Luminescent Polypyridyl Heteroleptic Cr ${ }^{\text {III }}$ Complexes with High Quantum

Yields and Long Excited State Lifetimes

Juan-Ramón Jiménez, ${ }^{*}$ Maxime Poncet, Benjamin Doistau, Céline Besnard and Claude Piguet*

Supporting Information

(37 pages)

Appendix 1. Experimental section.

Solvents and starting materials

Reagent grade acetonitrile (ACN) was distilled from CaH_{2}. All other chemicals such as $\mathrm{CrCl}_{3} \cdot 3 \mathrm{THF}$, $\mathrm{AgCF}_{3} \mathrm{SO}_{3},\left(n-\mathrm{Bu}_{4}\right) \mathrm{NPF}_{6}$ and organic solvents were purchased from commercial suppliers and used without further purification. The ligand ddpd, dqp and dqpOMe were prepared according to published methods. ${ }^{51-52}$

Preparation of $\left[\mathbf{C r}(\mathbf{d q p}) \mathbf{C l}_{3}\right]$. The ligand dqp $(250 \mathrm{mg}, 0.75 \mathrm{mmol})$ was added into a solution of $\mathrm{CrCl}_{3} \cdot 3 \mathrm{THF}$ ($280 \mathrm{mg}, 0.75 \mathrm{mmol}$) in propan-2-ol $(15 \mathrm{~mL})$. The resulting green solution was heated in a microwave to $160^{\circ} \mathrm{C}$ during 4 h . The mixture was filtered and the green solid was washed with warm ethanol ($2 \times 10 \mathrm{~mL}$), dichloromethane (20 mL) and diethyl ether ($2 \times 20 \mathrm{~mL}$). The product was dried under vacuum to obtain a crystalline green powder $\left[\mathrm{Cr}(\mathrm{dqp}) \mathrm{Cl}_{3}\right]$ (yield 90%). Slow diffusion of diethyl ether into a concentrated solution of the complex in N, N^{\prime}-dimethylformamide led to the formation of green crystals suitable for X-ray diffraction. Elemental analysis: Calcd for: $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{CrN}_{3} \cdot 0.1 \mathrm{H}_{2} \mathrm{O} \cdot 0.3 \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{C}, 53.9 ; \mathrm{H}, 3.42 ; \mathrm{N}, 8.09$. Found C, 53.8; H, 3.47; N, 8.11.
Preparation of $\left[\mathbf{C r}(\mathbf{d q p})\left(\mathbf{S O}_{3} \mathbf{C F}_{3}\right)_{3}\right]$. A mixture of $\left[\mathrm{Cr}(\mathrm{dqp}) \mathrm{Cl}_{3}\right](50 \mathrm{mg}, 0.09 \mathrm{mmol})$ and silver triflate $(83 \mathrm{mg}, 0.32 \mathrm{mmol})$ in distilled acetonitrile (1 mL), was heated under microwave irradiation in a sealed cap at $140^{\circ} \mathrm{C}$ during 30 min . After cooling to room temperature, the resulting red solution was filtered to remove the AgCl generated during the reaction. ESI-MS $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}:\left[\mathrm{Cr}(\mathrm{dqp})\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)_{2}\right]^{+}$calc: 682.9, found: 682.9 (Figure S1). This solution was used directly for the next step.

Preparation of $[\mathbf{C r}(\mathbf{d q p})(\mathbf{t p y})]\left(\mathbf{P F}_{6}\right) \mathbf{(1)}$. A red solution of $\left[\mathrm{Cr}(\mathrm{dqp})\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)_{3}\right]$ in distilled acetonitrile was loaded into a 5 ml MW vial containing 1 equivalent of the tpy ligand in 1 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The solution was heated under microwave irradiation for 12 h at $70^{\circ} \mathrm{C}$. After cooling to room temperature, the solvent was removed under reduced pressure yielding an orange residue. The orange residue was dissolved in methanol $(2 \mathrm{~mL})$ and few drops of a saturated methanol solution of $\left(n-\mathrm{Bu}_{4}\right) \mathrm{NPF}_{6}$ were added. The yellow precipitate was filtered and washed with cold $\mathrm{MeOH}(1 \times 5 \mathrm{~mL})$, dichloromethane $(20 \mathrm{~mL})$ and diethyl ether $(2 \times 15 \mathrm{~mL})$ to give $\left[\mathrm{Cr}(\mathrm{dqp})\left(\mathrm{tpyy}^{2}\right)\right]\left(\mathrm{PF}_{6}\right)_{3}($ yield $40 \%)$ as a fine yellow powder. Slow diffusion of diethyl ether into a concentrated solution of the complex in acetonitrile led to the formation of orange crystals suitable for XRD. Elemental Analysis: Calcd for $\mathrm{C}_{38} \mathrm{H}_{26} \mathrm{CrF}_{18} \mathrm{~N}_{6} \mathrm{P}_{3} \cdot 2.2 \mathrm{CH}_{2} \mathrm{Cl}_{2} 1.3 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{C}, 39.73 ; \mathrm{H}, 2.67 ; \mathrm{N}, 7.9$ found $\mathrm{C}, 39.72 ; \mathrm{H}, 2.68 ; \mathrm{N}, 7.90$.
Preparation of $[\mathbf{C r}(\mathbf{d q p})(\mathrm{L})]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ ($\mathrm{L}=\mathbf{d d p d}$ (2) dqpOMe (3)). A red solution of $\left[\mathrm{Cr}(\mathrm{dqp})\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)_{3}\right]$ in distilled acetonitrile was loaded into a 5 ml MW vial containing 1 equivalent of ddpd or dqpOMe in 1 mL distilled acetonitrile. The solution was heated under microwave irradiation for 6 h at $120^{\circ} \mathrm{C}$ and $140^{\circ} \mathrm{C}$ respectively. After cooling to room temperature, acetonitrile was added and the mixture filtered to remove impurities. The solvent was then removed under reduced pressure yielding an orange residue. The orange residue was dissolved in water, filtered, evaporated again and dried under vacuum to give $[\mathrm{Cr}(\mathrm{ddpd})(\mathrm{dqp})]\left(\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{CF}_{3}\right)_{3}$ (yield 60%) and $[\mathrm{Cr}(\mathrm{dqp})(\mathrm{dqpOme})]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ (yield
80%). The orange residue was dissolved in acetonitrile and precipitate slowly with diethyl ether to give in both cases an orange/yellow precipitate which was washed with cold MeOH ($1 \times 5 \mathrm{~mL}$), dichloromethane (20 mL) and diethyl ether ($2 \times 15 \mathrm{~mL}$). Slow diffusion of diethyl ether into a concentrated solutions of the complexes in acetonitrile led to the formation of orange crystals suitable for XRD. ESI-MS $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}$: $\left.[\mathrm{Cr}(\mathrm{ddpd})(\mathrm{dqp})]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right]^{+}$calc: 945.9, found: 946.0. Elemental analysis: Calcd $\mathrm{C}_{53} \mathrm{H}_{40} \mathrm{CrF}_{9} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{~S}_{3} \cdot 0.9 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.35 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{C}, 49.27 ; \mathrm{H}, 3.25 \mathrm{~N}, 6.68$ found C, 49.14; H, 2.99; N, 6.94. ESI-MS $\left.\left(\mathrm{CH}_{3} \mathrm{CN}\right) m / z:[\mathrm{Cr}(\mathrm{dqp})(\mathrm{dqpOe})]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right]^{+}$calc: 1046., found: 1046.1. Elemental analysis: Calcd $\mathrm{C}_{43} \mathrm{H}_{32} \mathrm{CrF}_{9} \mathrm{~N}_{8} \mathrm{O}_{9} \mathrm{~S}_{3} \cdot 1.3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 45.01 ; \mathrm{H}, 3.04 \mathrm{~N}, 9.77$ found C, $45.01 ; \mathrm{H}$, 3.05; N, 9.75.

