0.326	±9/2

Table S12. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and predominant m_J values of the lowest eight KDs of **2** with the different Er-O bond lengths (Å) keeping the θ of 90° using CASSCF/RASSI-SO with MOLCAS 8.4.

		10.775			10.536			10.639	
		5.242			4.731			2.981	
5	261.8	5.829	±7/2	391.6	5.594	±7/2	446.0	3.507	±7/2
		8.022			6.867			7.711	
		2.509			1.734			6.212	
6	497.7	2.671	±5/2	550.7	4.047	±5/2	571.6	5.028	$\pm 5/2$
		11.332			8.858			0.508	
		1.644			2.236			2.644	
7	625.3	2.056	±3/2	666.4	2.579	±3/2	672.9	3.016	$\pm 3/2$
		11.002			10.111			9.274	
		0.550			0.640			0.692	
8	735.4	2.564	±1/2	758.7	2.918	±1/2	750.6	3.119	$\pm 1/2$
		15.301			15.197			15.096	
Er-O		2.10 Å	1		2.20 Å	1		2.30 Å	
KDs	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J
		0.000			0.000			0.000	
1	0.0	0.000	±15/2	0.0	0.000	±15/2	0.0	0.000	±15/2
		17.888			17.914			17.929	
		0.017			0.008			0.006	
2	152.5	0.018	±13/2	145.9	0.009	±13/2	136.6	0.006	±13/2
		15.506			15.519			15.529	
		0.012			0.004			0.002	
3	254.3	0.017	±11/2	250.5	0.010	±11/2	240.0	0.007	±11/2
		13.102			13.116			13.125	
		0.218			0.187			0.170	
4	353.2	0.235	±9/2	349.0	0.198	±9/2	335.2	0.177	±9/2
		10.681			10.697			10.706	
		1.957			1.639			1.533	
5	457.8	2.323	±7/2	447.9	1.944	±7/2	427.1	1.803	±7/2
		8.030			8.120			8.157	
		5.493			5.609			5.668	
6	566.4	4.407	±5/2	544.2	3.575	±5/2	512.9	3.079	$\pm 5/2$
		0.027			0.051			0.265	
		2.827			2.904			2.938	
7	653.2	3.474	$\pm 3/2$	618.4	3.906	±3/2	576.6	4.294	$\pm 3/2$
		8.656			8.238			7.969	
		0.712			0.713			0.705	
8	719.1	3.180	±1/2	674.8	3.152	±1/2	625.3	3.068	$\pm 1/2$
		15.066			15.094			15.161	
Er-O		2.40 Å			2.50 Å			2.60 Å	
KDs	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J
		0.000			0.000			0.000	
1	0.0	0.000	±15/2	0.0	0.000	±15/2	0.0	0.000	±15/2
		17.939			17.946			17.950	

