Single-Molecule Magnet under dc field with Anion Effect: Self-Assembly of Pure Dysprosium(III) Metallacycles

Jianfeng Wu, Qianqian Yang, Haoyu Wang, Yan Ge, Jinkui Tang* and Zhenhui Qi*

1.	The synthetic route of ligand H_3L	S2
2.	¹ H-NMR spectrum	S2
3.	IR Spectroscopy	S3
4.	Crystallographic Details	S4
5.	Powder XRD analysis	S9
6.	Coordination Geometry	S10
7.	Direct current (dc) magnetic susceptibility measurements	S12
8.	Alternating current (ac) magnetic susceptibility measurements	S14
9.	CC-Fit results	S17
10.	Calculations with Magellan program	S17
11.	References	S18

Scheme S1. Schematic drawing of the synthetic route of ligand H₃L.

Fig. S1. ¹H-NMR spectrum of H_3L in DMSO- d_6 recorded at room temperature. Solvent peaks are marked with asterisks (DMSO- d_6 , *; H_2O , **).

Fig. S2. IR (ATR) spectrum of solid sample for ligand H₃L.

Fig. S3. IR (ATR) spectra of solid samples for complexes Dy2@NO3, Dy4@CIO4, Dy4@OTf, and Dy6@Br.

	Dy ₂ @NO ₃	Dy ₄ @ClO ₄	Dy ₄ @OTf	Dy ₆ @Br
empirical formula	$C_{25.77}H_{37.23}Dy_2N_{14.77}O_{19.23}$	$C_{80}H_{114}Cl_8Dy_4N_{32}O_{51}$	$C_{92}H_{101}Dy_4F_{24}N_{34}O_{34}S_8\\$	$C_{134}H_{212}Br_{12}Dy_6N_{48}O_{35}$
formula weight, g·mol ⁻¹	1186.63	3273.63	3583.54	4989.42
crystal size, mm ³	$0.18 \times 0.16 \times 0.15$	$0.18 \times 0.18 \times 0.18$	$0.18\times0.18\times0.17$	$0.17 \times 0.16 \times 0.15$
crystal system	Triclinic	Cubic	Monoclinic	Monoclinic
space group	<i>P</i> -1	Pm-3n	<i>C2/c</i>	P21/n
<i>Т</i> , К	173.0	200.0	173.0	173.0
λ, Å	1.54178	1.54178	1.54178	1.54178
<i>a</i> , Å	11.6126(3)	26.8985(3)	25.3943(8)	20.2137(6)
b, Å	13.7845(4)	26.8985(3)	26.5959(9)	23.1408(7)
<i>c</i> , Å	14.7071(4)	26.8985(3)	43.3898(14)	21.4891(5)
α, °	63.1760(10)	90	90	90
β, °	88.7940(10)	90	96.012(2)	104.615(2)
γ, °	79.8230(10)	90	90	90
<i>V</i> , Å ³	2063.23(10)	19461.8(7)	29143.6(16)	9726.5(5)
Z	2	6	8	2
ρ (cal), g·cm ⁻³	1.910	1.676	1.633	1.704
<i>F</i> (000)	1162.0	9756.0	14144.0	4896.0
2θ range [°]	6.75 to 133.356	4.646 to 124.666	4.096 to 117.856	5.714 to 118.156
$T_{\rm max}$ / $T_{\rm min}$	0.069 / 0.050	0.141 / 0.074	0.189 / 0.113	0.134 / 0.096
measured refl.	23881	57622	91507	63917
unique refl. $[R_{int}]$	7259, 0.0614	2781, 0.0728	20529, 0.0527	13874, 0.1007
goodness-of-fit (F ²)	1.044	1.213	1.045	1.034
data / restr. / param.	7259 / 19 / 587	2781 / 361 / 229	20521 / 527 / 1912	13874 / 79 / 984
$R1, wR2 (I > 2\sigma(I))$	0.0395, 0.0983	0.1058, 0.2874	0.0667, 0.1837	0.0918, 0.2311
R1, wR2 (all data)	0.0473, 0.1048	0.1119, 0.2915	0.0765, 0.1919	0.1303, 0.2588
res. el. dens. [e·Å-3]	0.86 / -1.64	2.00 / -2.24	2.49 / -1.75	3.15 / -3.02

 $\label{eq:solution} \mbox{Table S1. Crystallographic data of complexes } Dy_2 @NO_3, Dy_4 @ClO_4, Dy_4 @OTf, \mbox{ and } Dy_6 @Br. \mbox{} \end{tabular}$

Table S2. Selected bond distances (Å) and angles (°) in complex Dy2@NO3.