Spectroscopic and analytical measurements.

Pneumatically-assisted electrospray (ESI) mass spectrum was recorded from $10^{-4} \mathrm{M}$ solution on an Applied Biosystems API 150EX LC/MS System equipped with a Turbo Ionspray source ${ }^{\circledR}$. Elemental analyses were performed by K. L. Buchwalder from the Microchemical Laboratory of the University of Geneva. Absorption spectra in water solution were recorded using a Lambda 1050 Perkin Elmer spectrometer (quartz cell path length 1 cm or $1 \mathrm{~mm}, 290-800 \mathrm{~nm}$ domain, $2 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$ and $650-800 \mathrm{~nm}$ domain). Emission spectra (excitation at 355 nm) was recorded from either room temperature or frozen solution samples (for frozen solutions: $\mathrm{CH}_{3} \mathrm{CN} /$ propionitrile $6 / 4$ at $\mathrm{C} \approx 5 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$), or freeze-pumpthaw degassed acetonitrile solution ($\mathrm{C} \approx 10^{-4} \mathrm{~mol} / \mathrm{L}$) for room temperature solutions 293 K , with a Fluorolog (Horiba Jobin-Yvon), equipped with iHR320, a Xenon lamp 450 Watt Illuminator (FL1039A/40A) and a water-cooled photo multiplier tube (PMT Hamamatsu R2658 or R928), and corrected for the spectral response of the system. The emission spectra were recorded as a function of the wavelength and transformed into wavenumbers. ${ }^{53}$ For time-resolved experiments, the decay curves were recorded from previously excited samples at 77 K and 293 K , with a photomultiplier (Hamamatsu R2658 or R928) and a digital oscilloscope (Tektronix MDO4104C). Pulsed excitation at 355 nm was obtained with the third harmonic of a pulsed Nd:YAG laser (Quantel Qsmart 850). Low temperature (77 K) was achieved using liquid quartz transparent Deward filled with liquid N_{2} in the centre of which samples were placed. Samples solutions $\left(\mathrm{CH}_{3} \mathrm{CN} /\right.$ propionitrile) $6 / 4$ at $\left.\mathrm{C} \approx 5 \times 10^{-3} \mathrm{~mol} / \mathrm{L}\right)$, were introduced in quartz tube (4 mm interior diameter) and introduced into the sample holder of the Dewar. The oxygen free decay curve measurements were recorded at 293 K for acetonitrile solutions of the complex ($\mathrm{C} \approx$ $10^{-5} \mathrm{~mol} / \mathrm{L}$). Aerated solutions were prepared by using no-degassed water as solvent. All emission quantum yields were measured according to the relative method using the reported $\left[\operatorname{Cr}(\mathrm{ddpd})_{2}\right]^{3+}\left({ }_{C r}^{L}\right.$ $=12.1 \% ; \lambda_{\text {exc }}=435 \mathrm{~nm}$). The measurement was carried out by following the previously reported method (IUPAC Technical Report). ${ }^{54}$ The measurements were achieved in $\mathrm{CH}_{3} \mathrm{CN}$, at room temperature and $\lambda_{\text {exc }}=435 \mathrm{~nm}$ (manifold $\mathrm{Cr}\left({ }^{4} \mathrm{~T}_{2} \leftarrow^{4} \mathrm{~A}_{2}\right) / \mathrm{LMCT}$). Molar concentrations were adjusted to $1 \times 10^{-5} \mathrm{M}$.

X-Ray Crystallography.

Summary of crystal data, intensity measurements and structure refinements for rac$[\mathrm{Cr}(\mathrm{dqp})(\mathrm{tpy})]\left(\mathrm{PF}_{6}\right)_{3}, r a c-[\mathrm{Cr}(\mathrm{ddpd})(\mathrm{dqp})]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ and $\mathrm{rac}-[\mathrm{Cr}(\mathrm{dqq})(\mathrm{dqpOMe})]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ compound were collected in Tables S1-S12 (ESI). The crystals were mounted on MiTeGen cryoloops with protection oil. X-ray data collections were performed with an Agilent SuperNova Dual diffractometer equipped with a CCD Atlas detector $(\mathrm{Cu}[\mathrm{K} \alpha]$ radiation) or a Rigaku symergy S equipped with an hypix detector. The structures were solved in SHELXT by using dual space methods. ${ }^{55}$ Full-matrix leastsquare refinements on F^{2} were performed with SHELXL ${ }^{\text {S6 }}$ within the Olex2 program. ${ }^{57}$ CCDC 20151872015190 contain the supplementary crystallographic data. The cif files can be obtained free of charge on www.ccdc.cam.ac.uk.