		0.004			0.003			0.002	
2	126.6	0.004	±13/2	116.6	0.003	±13/2	107.2	0.002	±13/2
		15.536			15.541			15.545	
		0.001			0.000			0.000	
3	226.0	0.005	±11/2	210.9	0.004	±11/2	195.8	0.003	±11/2
		13.132			13.137			13.141	
		0.155			0.139			0.123	
4	316.6	0.160	±9/2	296.0	0.142	±9/2	275.2	0.125	±9/2
		10.714			10.721			10.727	
		1.424			1.282			1.121	
5	401.3	1.663	±7/2	373.8	1.492	±7/2	346.3	1.304	±7/2
		8.187			8.217			8.243	
		0.414			0.487			0.513	
6	477.7	2.668	±5/2	441.8	2.281	±5/2	407.1	1.910	±5/2
		5.712			5.749			5.779	
		2.949			2.946			2.932	
7	532.9	4.645	±3/2	489.9	4.966	±3/2	449.4	5.272	±3/2
		7.802			7.702			7.649	
		0.689			0.670			0.646	
8	575.4	2.950	±1/2	527.5	2.811	±1/2	482.8	2.656	±1/2
		15.252			15.356			15.471	
	15.252								
Er-O		2.70 Å							
Er-O KDs	E/cm ⁻¹	2.70 Å	m _J						
Er-O KDs	E/cm ⁻¹	2.70 Å g 0.000	m _J						
Er-O KDs	<i>E</i> /cm ⁻¹	2.70 Å g 0.000 0.000	<i>m</i> _J ±15/2						
Er-O KDs	<i>E</i> /cm ⁻¹	2.70 Å g 0.000 0.000 17.954	<i>m</i> _J ±15/2						
Er-O KDs	<i>E</i> /cm ⁻¹	2.70 Å g 0.000 0.000 17.954 0.002	<i>m</i> _J ±15/2						
Er-O KDs 1	<i>E</i> /cm ⁻¹ 0.0 98.6	2.70 Å g 0.000 17.954 0.002 0.002	m_J ±15/2 ±13/2						
Er-O KDs 1	<i>E</i> /cm ⁻¹ 0.0 98.6	2.70 Å g 0.000 0.000 17.954 0.002 0.002 15.549	<i>m</i> _J ±15/2 ±13/2						
Er-O KDs 1	<i>E</i> /cm ⁻¹ 0.0 98.6	2.70 Å g 0.000 17.954 0.002 0.002 15.549 0.001	<i>m_J</i> ±15/2 ±13/2						
Er-O KDs 1 2 3	<i>E</i> /cm ⁻¹ 0.0 98.6	2.70 Å g 0.000 17.954 0.002 0.002 15.549 0.001 0.003	m_J $\pm 15/2$ $\pm 13/2$ $\pm 11/2$						
Er-O KDs 1 2 3	<i>E</i> /cm ⁻¹ 0.0 98.6 181.3	2.70 Å g 0.000 17.954 0.002 0.002 15.549 0.001 0.003 13.144	m_J $\pm 15/2$ $\pm 13/2$ $\pm 11/2$						
Er-O KDs 1 2 3	<i>E</i> /cm ⁻¹ 0.0 98.6 181.3	2.70 Å g 0.000 17.954 0.002 0.002 15.549 0.001 0.003 13.144 0.107	m_J $\pm 15/2$ $\pm 13/2$ $\pm 11/2$						
Er-O KDs 1 2 3 4	<i>E</i> /cm ⁻¹ 0.0 98.6 181.3 255.0	2.70 Å g 0.000 17.954 0.002 0.002 15.549 0.001 0.003 13.144 0.107 0.109	m_J $\pm 15/2$ $\pm 13/2$ $\pm 11/2$ $\pm 9/2$						
Er-O KDs 1 2 3 4	<i>E</i> /cm ⁻¹ 0.0 98.6 181.3 255.0	2.70 Å g 0.000 17.954 0.002 0.002 15.549 0.001 0.003 13.144 0.107 0.109 10.732	m_J $\pm 15/2$ $\pm 13/2$ $\pm 11/2$ $\pm 9/2$						
Er-O KDs 1 2 3 4	<i>E</i> /cm ⁻¹ 0.0 98.6 181.3 255.0	2.70 Å g 0.000 17.954 0.002 0.002 15.549 0.001 0.003 13.144 0.107 0.109 10.732 0.953	m_J $\pm 15/2$ $\pm 13/2$ $\pm 11/2$ $\pm 9/2$						
Er-O KDs 1 2 3 4 5	<i>E</i> /cm ⁻¹ 0.0 98.6 181.3 255.0 320.0	2.70 Å g 0.000 17.954 0.002 0.002 15.549 0.001 0.003 13.144 0.107 0.109 10.732 0.953 1.112	m_J $\pm 15/2$ $\pm 13/2$ $\pm 11/2$ $\pm 9/2$ $\pm 7/2$						
Er-O KDs 1 2 3 4 5	<i>E</i> /cm ⁻¹ 0.0 98.6 181.3 255.0 320.0	2.70 Å g 0.000 17.954 0.002 0.002 15.549 0.001 0.003 13.144 0.107 0.109 10.732 0.953 1.112 8.266	m_J $\pm 15/2$ $\pm 13/2$ $\pm 11/2$ $\pm 9/2$ $\pm 7/2$						
Er-O KDs 1 2 3 4 5	<i>E</i> /cm ⁻¹ 0.0 98.6 181.3 255.0 320.0	2.70 Å g 0.000 17.954 0.002 0.002 15.549 0.001 0.003 13.144 0.107 0.109 10.732 0.953 1.112 8.266 0.511	m_J $\pm 15/2$ $\pm 13/2$ $\pm 11/2$ $\pm 9/2$ $\pm 7/2$						
Er-O KDs 1 2 3 4 5 6	<i>E</i> /cm ⁻¹ 0.0 98.6 181.3 255.0 320.0 374.4	2.70 Å g 0.000 17.954 0.002 0.002 15.549 0.001 0.003 13.144 0.107 0.109 10.732 0.953 1.112 8.266 0.511 1.557	m_J $\pm 15/2$ $\pm 13/2$ $\pm 13/2$ $\pm 11/2$ $\pm 9/2$ $\pm 7/2$ $\pm 5/2$						
Er-O KDs 1 2 3 4 5 6	<i>E</i> /cm ⁻¹ 0.0 98.6 181.3 255.0 320.0 374.4	2.70 Å g 0.000 17.954 0.002 0.002 15.549 0.001 0.003 13.144 0.107 0.109 10.732 0.953 1.112 8.266 0.511 1.557 5.801	m_J $\pm 15/2$ $\pm 13/2$ $\pm 13/2$ $\pm 11/2$ $\pm 9/2$ $\pm 7/2$ $\pm 5/2$						
Er-O KDs 1 2 3 4 5 6	<i>E</i> /cm ⁻¹ 0.0 98.6 181.3 255.0 320.0 374.4	2.70 Å g 0.000 17.954 0.002 0.002 15.549 0.001 0.003 13.144 0.107 0.109 10.732 0.953 1.112 8.266 0.511 1.557 5.801 7.627	m_J $\pm 15/2$ $\pm 13/2$ $\pm 13/2$ $\pm 13/2$ $\pm 9/2$ $\pm 7/2$ $\pm 5/2$						
Er-O KDs 1 2 3 4 5 6 7	<i>E</i> /cm ⁻¹ 0.0 98.6 181.3 255.0 320.0 374.4 411.8	2.70 Å g 0.000 17.954 0.002 0.002 15.549 0.001 0.003 13.144 0.107 0.109 10.732 0.953 1.112 8.266 0.511 1.557 5.801 7.627 5.568	m_J $\pm 15/2$ $\pm 13/2$ $\pm 13/2$ $\pm 11/2$ $\pm 9/2$ $\pm 7/2$ $\pm 5/2$ $\pm 3/2$						