Dy1-O2	2.368(4)	Dy2-O1	2.378(4)	O2-Dy1-N8	65.15(14)	O1-Dy2-O17	69.26(13)
Dy1-O3	2.365(4)	Dy2-O10	2.429(4)	O3-Dy1-O2	75.99(14)	O1-Dy2-N1	64.18(13)
Dy1-O4	2.469(4)	Dy2-O11	2.477(4)	O3-Dy1-N5	98.79(15)	O16-Dy2-O17	50.12(12)
Dy1-O5	2.443(4)	Dy2-O13	2.466(4)	N5-Dy1-N6	67.04(14)	N1-Dy2-N3	62.28(14)
Dy1-07	2.408(4)	Dy2-O14	2.502(4)	N6-Dy1-N8	61.89(14)	N4-Dy2-O16	72.75(14)
Dy1-O8	2.448(4)	Dy2-O16	2.515(4)	O5-Dy1-O8	149.65(15)	N4-Dy2-N3	66.48(14)
Dy1-N5	2.462(4)	Dy2-O17	2.534(4)	O7-Dy1-O4	153.32(16)	N4-Dy2-N12	75.40(15)
Dy1-N6	2.491(4)	Dy2-N1	2.479(4)	O7-Dy1-O5	142.35(15)	O10-Dy2-O13	134.78(13)
Dy1-N8	2.500(4)	Dy2-N3	2.532(4)	O8-Dy1-O4	130.68(15)	O10-Dy2-O14	149.14(13)
		Dy2-N4	2.454(4)			O11-Dy2-O14	134.84(13)
Dy1-Dy2	7.1238(5)					O13-Dy2-O11	161.58(14)

Table S3. Selected bond distances (Å) and angles (°) in complex $Dy_4 @CIO_4$.

Dy1-O1	2.299(9)	O1#-Dy1-N3	76.2(3)
Dy1-O1#	2.299(9)	O1-Dy1-N4#	87.4(3)
Dy1-N3	2.506(10)	O1-Dy1-N1#	84.0(7)
Dy1-N3 [#]	2.506(10)	O1-Dy1-N1	66.9(3)
Dy1-N4 [#]	2.494(9)	N4-Dy1-N3#	87.0(3)
Dy1-N4	2.494(9)	N4-Dy1-N3	66.7(3)
Dy1-N1	2.477(5)	N4 [#] -Dy1-N4	87.7(4)
Dy1-N1 [#]	2.477(11)	N1-Dy1-N3	62.3(3)
Dy1-Dy1 [#]	7.2475(8)	N1-Dy1-N4 [#]	86.5(3)

Table S4. Selected bond distances (Å) and angles (°) in complex $Dy_4@CF_3SO_3$.

Dy1-O1	2.326(7)	Dy2-O6	2.328(7)	Dy3-O4	2.333(7)	Dy4-O2	2.391(6)
Dy1-O8	2.314(8)	Dy2-O7	2.318(7)	Dy3-O5	2.336(7)	Dy4-O3	2.410(6)
Dy1-N1	2.490(8)	Dy2-N21	2.444(8)	Dy3-N13	2.452(7)	Dy4-09	2.529(6)
Dy1-N3	2.478(8)	Dy2-N22	2.464(8)	Dy3-N14	2.487(8)	Dy4-N5	2.494(8)
Dy1-N4	2.436(7)	Dy2-N24	2.459(8)	Dy3-N16	2.469(8)	Dy4-N6	2.467(8)
Dy1-N29	2.465(8)	Dy2-N25	2.459(8)	Dy3-N17	2.486(7)	Dy4-N8	2.485(8)