Figure S1. ESI-MS spectra recorded upon reaction of $\left[\mathrm{Cr}(\mathrm{dqp}) \mathrm{Cl}_{3}\right]$ with $\mathrm{AgCF}_{3} \mathrm{SO}_{3}$

Table S1. Crystal data and structure refinement for $\mathrm{rac}-\left[\mathrm{Cr}(\mathrm{dqp}) \mathrm{Cl}_{3}\right]$

Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{CrN}_{3}$
Formula weight	491.73
Temperature/K	150(2)
Crystal system	monoclinic
Space group	C2/c
a/ \AA	12.5368(2)
b/ \AA	12.0583(2)
c/ \AA	13.3923(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	103.770(2)
γ^{\prime}	90
Volume $/ \AA^{3}$	1966.36(6)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.661
μ / mm^{-1}	8.669
F(000)	996.0
Crystal size/mm ${ }^{3}$	$0.229 \times 0.156 \times 0.126$
Radiation	$\operatorname{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	10.324 to 148.778
Index ranges	$-15 \leq \mathrm{h} \leq 15,-15 \leq \mathrm{k} \leq 14,-16 \leq 1 \leq 16$
Reflections collected	29407
Independent reflections	$2005\left[\mathrm{R}_{\text {int }}=0.0284, \mathrm{R}_{\text {sigma }}=0.0088\right]$
Data/restraints/parameters	2005/0/138
Goodness-of-fit on F^{2}	1.074
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0230, \mathrm{wR}_{2}=0.0686$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0232, \mathrm{wR}_{2}=0.0688$
Largest diff. peak/hole / e \AA^{-3}	0.32/-0.41

Table S2. Selected bond distances (\AA), bond angles $\left({ }^{\circ}\right)$ in $\operatorname{rac}-\left[\mathrm{Cr}(\mathrm{dqp}) \mathrm{Cl}_{3}\right]$

Atom	Atom	Length $/ \mathbf{\AA}$
Cr 1	Cl 1	$2.3559(5)$
Cr 1	$\mathrm{Cl} 2^{*}$	$2.3251(3)$
Cr 1	Cl 2	$2.3250(3)$
Cr 1	$\mathrm{~N}^{*}$	$2.0770(13)$
Cr 1	N 1	$2.0770(13)$
Cr 1	N 2	$2.0587(17)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C12*	Cr1	Cl1	89.108(10)
Cl 2	Cr1	Cl1	89.107(10)
Cl 2	Cr1	Cl2*	178.21(2)
N1	Cr1	Cl1	93.09(3)
N1*	Cr1	Cl1	93.09(3)
$\mathrm{N} 1{ }^{*}$	Cr1	Cl 2	91.51(4)
N1	Cr1	Cl 2	88.59(4)
$\mathrm{N} 1{ }^{*}$	Cr1	Cl2*	88.58(4)
N1	Cr1	Cl2*	91.51(4)
N1	Cr1	$\mathrm{N} 1{ }^{*}$	173.81(7)
N2	Cr1	Cl 1	180
N2	Cr1	Cl 2	90.893(10)
N2	Cr1	Cl2*	90.892(10)
N2	Cr1	N1*	86.91(3)
N2	Cr1	N1	86.91(3)

Table S3. Interplanar angles $\left({ }^{\circ}\right)$ in $\mathrm{rac}-\left[\mathrm{Cr}(\mathrm{dqp}) \mathrm{Cl}_{3}\right]$

Plane	mean deviation in \AA	max deviation in Å (atom)
QUIN1 N1 C5 C9 C8 C7 C6 C4 C3 C2 C1	0.086	0.146 (C9)
PYR1N2 C10 C11 C12 C11	0.001	
C10		0.002 (C11)

Interplanar angles $\left(^{\circ}\right.$)

	PYR1	QUIN1*
QUIN1	38.9	77.8
PYR1		38.9

QUIN1* is obtained from QUIN1 by applying the symmetry operation (1-X,Y,3/2-Z)

Figure S2 ORTEP view of $\left[\mathrm{Cr}(\mathrm{dqp}) \mathrm{Cl}_{3}\right]\left(\mathrm{PF}_{6}\right)_{3}$ (1) with numbering scheme. Thermal ellipsoids are drawn at 50% probability level.

Table S4. Crystal data and structure refinement for $\mathrm{rac}-[\mathrm{Cr}(\mathrm{dqp})(\mathrm{tpy})]\left(\mathrm{PF}_{6}\right)_{3}$.

Empirical formula	$\mathrm{C}_{42.17} \mathrm{H}_{32} \mathrm{CrF}_{17.48} \mathrm{~N}_{8} \mathrm{O}_{0.52} \mathrm{P}_{2.83} \mathrm{~S}_{0.17}$
Formula weight	1136.37
Temperature/K	149.99(10)
Crystal system	orthorhombic
Space group	Pbca
a / \AA	17.10349(6)
b/A	17.98863(8)
c/ \AA	28.79512(12)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
γ^{\prime}	90
Volume/ \AA^{3}	8859.35(6)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.704
μ / mm^{-1}	4.261
$\mathrm{F}(000)$	4574.0
Crystal size/mm ${ }^{3}$	$0.319 \times 0.243 \times 0.189$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	6.138 to 148.854
Index ranges	$-21 \leq \mathrm{h} \leq 18,-22 \leq \mathrm{k} \leq 20,-35 \leq 1 \leq 35$
Reflections collected	95378
Independent reflections	$8997\left[\mathrm{R}_{\text {int }}=0.0245, \mathrm{R}_{\text {sigma }}=0.0096\right]$
Data/restraints/parameters	8997/137/712
Goodness-of-fit on F^{2}	1.040
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0452, \mathrm{wR}_{2}=0.1200$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0459, \mathrm{wR}_{2}=0.1206$
Largest diff. peak/hole / e \AA^{-3}	1.59/-0.75

Table S5. Selected bond distances (\AA), bond angles $\left(^{\circ}\right)$ in $r a c-[\mathrm{Cr}(\mathrm{dqp})($ tpy $)]\left(\mathrm{PF}_{6}\right)_{3}$.