		0.619	
8	441.9	2.488	$\pm 1/2$
		15.595	

 E/cm^{-1} θ wave functions 0.0 $90.39\% | \pm 15/2 \!\!> \!\!+ 4.77\% | \pm 9/2 \!\!>$ 1.80 Å 82.59% ±13/2>+12.70% ±11/2> 112.4 0.0 97.91%|±15/2> 1.90 Å 142.4 96.79% |±13/2> 0.0 $99.40\% |\pm 15/2 >$ 2.00 Å 153.9 99.07% ±13/2> 0.0 99.58%|±15/2> 2.10 Å 152.5 99.35% |±13/2> 0.0 99.75% |±15/2> 2.20 Å 145.9 99.61%|±13/2> 0.0 99.84% |±15/2> 2.30 Å 136.6 99.74% |±13/2> 0.0 99.89% |±15/2> 2.40 Å 126.6 99.81% ±13/2> 0.0 $99.92\% |\pm 15/2>$ 2.50 Å 116.6 99.85% ±13/2> 0.0 99.93% |±15/2> 2.60 Å 107.2 99.87% |±13/2> 0.0 99.94% |±15/2> 2.70 Å 98.6 99.89% |±13/2>

Table S13. Wave functions with definite projection of the total moments	$m_J >$ for the lowest two KDs for 2 with
the different Er-O bond lengths (Å) keeping the θ of 90° using CASSCF/RA	ASSI-SO with MOLCAS 8.4.