Dy1-N30	2.485(8)	Dy2-N27	2.456(8)	Dy3-N19	2.472(7)	Dy4-N9	2.482(8)
Dy1-N32	2.491(9)	Dy2-N28	2.446(8)	Dy3-N20	2.449(8)	Dy4-N11	2.456(8)
						Dy4-N12	2.526(7)
Dy1-Dy2	7.1754(8)	Dy2-Dy3	7.1347(8)	Dy3-Dy4	7.2275(8)	Dy4-Dy1	7.0968(8)
O1-Dy1-N1	66.4(3)	O6-Dy2-N21	87.6(3)	O4-Dy3-N16	66.2(3)	O2-Dy4-O9	69.5(2)
O1-Dy1-N30	73.9(3)	O6-Dy2-N22	74.2(3)	O4-Dy3-N17	77.6(3)	O2-Dy4-N8	66.0(2)
O1-Dy1-N32	85.9(3)	O6-Dy2-N24	78.1(3)	O4-Dy3-N19	75.5(3)	O2-Dy4-N11	70.4(2)
O8-Dy1-N1	80.3(3)	O6-Dy2-N25	66.7(3)	O4-Dy3-N20	87.2(3)	O2-Dy4-N12	74.7(2)
O8-Dy1-N3	76.4(3)	O7-Dy2-N24	66.0(3)	O5-Dy3-N14	77.1(2)	O3-Dy4-O9	70.1(2)
O8-Dy1-N4	87.9(3)	O7-Dy2-N25	82.8(3)	O5-Dy3-N16	77.7(3)	O3-Dy4-N5	72.3(2)
O8-Dy1-N32	65.3(3)	O7-Dy2-N27	74.6(3)	O5-Dy3-N17	65.6(2)	O3-Dy4-N6	68.8(2)
N3-Dy1-N1	62.8(3)	O7-Dy2-N28	88.6(3)	N13-Dy3-N14	67.5(2)	O3-Dy4-N9	65.5(2)
N4-Dy1-N3	67.8(2)	N21-Dy2-N22	68.3(3)	N13-Dy3-N19	88.1(2)	N5-Dy4-N12	77.4(2)
N4-Dy1-N29	85.4(2)	N21-Dy2-N25	86.4(3)	N16-Dy3-N14	62.8(2)	N6-Dy4-N5	67.8(2)
N4-Dy1-N30	88.9(3)	N21-Dy2-N27	87.6(3)	N19-Dy3-N17	62.6(2)	N6-Dy4-N12	82.5(2)
N4-Dy1 N32	83.4(3)	N21-Dy2-N28	87.9(3)	N20-Dy3-N13	90.0(3)	N8-Dy4-O9	72.6(2)
N29-Dy1-N3	86.3(3)	N24-Dy2-N22	63.5(3)	N20-Dy3-N14	88.3(2)	N8-Dy4-N12	83.8(2)
N29-Dy1-N30	68.3(3)	N27-Dy2-N25	63.1(3)	N20-Dy3-N16	88.2(3)	N9-Dy4-O9	72.5(2)
N30-Dy1-N32	62.4(3)	N28-Dy2-N22	86.3(3)	N20-Dy3-N19	68.6(2)	N9-Dy4-N5	79.4(2)
		N28-Dy2-N27	69.2(2)			N11-Dy4-N5	81.7(2)
						N11-Dy4-N12	67.0(2)

Table S5. Selected bond distances (Å) and angles (°) in complex $Dy_6 @Br$.

Dy1-O2	2.372(10)	Dy2-O4	2.337(10)	Dy3-O11	2.405(11)
Dy1-O3	2.390(9)	Dy2-O5	2.390(9)	Dy3-O6	2.387(9)
Dy1-O8	2.515(10)	Dy2-N13	2.401(6)	Dy3-O7	2.489(13)
Dy1-N6	2.485(13)	Dy2-N14	2.476(12)	Dy3-N31	2.490(13)
Dy1-N9	2.462(7)	Dy2-N16	2.470(6)	Dy3-N22	2.531(12)
Dy1-N11	2.491(12)	Dy2-N17	2.464(6)	Dy3-N11	2.49(7)
Dy1-N12	2.486(7)	Dy2-N19	2.496(12)	Dy3-N41	2.46(7)
Dy1-N5	2.490(6)	Dy2-N20	2.397(6)	Dy3-N21	2.494(6)
Dy1-N8	2.465(7)			Dy3-N24	2.514(6)
Dy1-Dy2	70595(14)	Dy2-Dy3	7.1075(12)	Dy3-Dy1	7.1742(13)
O2-Dy1-O8	68.5(4)	O4-Dy2-N16	66.2(3)	O11-Dy3-N22	71.1(4)