Atom	Atom	Length $/ \mathbf{\AA}$
Cr1	N2 (dqp)	$2.0272(18)$
Cr1	N1 (dqp)	$2.0611(18)$
Cr1	N5 (tpy)	$1.9894(19)$
Cr1	N6 (tpy)	$2.0685(18)$
Cr1	N4 (tpy)	$2.0832(18)$
Cr1	N3 (dqp)	$2.0725(19)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
N2	Cr1	N1	$88.57(7)$
N2	Cr1	N6	$97.09(7)$
N2	Cr1	N4	$106.21(7)$
N2	Cr1	N3	$90.60(7)$
N1	Cr1	N6	$93.35(7)$
N1	Cr1	N4	$89.70(7)$
N1	Cr1	N3	$176.04(7)$
N5	Cr1	N2	$175.35(7)$
N5	N1	$90.84(7)$	
N5	Cr1	N6	$78.33(7)$
N5	Cr1	N4	$78.41(8)$
N5	Cr1	N4	$90.29(8)$
N6	Cr1	N3	$156.58(7)$
N6	N4	$90.59(7)$	
N3		$86.81(7)$	

Table S6. Interplanar angles $\left(^{\circ}\right)$ in $r a c-[\operatorname{Cr}(\mathrm{dqp})($ tpy $)]\left(\mathrm{PF}_{6}\right)_{3}$

Plane	mean deviation in \AA	max deviation in \AA (atom)
QUIN1 N1 C1 C2 C3 C4 C5	0.078	0.137 (C9)
C9 C8 C7 C6		
PYR1 N2 C10 C11 C12 C13	0.021	0.030 (C14)
C14 \square		
C20 C15 C16 C17 C18		
PYR2 N4 C28 C27 C26 C25	0.016	0.024 (N4)
C 24		
PYR3 C29 C30 C31 C32 C33	0.014	0.020 (N5)
N5 \square		
PYR4 N6 C34 C35 C36 C37	0.006	0.010 (N6)
C38		

Interplanar Angles (${ }^{\circ}$)

	PYR1	QUIN2	PYR2	PYR3	PYR4
QUIN1	27.6	71.8	69.1	59.8	64.4
PYR1		44.3	53.9	50.7	59.4
QUIN2			44.2	53.7	63.2
PYR2			13.6	20.1	
PYR3					10.2

Figure S3 ORTEP view of $[\mathrm{Cr}(\mathrm{dqp})($ tpy $)]\left(\mathrm{PF}_{6}\right)_{3}$ (1) with numbering scheme. Thermal ellipsoids are drawn at 50% probability level. Counter ions are omitted for clarity.

Table S7. Crystal data and structure refinement for rac-[$\mathrm{Cr}(\mathrm{ddpd})(\mathrm{dqp})]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$

Empirical formula	$\mathrm{C}_{44} \mathrm{H}_{38} \mathrm{CrF}_{18} \mathrm{~N}_{10} \mathrm{P}_{3}$
Formula weight	1193.75
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a / \AA	21.14124(15)
b/Å	22.83951(17)
c/ \AA	20.55852(15)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90.3997(7)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	9926.55(12)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.598
μ / mm^{-1}	3.837
$\mathrm{F}(000)$	4824.0
Crystal size/mm ${ }^{3}$	$0.637 \times 0.394 \times 0.037$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	4.18 to 147.57
Index ranges	$-25 \leq \mathrm{h} \leq 25,-27 \leq \mathrm{k} \leq 25,-24 \leq 1 \leq 24$
Reflections collected	87579
Independent reflections	$18950\left[\mathrm{R}_{\text {int }}=0.0541, \mathrm{R}_{\text {sigma }}=0.0346\right]$
Data/restraints/parameters	18950/0/1377
Goodness-of-fit on F^{2}	1.065
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0542, \mathrm{wR}_{2}=0.1505$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0659, \mathrm{wR}_{2}=0.1579$

Table S8. Interplanar angles $\left(^{\circ}\right)$ in $\mathrm{rac}-[\mathrm{Cr}(\mathrm{ddpd})(\mathrm{dqp})]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$

Plane
mean deviation max deviation in \AA (atom) in \AA

N1 C1 C2 C3 C4 C5 C9 C8 C7 C6 quin1	0.077	0.136 (N1)
N1B C1B C2B C3B C4B C5B C9B C8B C7B C6B	0.090	0.153 (C9B)
N2 C14 C13 C12 C11 C10 pyr1	0.011	0.016 (C14)
N2B C14B C13B C12B C11B C10B	0.006	0.008 (C13B)
N3 C23 C22 C21 C19 C20 C15 C16 C17 C18 quin2	0.073	0.137 (N3)
C15B C16B C17B C18B C19B C21B C22B C23B N3B C20B	0.065	0.123 (N3B)
N4 C24 C25 C26 C27 C28 pyr2	0.022	0.035 (N4)
N4B C28B C27B C26B C25B C24B	0.019	0.030 (N4B)
N5 C34 C33 C32 C31 C30 pyr3	0.04	0.005 (C34)
N5B C30B C31B C32B C33B C34B	0.004	0.005 (N5B)
N6 C36 C37 C38 C39 C40 pyr4	0.026	0.039 (N6)
N6B C40B C39B C37B C38B C36B	0.023	0.037 (N6B)

Angles between least-square planes (in ${ }^{\circ}$). Two complexes are present in the asymmetric unit. Values for the second molecule are given in blue