+7/2 -+9/2

4

-+11/2

8

+13/2

+15/2

12

2.60 Å 2.70 Å

Figure S6. Magnetization blocking barriers for **2** with the different Er-O bond lengths keeping the θ of 90°. The thick black lines represent the KDs as a function of their magnetic moments along the magnetic axes. The green lines correspond to diagonal matrix elements of their transversal magnetic moments; the blue lines represent Orbach relaxation processes. The path shown by the red arrows represent the most probable path for magnetic relaxation in the corresponding compounds. The numbers at each arrow stand for the mean absolute value of the corresponding matrix element of transition magnetic moment.

Table S14. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and predominant m_J values of the lowest eight KDs of **3** with the different Er-C bond lengths (Å) keeping the θ of 90° using CASSCF/RASSI-SO with MOLCAS 8.4.

Er-C	1.80 Å				1.90 Å			2.00 Å		
KDs	E/cm^{-1}	g	mJ	E/cm ⁻¹	g	m_J	E/cm^{-1}	g	m_J	
		0.007			0.000			0.000		
1	0.0	0.011	±15/2	0.0	0.001	±15/2	0.0	0.000	$\pm 15/2$	
		12.682			17.291			17.703		
		7.586			2.966			0.992		
2	44.0	7.573	±5/2	170.5	2.975	±13/2	215.2	0.994	$\pm 13/2$	
		3.491			12.206			14.956		
		4.905			2.408			0.871		
3	101.8	4.942	±9/2	207.7	2.409	±11/2	270.3	0.872	±11/2	
		6.505			10.845			12.645		
		0.017			0.002			0.001		
4	130.2	0.025	±13/2	223.2	0.031	±9/2	306.1	0.020	±9/2	
		10.803			9.651			10.096		
		4.077			6.900			7.049		
5	163.8	4.096	±11/2	250.4	6.838	±7/2	357.2	7.013	±7/2	
		10.253			5.782			5.523		
		7.487			7.672			7.136		
6	310.4	7.471	±3/2	435.3	7.650	±3/2	532.7	7.120	±3/2	
		2.703			2.197			2.914		
		0.009			0.007			0.019		
7	405.0	0.094	±7/2	519.8	0.089	±5/2	620.4	0.081	±5/2	
		3.547			2.779			3.007		
		8.954			9.331			9.478		
8	469.6	8.875	±1/2	583.4	9.214	±1/2	683.5	9.351	$\pm 1/2$	
		1.372			0.975			1.013		
Er-C	2.10 Å			2.20 Å			2.30 Å			
KDs	E/cm^{-1}	g	m_J	E/cm ⁻¹	g	m_J	E/cm^{-1}	g	m_J	
		0.000			0.000			0.000		
1	0.0	0.000	±15/2	0.0	0.000	±15/2	0.0	0.000	±15/2	
		17.817			17.868			17.897		
	220.1	0.533	+ 12/2	227.7	0.358	12/2	219.5	0.260	+ 12/2	
2	229.1	0.534	±13/2	227.7	0.358	±13/2	218.5	0.261	±13/2	