O2-Dy1-N11	69.1(4)	O4-Dy2-N19	72.3(4)	O11-Dy3-N11	64.7(18)
O2-Dy1-N12	74.1(4)	O4-Dy2-N20	90.3(4)	O11-Dy3-N21	73.8(4)
O2-Dy1-N8	65.8(4)	O5-Dy2-N13	88.2(3)	O11-Dy3-N24	74.2(3)
O3-Dy1-O8	67.3(4)	O5-Dy2-N14	76.4(4)	O6-Dy3-N31	70.4(4)
O3-Dy1-N6	69.6(4)	O5-Dy2-N16	79.8(3)	O6-Dy3-N11	72(2)
O3-Dy1-N9	66.6(3)	O5-Dy2-N17	67.1(3)	O6-Dy3-N24	64.7(3)
O3-Dy1-N5	73.2(3)	N13-Dy2-N14	68.0(3)	O7-Dy3-N21	65.9(4)
N6-Dy1-N5	68.1(3)	N16-Dy2-N14	63.0(3)	N31-Dy3-N11	62(2)
N9-Dy1-O8	74.3(3)	N17-Dy2-N19	62.3(3)	N41-Dy3-O7	68.4(5)
N9-Dy1-N11	63.0(3)	N20-Dy2-N19	67.8(3)	N41-Dy3-N31	66.4(19)
N12-Dy1-N11	67.1(3)			N41-Dy3-N24	76.8(15)
N8-Dy1-O8	70.5(4)			N21-Dy3-N22	65.5(3)
N8-Dy1-N6	62.5(4)			N24-Dy3-N22	61.9(3)

Fig. S4. Side view of the structure of complex Dy_4 (ClO₄. The purple, gray, blue, and red spheres representing Dy, C, N, and O, respectively; hydrogen atoms, solvents, and free anions have been omitted for clarity.

Fig. S5. Side view of the structure of complex $Dy_4@OTf$. The purple, green, orange, gray, blue, and red spheres representing Dy, F, S, C, N, and O, respectively; hydrogen atoms, solvents, and free anions have been omitted for clarity.

Fig. S6. Packing model along with *a* and *c* axes of complex $Dy_2@NO_3$. The purple, gray, blue, and red spheres representing Dy, C, N, and O, respectively; hydrogen atoms have been omitted for clarity.

Fig. S7. Packing model along with *a* and *c* axes of complex $Dy_4@ClO_4$. The purple, green, gray, blue, and red spheres representing Dy, Cl, C, N, and O, respectively; hydrogen atoms have been omitted for clarity.

Fig. S8. Packing model along with a and c axes of complex Dy_4 (a) OTf. The purple, orange, green, gray, blue, and red spheres representing Dy, S, F, C, N, and O, respectively; hydrogen atoms have been omitted for clarity.

Fig. S9. Packing model along with *a* and *c* axes of complex $Dy_6@Br$. The purple, green, gray, blue, and red spheres representing Dy, Br, C, N, and O, respectively; hydrogen atoms have been omitted for clarity.

Fig. S10. Powder XRD analysis of complex Dy2@NO3. The black line is simulated data from single crystal data.

Fig. S11. Powder XRD analysis of complex Dy4@CO4. The black line is simulated data from single crystal data.

Fig. S12. Powder XRD analysis of complex Dy₄@OTf. The black line is simulated data from single crystal data.

Fig. S13. Powder XRD analysis of complex Dy₆@Br. The black line is simulated data from single crystal data.