	Pyr1 Quin2 Quin1 36.7 74.7 Pyr2 Pyr3	Pyr4			
	38.3	77.0	32.0	41.6	84.2
Pyr1		38.1	53.5	46.1	85.9
Quin2	38.8	$\underline{52.8}$	22.0	53.1	
			83.8	42.1	54.1
Pyr2		84.9	39.2	27.7	
				41.6	71.6
Pyr3			45.7	76.9	
				42.9	
				39.9	

Table S9. Selected bond distances $(\AA \AA)$, bond angles $\left(^{\circ}\right)$ in $\operatorname{rac}-[\mathrm{Cr}(\mathrm{ddpd})(\mathrm{dqp})]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$

Atom	Atom	Length $/ \mathbf{\AA}$
Cr1	N1	$2.052(2)$
Cr1	N2	$2.032(2)$
Cr1	N3	$2.051(2)$
Cr1	N4	$2.050(2)$
Cr1	N5	$2.041(2)$
Cr1	N6	$2.042(2)$

Atom	Atom	Atom	Angle $/{ }^{\circ}$
N2	Cr1	N1	88.27(9)
N2	Cr1	N3	87.66(9)
N2	Cr1	N4	93.04(9)
N2	Cr1	N5	179.60(10)
N2	Cr1	N6	93.68(9)
N3	Cr1	N1	175.48(10)
N4	Cr1	N1	93.69(9)
N4	Cr1	N3	88.49(9)
N5	Cr1	N1	91.37(10)
N5	Cr1	N3	92.71(10)
N5	Cr1	N4	86.83(9)
N5	Cr 1	N6	86.46(10)
N6	Cr1	N1	87.42(10)
N6	Cr 1	N3	90.88(9)
N6	Cr1	N4	173.22(9)

Figure S4 ORTEP view of $[\mathrm{Cr}(\mathrm{ddpd})(\mathrm{dqp})]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ (2) with numbering scheme. Thermal ellipsoids are drawn at 50% probability level. Counter ions and H atoms are omitted for clarity.

Table S10. Crystal data and structure refinement for rac-[$\mathrm{Cr}(\mathrm{dqp})(\mathrm{dqpOMe})]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$

Empirical formula	$\mathrm{C}_{52} \mathrm{H}_{35} \mathrm{CrF}_{9} \mathrm{~N}_{7} \mathrm{O}_{10} \mathrm{~S}_{3}$
Formula weight	1237.05
Temperature/K	150.01(10)
Crystal system	triclinic
Space group	P-1
a/ \AA	13.1076(5)
b/Å	13.8460(5)
c/ \AA	14.7792(5)
$\alpha /{ }^{\circ}$	100.865(3)
$\beta /{ }^{\circ}$	90.278(3)
γ^{\prime}	108.118(3)
Volume $/ \AA^{3}$	2497.76(16)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.645
μ / mm^{-1}	3.975
F(000)	1258.0
Crystal size/mm ${ }^{3}$	$0.522 \times 0.286 \times 0.164$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	6.104 to 141.146
Index ranges	$-15 \leq \mathrm{h} \leq 15,-16 \leq \mathrm{k} \leq 16,-13 \leq 1 \leq 18$
Reflections collected	18796
Independent reflections	$9338\left[\mathrm{R}_{\text {int }}=0.0199, \mathrm{R}_{\text {sigma }}=0.0215\right]$
Data/restraints/parameters	9338/0/742
Goodness-of-fit on F^{2}	1.041
Final R indexes [I>=2 ${ }^{(\mathrm{I})}$]	$\mathrm{R}_{1}=0.0500, \mathrm{wR}_{2}=0.1271$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0516, \mathrm{wR}_{2}=0.1283$
Largest diff. peak/hole / e \AA^{-3}	1.85/-0.78

Table S11. Selected bond distances (\AA), bond angles $\left(^{\circ}\right)$ in $r a c-[\mathrm{Cr}(\mathrm{dqp})($ dqpOMe $)]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$

Atom	Atom	Length/ \AA
Cr 1	N 1	$2.060(2)$
Cr 1	N 2	$2.054(2)$
Cr 1	N 3	$2.067(2)$
Cr 1	N 4	$2.070(2)$
Cr 1	N 5	$2.038(2)$
Cr 1	N 6	$2.058(2)$

Atom	Atom	Atom	Angle $/^{\circ}$
N1	Cr1	N3	174.47(9)
N1	Cr 1	N4	92.67(8)
N2	Cr1	N1	87.01(8)
N2	Cr1	N3	87.47(9)
N2	Cr1	N4	92.20(9)
N2	Cr1	N6	94.02(8)
N3	Cr1	N4	87.96(9)
N5	Cr1	N1	92.23(8)
N5	Cr1	N2	178.29(8)
N5	Cr1	N3	93.30(9)
N5	Cr1	N4	86.31(9)
N5	Cr1	N6	87.48(8)
N6	Cr1	N1	88.34(8)
N6	Cr1	N3	91.64(9)
N6	Cr1	N4	173.74(9)

Table S12. Interplanar angles $\left(^{\circ}\right)$ in $\mathrm{rac}-[\mathrm{Cr}(\mathrm{dqp})(\mathrm{dqpOMe})]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$

Plane	mean deviation in \AA	max deviation in \AA (atom) QUIN1 N1 C1 C2 C3 C4 C9 C8 C7 C6 C5
PYR1 N2 C14 C13 C12 C11 C10	0.105	0.170 (N1)
QUIN2 C15 C16 C17 C18 C19 C20 C21 C22		
N3 C23		

Interplanar angle $\left(^{\circ}\right)$					
	PYR1	QUIN2	QUIN3	PYR2	QUIN4
QUIN1	40.1	79.4	11.8	41.5	83.3
PYR1		39.5	41.6	17.1	45.5
QUIN2			80.6	45.6	20.9
QUIN3				37.6	80.1
PYR2					42.6

Figure S5 ORTEP view of $[\mathrm{Cr}(\mathrm{dqp})(\mathrm{dqpOMe})]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ (3) with numbering scheme. Thermal ellipsoids are drawn at 50% probability level. Counter ions and H atoms are omitted for clarity.