		15.284			15.387			15.437	
		0.460			0.303			0.217	
3	299.6	0.461	±11/2	308.2	0.305	±11/2	304.8	0.218	±11/2
		12.885			12.964			13.007	
		0.000			0.001			0.002	
4	349.2	0.015	±9/2	367.4	0.013	±9/2	370.3	0.011	±9/2
		10.266			10.349			10.408	
		6.736			6.488			6.237	
5	414.2	6.710	±7/2	439.4	6.467	±7/2	445.5	6.255	±7/2
		5.854			6.084			6.281	
		6.746			6.480			6.243	
6	582.0	6.736	±5/2	597.4	6.475	±5/2	591.5	6.241	±5/2
		3.366			3.639			3.856	
		0.027			0.033			0.036	
7	670.1	0.073	±3/2	682.6	0.068	±3/2	672.0	0.065	±3/2
		3.111			3.170			3.220	
		9.532			9.558			9.574	
8	731.1	9.406	±1/2	740.0	9.434	±1/2	725.1	9.452	±1/2
		1.055			1.082			1.102	
Ęr-C		2.40 Å	I		2.50 Å	1		2.60 Å	
KDS	E/cm ⁻¹	g	mJ	E/cm ⁻¹	g	mJ	E/cm ⁻¹	g	m_J
		0.000			0.000			0.000	
1	0.0	0.000	±15/2	0.0	0.000	±15/2	0.0	0.000	±15/2
		17.914			17.926			17.934	
		0.195			0.149			0.114	
2	205.7	0.196	±13/2	191.7	0.149	±13/2	177.9	0.114	±13/2
		15.468			15.489			15.503	
		0.160			0.120			0.090	
3	295.0	0.161	±11/2	281.9	0.121	±11/2	267.6	0.091	±11/2
		13.037			13.060			13.078	
		0.003			0.003			0.003	
4	364.3	0.010	±9/2	353.3	0.009	±9/2	339.7	0.007	±9/2
		10.459			10.504			10.545	
		5.993			5.725			5.434	
5	440.4	6.008	±7/2	428.7	5.738	±7/2	413.6	5.445	±7/2
		6.473			6.665			6.857	
		5.996			5.727			5.436	
6	573.2	5.994	±5/2	548.5	5.725	±5/2	521.2	5.434	±5/2
		4.059			4.258			4.453	
		0.039			0.043			0.044	
7	648.5	0.063	±3/2	618.5	0.063	±3/2	586.1	0.061	±3/2
		3.267			3.313			3.355	
		9.586			9.596			9.602	
8	697.1	9.465	±1/2	662.7	9.475	±1/2	626.3	9.483	±1/2

		1 1 1 7		1 1 2 0		1 1 4 1	
		1.11/		1.130		1.141	
Er-C		2.70 A	1				
KDs	E/cm^{-1}	g	m_J				
		0.000					
1	0.0	0.000	±15/2				
		17.939					
		0.087					
2	164.9	0.087	±13/2				
		15.515					
		0.068					
3	253.3	0.069	±11/2				
		13.093					
		0.003					
4	325.1	0.006	±9/2				
		10.580					
		5.121					
5	396.9	5.131	±7/2				
		7.044					
		5.123					
6	493.6	5.121	±5/2				
		4.643					
		0.045					
7	553.6	0.060	±3/2				
		3.393					
		9.608					
8	590.1	9.490	±1/2				
		1.150					

Table S15. Wave functions with definite projection of the total moments $|m_j\rangle$ for the lowest two KDs for **3** with the different Er-C bond lengths (Å) keeping the θ of 90° using CASSCF/RASSI-SO with MOLCAS 8.4.

θ	E/cm^{-1}	wave functions
1.00 Å	0.0	58.67% ±15/2>+41.64% ±9/2>
1.80 A	44.0	11.27% ±13/2>+48.17% ±7/2>+28.29% ±5/2>+7.31% ±1/2>
1.00 %	0.0	93.26% ±15/2>+6.39% ±9/2>
1.90 A	170.5	77.23% ±13/2>+12.52% ±7/2>
2.00 %	0.0	97.98% ±15/2>
2.00 A	215.2	95.73% ±13/2>
2.10 Å	0.0	99.12% ±15/2>
2.10 A	229.1	98.27% ±13/2>
2.20 Å	0.0	99.55% ±15/2>
2.20 A	227.7	99.06% ±13/2>
2.20 Å	0.0	99.74% ±15/2>
2.30 A	218.5	99.40% ±13/2>

2 40 8	0.0	99.84% ±15/2>
2.40 A	205.7	99.59% ±13/2>
2.50 Å	0.0	99.89% ±15/2>
	191.7	99.70% ±13/2>
2.0 %	0.0	99.92% ±15/2>
2.00 A	177.9	99.77% ±13/2>
2.70 Å	0.0	99.94% ±15/2>
	164.9	99.82% ±13/2>

Figure S7. Magnetization blocking barriers for **3** with the different Er-C bond lengths keeping the θ of 90°. The thick black lines represent the KDs as a function of their magnetic moments along the magnetic axes. The green lines correspond to diagonal matrix elements of their transversal magnetic moments; the blue lines represent Orbach relaxation processes. The path shown by the red arrows represent the most probable path for magnetic relaxation in the corresponding compounds. The numbers at each arrow stand for the mean absolute value of the corresponding matrix element of transition magnetic moment.