Coordination Geometry	Dy1	Coordination Geometry	Dy2
Johnson triangular cupola (C_{3v})	12.851	Bicapped cube (D_{4h})	15.279
Capped cube (C_{4v})	13.849	Bicapped square antiprism (D_{4d})	9.692
Spherical-relaxed capped cube (C_{4v})	11.794	Bidiminished icosahedron (C_{2v})	10.879
Capped square antiprism (C_{4v})	8.179	Tridiminished icosahedron ($C_{3\nu}$)	17.406
Spherical capped square antiprism (C_{4v})	7.026	Sphenocorona ($C_{2\nu}$)	7.230
Tricapped trigonal prism (D_{3h})	8.141	Staggered Dodecahedron (D_2)	9.130
Spherical tricapped trigonal prism (D_{3h})	5.678	Tetradecahedron (C_{2v})	8.456

Table S6. The *CShM* values calculated by *SHAPE* 2.1¹ of Dy^{III} ions in **Dy**₂@NO₃.

Fig. S14. Coordination polyhedrons of Dy1 (left) and Dy2 (right) in complex Dy2@NO3.

Table S7. The *CShM* values calculated by *SHAPE* 2.1 of Dy^{III} ion in **Dy₄@ClO₄**.

Coordination Geometry	Dy1
Cube (O_h)	11.246
Square antiprism (D_{4d})	5.425
Triangular dodecahedron (D_{2d})	3.357
Johnson gyrobifastigium J26 (D_{2d})	9.781
Elongated triangular bipyramid (D_{3h})	22.680
Biaugmented trigonal prism $(C_{2\nu})$	3.479
Snub diphenoid J84 (D_{2d})	3.489

Fig. S15. Coordination polyhedron of Dy1 in complex Dy4@ClO4.

Table S8. The *CShM* values calculated by *SHAPE* 2.1 of Dy^{III} ions in **Dy**₄@OTf.

Coordination Geometry	Dy1	Dy2	Dy3	Coordination Geometry	Dy4
Cube (O_h)	14.736	14.784	14.348	Johnson triangular cupola ($C_{3\nu}$)	18.829
Square antiprism (D_{4d})	9.619	9.177	9.241	Capped cube $(C_{4\nu})$	13.096
Triangular dodecahedron (D_{2d})	7.673	6.946	7.044	Spherical-relaxed capped cube (C_{4v})	12.809
Johnson gyrobifastigium J26 (D_{2d})	15.854	16.349	18.448	Capped square antiprism (C_{4v})	8.939
Elongated triangular bipyramid (D_{3h})	24.938	26.001	25.605	Spherical capped square antiprism (C_{4v})	6.446
Biaugmented trigonal prism (C_{2v})	9.037	8.466	8.374	Tricapped trigonal prism (D_{3h})	10.207
Snub diphenoid J84 (D_{2d})	11.424	10.612	11.191	Spherical tricapped trigonal prism (D_{3h})	6.062

Fig. S16. Coordination polyhedrons of Dy1, Dy2, Dy3, and Dy4 in complex Dy4@OTf.

Coordination Geometry	Dy1	Dy3	Coordination Geometry	Dy2
Johnson triangular cupola ($C_{3\nu}$)	15.309	13.722	Cube (O_h)	11.866
Capped cube (C_{4v})	9.634	7.827	Square antiprism (D_{4d})	6.899
Spherical-relaxed capped cube $(C_{4\nu})$	9.759	8.414	Triangular dodecahedron (D_{2d})	5.323
Capped square antiprism $(C_{4\nu})$	3.238	2.311	Johnson gyrobifastigium J26 (D_{2d})	11.647
Spherical capped square antiprism (C_{4v})	3.061	2.831	Elongated triangular bipyramid (D_{3h})	18.661
Tricapped trigonal prism (D_{3h})	3.822	3.857	Biaugmented trigonal prism ($C_{2\nu}$)	5.292
Spherical tricapped trigonal prism (D_{3h})	3.814	3.389	Snub diphenoid J84 (D_{2d})	6.152

Table S9. The *CShM* values calculated by *SHAPE* 2.1 of Dy^{III} ions in $Dy_6@Br$.

Fig. S17. Coordination polyhedrons of Dy1 (left), Dy2 (middle), and Dy3 (right) in complex Dy6@Br.

Fig. S18. Molar magnetization (*M*) vs. magnetic field (*H*) for \mathbf{Dy}_2 (**NO**₃ at 1.9, 3.0, and 5.0 K. Inset represents the relevant plots of *M* vs. *H*/*T*.