Table S13. Selected transitions of absorption spectra recorded for $\mathbf{1 , 2 , 3}$ in $\mathrm{CH}_{3} \mathrm{CN}$ at $10^{-4} \mathrm{M}$ between $250-650 \mathrm{~nm}$ and at circa 1 mM between $650-850 \mathrm{~nm}$ at 293 K .

Compound	$\lambda(\mathrm{nm})$	$v\left(\mathrm{~cm}^{-1}\right)$	$\varepsilon\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$	Assignment
$[\mathrm{Cr}(\mathrm{dqp})(\mathrm{tpy})]^{3+}$	280	35741	29589	$\pi^{*} \leftarrow \pi$
	311	32154	26153	$\pi^{*} \leftarrow \pi$
	358	27932	12032	$\pi^{*} \leftarrow \pi$
	400	25062	4875	LMCT/(MC)
	472	21186	634	${ }^{4} \mathrm{~T}_{2} \leftarrow 4^{4} \mathrm{~A}_{2}$
	680	14705	0.08	${ }^{2} \mathrm{~T}_{1}{ }^{\prime},{ }^{\prime}\left(C_{2}\right) \leftarrow \leftarrow^{4} \mathrm{~A}_{2}{ }^{\prime}\left(C_{2}\right)$
	698	14326	0.18	${ }^{2} \mathrm{~T}_{1}{ }^{\prime \prime}\left(C_{2}\right) \leftarrow \leftarrow^{4} \mathrm{~A}_{2}{ }^{\prime}\left(C_{2}\right)$
	725	13779	0.04	${ }^{2} \mathrm{~T}_{1}{ }^{\prime}\left(C_{2}\right) \leftarrow \leftarrow^{4} \mathrm{~A}_{2}{ }^{\prime}\left(C_{2}\right)$
	736	13586	0.11	${ }^{2} \mathrm{E}{ }^{\prime}\left(C_{2}\right) \leftarrow \leftarrow^{4} \mathrm{~A}_{2}^{\prime}\left(C_{2}\right)$
	749	13351	0.15	${ }^{2} \mathrm{E}^{\prime}\left(C_{2}\right) \leftarrow \leftarrow^{4} \mathrm{~A}_{2}{ }^{\prime}\left(C_{2}\right)$
$[\mathrm{Cr}(\mathrm{ddpd})(\mathrm{dqp})]^{3+}$	278	35971	32589	$\pi^{*} \leftarrow \pi$
	323	30959	41616	$\pi^{*} \leftarrow \pi$
	362	27624	28173	$\pi^{*} \leftarrow \pi$
	395	25316	21015	$\pi^{*} \leftarrow \pi$
	415	24096	a	${ }^{4} \mathrm{~T}_{2} \leftarrow{ }^{4} \mathrm{~A}_{2}$
	453	22075	3221	LMCT/(MC)
	696	14367	0.15	${ }^{2} \mathrm{~T}_{1}{ }^{\prime},{ }^{\prime}\left(C_{2}\right) \leftarrow{ }^{4} \mathrm{~A}_{2}\left(C_{2}\right)$
	719	13908	0.07	${ }^{2} \mathrm{~T}_{1}{ }^{\prime}{ }^{\prime}\left(C_{2}\right) \leftarrow \leftarrow^{4} \mathrm{~A}_{2}\left(C_{2}\right)$
	732	13661	0.30	${ }^{2} \mathrm{~T}_{1}{ }^{\prime}\left(C_{2}\right) \leftarrow \leftarrow^{4} \mathrm{~A}_{2}\left(C_{2}\right)$
	763	13097	0.23	${ }^{2} \mathrm{E}^{\prime}\left(C_{2}\right) \leftarrow{ }^{4} \mathrm{~A}_{2}\left(C_{2}\right)$
$[\mathrm{Cr}(\mathrm{dqp})(\text { dqpOMe })]^{3+}$	334	29940	34427	$\pi^{*} \leftarrow \pi$
	374	26737	30974	$\pi^{*} \leftarrow \pi$
	409	24449	a	${ }^{4} \mathrm{~T}_{2} \leftarrow 4^{4} \mathrm{~A}_{2}$
	467	21413	700	LMCT/(MC)
	698	14326	0.093	${ }^{2} \mathrm{~T}_{1}{ }^{\prime}{ }^{\prime}\left(C_{2}\right) \leftarrow \leftarrow^{4} \mathrm{~A}_{2}\left(C_{2}\right)$
	727	13755	0.34	${ }^{2} \mathrm{~T}_{1}{ }^{\prime}\left(C_{2}\right) \leftarrow \leftarrow^{4} \mathrm{~A}_{2}\left(C_{2}\right)$
	753	13280	0.06	${ }^{2} \mathrm{E}^{\prime}\left(C_{2}\right) \leftarrow \leftarrow^{4} \mathrm{~A}_{2}\left(C_{2}\right)$

[^0]Table S14. Energies of the $\operatorname{Cr}\left({ }^{4} \mathrm{~A}_{2}\right), \operatorname{Cr}\left({ }^{2} \mathrm{~T}_{1}\right)$ and $\mathrm{Cr}\left({ }^{2} \mathrm{E}\right)$ levels and ligand field Δ and Racah parameters B and C computed with eqs $\mathrm{S} 1-\mathrm{S} 3$ for $[\mathrm{Cr}(\mathrm{dqp})(\mathrm{tpy})]^{3+}$ (1) $[\mathrm{Cr}(\mathrm{ddpd})(\mathrm{dqp})]^{3+}$ (2) and $[\mathrm{Cr}(\mathrm{dqp})(\mathrm{dqpOMe})]^{3+}$ in acetonitrile solution at 293 K .