Er-N	1.80 Å		1.90 Å			2.00 Å			
KDs	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J
		1.871			0.040			0.006	
1	0.0	5.114	±15/2	0.0	0.090	±15/2	0.0	0.012	±15/2
		12.143			17.623			17.801	
		0.238			1.315			0.111	
2	41.0	4.280	±13/2	162.9	4.829	±11/2	221.3	0.270	±13/2
		11.954			12.982			15.337	
		5.286			1.085			1.171	
3	78.3	3.059	±7/2	191.4	3.266	±9/2	261.9	1.381	±11/2
		0.704			8.978			11.924	

Table S16. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and predominant m_J values of the lowest eight KDs for simple model Er(NH₂)₃ with the different Er-N bond lengths (Å) keeping the θ of 90° using CASSCF/RASSI-SO with MOLCAS 8.4.

		0.069			2.120			2.704	
4	186.1	2.692	±9/2	260.4	5.233	±7/2	315.5	3.504	±9/2
		10.436			9.356			10.951	
		0.580			1.188			3.068	
5	352.1	1.333	±11/2	330.3	1.451	±13/2	375.2	3.890	±7/2
		14.926			15.692			11.907	
		2.119			2.556			2.921	
6	399.2	4.410	±3/2	512.7	4.637	±3/2	587.8	4.747	$\pm 5/2$
		10.321			10.044			9.435	
		0.017			0.319			0.474	
7	555.6	2.934	±1/2	643.8	2.656	±5/2	701.3	2.756	$\pm 3/2$
		6.596			5.811			5.153	
		0.934			0.926			0.955	
8	663.4	5.911	±5/2	739.7	6.222	±1/2	782.8	6.547	$\pm 1/2$
		12.368			12.321			12.143	
Er-N		2.10 Å	•		2.20 Å			2.30 Å	
KDs	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m _J	E/cm^{-1}	g	m_J
		0.001			0.000			0.000	
1	0.0	0.003	±15/2	0.0	0.001	±15/2	0.0	0.001	±15/2
		17.861			17.892			17.912	
		0.335			0.275			0.197	
2	224.2	0.455	±13/2	213.3	0.324	±13/2	199.3	0.219	$\pm 13/2$
		15.353			15.410			15.453	
		0.108			0.048			0.053	
3	291.2	0.805	±11/2	297.6	0.471	±11/2	294.0	0.294	$\pm 11/2$
		12.663			12.867			12.962	
		2.002			1.419			1.020	
4	348.2	2.534	±9/2	367.2	1.738	±9/2	372.7	1.213	$\pm 9/2$
		10.290			10.211			10.312	
		4.406			4.956			5.136	
5	423.7	5.136	±7/2	449.2	5.688	±7/2	457.1	6.065	±7/2
		9.502			8.285			7.453	
		3.217			3.503			3.791	
6	618.1	4.801	±5/2	620.3	4.795	±5/2	606.3	4.731	$\pm 5/2$
		8.894			8.354			7.792	
		4.653			4.280			4.025	
7	717.6	2.875	±3/2	708.4	2.986	±3/2	685.1	3.081	$\pm 3/2$
		0.605			0.778			1.015	
		12.008			11.942			11.956	
8	787.0	6.778	±1/2	768.3	6.907	±1/2	737.3	6.933	$\pm 1/2$
		0.987			1.016			1.037	
Er-N		2.40 Å			2.50 Å			2.60 Å	
KDs	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J	E/cm ⁻¹	g	m_J
1	0.0	0.000	±15/2	0.0	0.000	±15/2	0.0	0.000	±15/2