Fig. S19. Molar magnetization (*M*) vs. magnetic field (*H*) for Dy_4 @ClO₄ at 1.9, 3.0, and 5.0 K. Inset represents the relevant plots of *M* vs. *H*/*T*.

Fig. S20. Molar magnetization (*M*) vs. magnetic field (*H*) for $Dy_4@OTf$ at 1.9, 3.0, and 5.0 K. Inset represents the relevant plots of *M* vs. *H*/*T*.

Fig. S21. Molar magnetization (*M*) vs. magnetic field (*H*) for $Dy_6@Br$ at 1.9, 3.0, and 5.0 K. Inset represents the relevant plots of *M* vs. *H*/*T*.

Fig. S22. Field-dependent ac susceptibility of Dy₂@NO₃ at 1.9 K with ac frequency of 1488 Hz.

Fig. S23. Field-dependent ac susceptibility of Dy₄@ClO₄ at 1.9 K with ac frequency of 1488 Hz.

Fig. S24. Field-dependent ac susceptibility of Dy₄@OTf at 1.9 K with ac frequency of 1488 Hz.

Fig. S25. Field-dependent ac susceptibility of Dy₆@Br at 1.9 K with ac frequency of 1488 Hz.

Fig. S26. Temperature-dependent ac susceptibility of $Dy_2@NO_3$ under 600 Oe dc field.

Fig. S27. Temperature-dependent ac susceptibility of Dy₄@ClO₄ under 900 Oe dc field.

Fig. S28. Temperature-dependent ac susceptibility of Dy₄@OTf under 800 Oe dc field.

Fig. S29. Temperature-dependent ac susceptibility of Dy₆@Br under 1000 Oe dc field.

<i>T /</i> K	$\chi_{S,tot}$	$\Delta \chi_I$	$ au_{I / \mathrm{S}}$	α_l	$\Delta \chi_2$	$ au_{2/S}$	α_2	Residual
1.9	6.08789	5.84561	0.10393	1.9868E-6	18.1719	4.44701E-4	0.38619	0.12304
2.2	7.22349	3.70182	0.09149	3.26219E-6	15.5654	4.12826E-4	0.3179	0.20437
2.5	7.64501	2.4193	0.07782	7.04635E-6	13.4717	3.2463E-4	0.25095	0.33566
2.8	7.34454	1.50084	0.05626	1.87413E-5	12.2512	2.16758E-4	0.20141	0.5056
3.1					11.87016	1.18794E-4	0.19483	0.46239
3.4					13.54823	4.61316E-5	0.21548	0.24974
3.7					16.0406	1.65038E-5	0.22512	0.18382
4					15.0833	7.00461E-6	0.26487	0.07383
4.5					13.662	2.20095E-6	0.3175	0.0314
5					12.47149	8.60445E-7	0.35885	0.05461

Table S10. The best fit of frequency-dependent ac susceptibility of Dy₆@Br under 1000 Oe dc field.

Fig. S30. Orientations of the main magnetic axes of the ground state for the Dy^{III} ions calculated based on the whole molecule of $Dy_6@Br$. The hydrogen atoms have been omitted for clarity.

Table S11. Minimal reorientation energies (cm⁻¹) and intersection angles (°) of the anisotropy axes calculated with Magellan program² for complex $Dy_6@Br$.

Site	Optimized energy (cm ⁻¹)	Min. reversal energy (cm ⁻¹)	Intersection angles (°)
Dy1	-0.1769E+03	0.1387E+03	0

Dy2	-0.1430E+03	0.9648E+02	36.715
Dy3	-0.3648E+03	0.4970E+03	62.966
Dy1'	-0.1769E+03	0.1387E+03	0
Dy2'	-0.1429E+03	0.9644E+02	36.715
Dy3'	-0.3648E+03	0.4970E+03	62.966

References:

- 1 a) S. Alvarez and M. Llunell, *J. Chem. Soc., Dalton Trans.*, 2000, 10.1039/B004878J, 3288-3303; b) D. Casanova, P. Alemany, J. M. Bofill and S. Alvarez, *Chem. Eur. J.*, 2003, **9**, 1281-1295.
- 2 N. F. Chilton, D. Collison, E. J. L. McInnes, R. E. P. Winpenny and A. Soncini, Nat. Commun., 2013, 4, 2551.