Racah parameters B and C have been estimated with the help of eqs $\mathrm{S} 1-\mathrm{S} 3 .{ }^{\text {s8-S10 }}$

$$
\begin{align*}
& E\left({ }^{4} \mathrm{~T}_{2}\right)=\Delta \tag{S1}\\
& E\left({ }^{2} \mathrm{~T}_{1}\right)=9 B+3 C-24\left(B^{2} / \Delta\right) \tag{S2}\\
& E\left({ }^{2} \mathrm{E}\right)=9 B+3 C-50\left(B^{2} / \Delta\right) \tag{S3}
\end{align*}
$$

Compound	Δ $/ \mathrm{cm}^{-1}$	B $/ \mathrm{cm}^{-1}$	C $/ \mathrm{cm}^{-1}$	Δ / B	C / B	${ }^{2} \mathrm{~T}_{2}$ $/ \mathrm{cm}^{-1 b}$	$4 \mathrm{~T}_{1}$ $/ \mathrm{cm}^{-1 b}$	Reference
$\mathbf{1}$	21186	811	2571	26	3.2	19756	33896	This work
$\mathbf{2}$	24096	779	2492	31	3.2	20490	32077	This work
$\mathbf{3}$	24449	784	2509	31	3.2	20626	31193	This work
$\left[\mathrm{Cr}(\mathrm{dqp})_{2}\right]^{3+}$	24937	656	2791	38	4.3	20758	32030	S11
$\left[\mathrm{Cr}(\mathrm{ddpd})_{2}\right]^{3+b}$	22883	763	2442	30	3.2	19176	30828	S 11

${ }^{a}$ The energy of $\operatorname{Cr}\left({ }^{2} \mathrm{~T}_{1}\right)$ is taken as the average of its split components (see text). ${ }^{b}$ Computed using $E\left({ }^{2} \mathrm{~T}_{2}\right)=15 B+5 C-176\left(B^{2} / \Delta\right)$ and $E\left({ }^{4} \mathrm{~T}_{1}\right)=1.5 \Delta+7.5 B-0.5 \sqrt{225 B^{2}+\Delta^{2}-18 \Delta B} .58,59{ }^{5}$ In water.

Front view of ddpd

Front view of dqp

Figure S6. Calculated N (terminal)- N (central) and $\mathrm{N}($ terminal $) \mathrm{N}$ (terminal) distances for the bound ddpd (left) and (dqp) right in compound 2.

Figure S7. (a) Intramolecular interstrand π-stacking occurring between the quinoline rings and the amino-pyridine rings in $\mathbf{2}$ and (b) intramolecular interstrand stacking through π interaction involving quinoline rings in $\mathbf{3}$. Colour code for the atoms: C (gray), N (blue), O (red) and Cr (orange). The centroids of the staked aromatic planes are represented with green spheres.
a)

e)

f)

h)

i)

Time / s

k)

Time / s
1)

m)

Figure S8. Excited state lifetime fitting for the series of heteroleptic complexes ($\lambda_{\text {exc }}=355 \mathrm{~nm}$): a) and b) $\operatorname{Cr}\left({ }^{2} \mathrm{E}\right)$ and $\operatorname{Cr}\left({ }^{2} \mathrm{~T}_{1}\right)$ lifetimes for $\mathbf{1}$ in deaerated acetonitrile solution; c) and d) $\operatorname{Cr}\left({ }^{2} \mathrm{E}\right)$ and $\operatorname{Cr}\left({ }^{2} \mathrm{~T}_{1}\right)$ lifetimes for $\mathbf{1}$ in aerated acetonitrile solution and e) $\mathrm{Cr}\left({ }^{2} \mathrm{E}\right)$ lifetime for $\mathbf{1}$ at 77 K in frozen acetonitrile /propionitrile (6/4) solution. f) and g) $\operatorname{Cr}\left({ }^{2} \mathrm{E}\right)$ and $\left.\mathrm{Cr}^{2} \mathrm{~T}_{1}\right)$ lifetimes for $\mathbf{2}$ in deaerated acetonitrile solution; h) and i) $\operatorname{Cr}\left({ }^{2} \mathrm{E}\right)$ and $\operatorname{Cr}\left({ }^{2} \mathrm{~T}_{1}\right)$ lifetimes for $\mathbf{2}$ in aerated acetonitrile solution and j) $\operatorname{Cr}\left({ }^{2} \mathrm{E}\right)$ lifetime for $\mathbf{2}$ at 77 K in frozen acetonitrile /propionitrile (6/4) solution. k) and l) $\operatorname{Cr}\left({ }^{2} \mathrm{E}\right)$ and $\operatorname{Cr}\left({ }^{2} \mathrm{~T}_{1}\right)$ lifetimes for $\mathbf{3}$ in deaerated acetonitrile solution; m) and n) $\operatorname{Cr}\left({ }^{2} \mathrm{E}\right)$ and $\operatorname{Cr}\left({ }^{2} \mathrm{~T}_{1}\right)$ lifetimes for $\mathbf{3}$ in aerated acetonitrile solution and p) $\operatorname{Cr}\left({ }^{2} \mathrm{E}\right)$ lifetime for $\mathbf{3}$ at 77 K in frozen acetonitrile /propionitrile (6/4) solution.

Figure S9. Emission spectra at 77 K in frozen acetonitrile /propionitrile (6/4) solution

Figure S10. Emission spectra at room temperature in acetonitrile solution from 550 to 850 nm

Figure S11. Excitation spectra of compounds $\mathbf{2}$ and $\mathbf{3}$ at $\lambda_{\mathrm{an}}=762 \mathrm{~nm}$ and $\lambda_{\mathrm{an}}=752$ respectively in $\mathrm{CH}_{3} \mathrm{CN}$ solution.

Table S15. Kinetic rate constants and emission quantum yields recorded for $\mathbf{1 , 2}$ and $\mathbf{3}$ in acetonitrile and $\left[\mathrm{Cr}(\mathrm{dqp})_{2}\right]^{3+}$ in water ${ }^{58}$ at 293 K and 77 K . Values in italic type represents the values obtained for aerated solutions, the rest for deaerated solutions.