		0.001			0.000			0.000	
		17.924			17.933			17.940	
		0.139			0.100			0.072	
2	185.2	0.151	±13/2	172.0	0.106	±13/2	160.1	0.076	±13/2
		15.482			15.501			15.515	
		0.041			0.030			0.022	
3	285.2	0.194	±11/2	274.0	0.132	±11/2	261.8	0.093	±11/2
		13.018			13.055			13.081	
-		0.749			0.563			0.432	
4	369.2	0.873	±9/2	360.1	0.645	±9/2	348.1	0.489	±9/2
		10.410			10.489			10.550	
		6.844			6.795			4.693	
5	453.6	6.316	±7/2	443.3	6.054	±7/2	429.1	5.537	±7/2
		5.106			4.943			7.021	
-		4.073			4.315			4.204	
6	583.7	4.612	±5/2	557.3	4.468	±5/2	529.8	4.618	±5/2
		7.213			6.625			6.037	
		3.869			3.789			3.763	
7	654.9	3.160	±3/2	622.1	3.221	±3/2	589.0	3.268	±3/2
		1.300			1.610			1.928	
-		12.033			12.152			1.059	
8	701.0	6.877	±1/2	663.2	6.763	±1/2	626.1	6.614	±1/2
		1.051			1.058			12.297	
Er-N		2.70 Å							
KDs	E/cm ⁻¹	g	m_J						
		0.000							
1	0.0	0.000	±15/2						
		17.944							
		0.053							
2	149.3	0.055	±13/2						
		15.524							
		0.016							
3	249.4	0.066	±11/2						
		13.099							
		0.340							
4	334.6	0.379	±9/2						
		10.596							
		4.391							
5	412.9	5.030	±7/2						
		7.243							
			1						
		5.461							
6	502.6	5.461 4.840	±5/2						
6	502.6	5.461 4.840 3.967	±5/2						
6	502.6	5.461 4.840 3.967 3.771	±5/2 ±3/2						

		3.302	
		2.234	
		1.057	
8	590.7	6.450	$\pm 1/2$
		12.449	

Table S17. Wave functions with definite projection of the total moments $|m_J\rangle$ for the lowest two KDs for simple model Er(NH₂)₃ with the different Er-N bond lengths (Å) keeping the θ of 90° using CASSCF/RASSI-SO with MOLCAS 8.4.

Er-N	E/cm^{-1}	wave functions
1.00.8	0.0	60.43% ±15/2>+24.57% ±13/2>
1.80 A	41.0	32.02% ±15/2>+26.43% ±13/2>+10.74% ±9/2>+10.85% ±7/2>
1.00 Å	0.0	98.10% ±15/2>
1.90 A	162.9	14.94% ±13/2>+48.40% ±11/2>+22.97% ±9/2>
2.00 %	0.0	99.47% ±15/2>
2.00 A	221.3	73.59% ±13/2>+22.40% ±11/2>
2.10 Å	0.0	99.76% ±15/2>
2.10 A	224.2	93.65% ±13/2>
2.20 Å	0.0	99.86% ±15/2>
2.20 A	213.3	97.90% ±13/2>
2.20 Å	0.0	99.91% ±15/2>
2.50 A	199.3	99.08% ±13/2>
2.40 Å	0.0	99.94% ±15/2>
2.40 A	185.2	99.51% ±13/2>
2.50 Å	0.0	99.96% ±15/2>
2.30 A	172.0	99.70% ±13/2>
2.60 Å	0.0	99.97% ±15/2>
2.00 A	160.1	99.81% ±13/2>
2.70 Å	0.0	99.98% ±15/2>
2.70 A	149.3	99.87% ±13/2>

Figure S8. Magnetization blocking barriers for model $Er(NH_2)_3$ with the different Er-N bond lengths keeping the θ of 90°. The thick black lines represent the KDs as a function of their magnetic moments along the magnetic axes. The green lines correspond to diagonal matrix elements of their transversal magnetic moments; the blue lines represent Orbach relaxation processes. The path shown by the red arrows represent the most probable path for magnetic relaxation in the corresponding compounds. The numbers at each arrow stand for the mean absolute value of the corresponding matrix element of transition magnetic moment.