	$k_{C r, r a d a}^{2_{E}} / \mathrm{s}^{-1}$	${ }^{{ }^{2} T_{1}}{ }_{C r, r a d a}$	$k_{C r, n r a d b}^{2_{E}} / \mathrm{s}^{-1}$	$\begin{gathered} { }^{2} T_{1} \\ k_{C r, n r a d b} \\ / \mathrm{s}^{-1} \end{gathered}$	$\begin{gathered} { }^{2}{ }_{E,}{ }^{2} T_{1}{ }_{1} \\ \tau_{\text {Cr,obs }{ }^{c}} \\ / \mu \mathrm{s} \end{gathered}$	$\begin{gathered} { }^{2}{ }_{E,}{ }^{2} T_{1} \\ \tau_{\text {Cr,obs } d} \\ / \mu \mathrm{s} \end{gathered}$	$\begin{gathered} { }^{2}{ }_{E,}{ }^{2} T_{1} \\ \tau_{C r, o b s}{ }_{e} \\ / \mathrm{ms} \end{gathered}$	$\left.\Phi^{C r}{ }_{C r}^{C r}{ }^{2} E\right){ }_{f}$	$\left.\Phi{ }_{C r}^{C r}{ }^{2} T_{1}\right){ }_{g}$	$\begin{gathered} \Phi_{C r h}^{L} \\ / \% \end{gathered}$	$\begin{gathered} \Phi_{C r i}^{L} \\ / \% \end{gathered}$	$\begin{gathered} \eta_{\text {sens } j}^{L \rightarrow C r} \\ \quad / \% \end{gathered}$
1	55(5)	58(5)	1699(30)	1696(30)	578(10)	$3.0(1)$	0.7(1)	3.2(3)	3.4(3)	0.2(1)	$0.0015(1)$	3.0(5)
2	63(6)	91(8)	1500(30)	1472(30)	642(10)	14(2)	1.7(2)	4.0(4)	5.8(5)	6.0(5)	0.12(1)	61(5)
3	11(1)	62(6)	1139(20)	1088(20)	855(10)	25(2)	2.7(2)	0.9(1)	5.3(1)	6.5(5)	0.16 (2)	100(7)
$\left[\mathrm{Cr}(\mathrm{dqp})_{2}\right]^{3+k}$	30(2)	89(5)	803(15)	744(15)	1200(20)	83(5)	3.1(2)	3.6(1)	11.0(1)	7.3(4)	1.0(1)	50(7)
${ }^{a} k_{\text {rad }}$ obtained from $k_{\text {rad }}=2303 \times \frac{8 \pi c n^{2} \tilde{v}^{2} g_{G . S .}}{N_{A} g_{E . E .}} \int \varepsilon(v) d \tilde{v}$ where c is the velocity of the light in vacuum, N_{A} is Avogrado's number, n is the refractive index of the medium, $\tilde{v}^{\text {is }}$ the transition wavenumber, ε is the molar absorption coefficient, $g_{\text {G.S. }}$ is the degeneracy of the ground state $\left(g\left({ }^{4} \mathrm{~A}_{2}\right)=4\right)$ and $g_{\text {E.E. }}$ represents the degeneracy of the excited states $\left(g\left({ }^{2} \mathrm{E}\right)=4\right.$ and $\left.g\left({ }^{2} \mathrm{~T}_{1}\right)=6\right) .{ }^{3}{ }^{b} k_{\text {nrad }}=\left(1 / \tau_{\text {obs }}\right)-k_{\text {rad }}$ (deaerated solution). ${ }^{c} \tau_{\text {obs }}$ from time-resolved experiments at $293 \mathrm{~K}($ deaerated solution). ${ }^{d} \tau_{\text {obs }}$ from time-resolved experiments at 293 K (aerated solution). ${ }^{e} \tau_{\text {obs }}$ from time-resolved experiments at 77 K . ${ }^{f g}$ Intrinsic quantum yield of the specified Cr level calculated with $\Phi_{C r=}^{C r} k_{\text {rad }} \tau_{\text {obs. }}$ (deaerated solutions). ${ }^{h, i}$ Overall quantum yield $\Phi_{C r}^{L}$ measured by relative method using $\left[\mathrm{Cr}(\mathrm{ddpd})_{2}\right]^{3+}\left(\lambda_{\text {exc }}=435 \mathrm{~nm}\right.$ in $\mathrm{H}_{2} \mathrm{O}$; $\Phi_{C r=11 \%) \text { in }{ }^{h} \text { deaerated and }{ }^{i} \text { aerated solutions. }{ }^{j} \eta_{\text {sens }}^{L \rightarrow C r}=\frac{\Phi_{C r}^{L}}{\Phi^{C r}{ }^{2}{ }^{2} E r}{ }^{L}+\Phi^{C r\left({ }^{2} T_{1}\right)}}^{C r}{ }^{2}$ yield: estimated relative uncertainty $\square 10 \%$. ${ }^{k}$ Recalculated from ref. S8.												

References

(S1) S. Otto, M. Grabolle, C. Förster, C. Kreitner, U. Resch-Genger and K. Heinze, Angew. Chem., Int. Ed., 2015, 54, 11572-11576.
(S2) M. Jäger, R.-J. Kumar, H. Görls H., J. Bergquist J. and O. Johansson. Inorg. Chem. 2009, 48, 3228-3238
(S3) G. Angulo, G. Grampp and A. Rosspeintner, Spectrochim. Acta Part a-Molecular and Biomolecular Spectroscopy 2006, 65, 727-731.
(S4) H. Ishida, J.-C. G. Bünzli and A. Beeby, Pure Appl. Chem., 2016, 7, 88
(S5) G. M. Sheldrick. SHELXT - Integrated Space-group and Crystal-structure Determination. Acta Cryst. A 2015, 71, 3-8.
(S6) G. M. Sheldrick. Crystal Structure Refinement with SHELXL. Acta Cryst. C, 2015, 71, 3-8.
(S7) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J Appl. Cryst. 2009, 42, 339-341.
(S8) C. K. Jorgensen, Adv. Chem. Phys., 1963, 5, 33-146.
(S9) A. B. P. Lever, Inorg. Electron. Spectrosc. Elsevier, Amsterdam, Oxford, New York, Tokyo, 2nd edn, 1984, 126.
(S10) D. Zare, B. Doistau, H. Nozary, C. Besnard, L. Guénée, Y. Suffren, A.-L. Pelé, A. Hauser and C. Piguet, Dalton Trans., 2017, 46, 8992-9009.
(S11) J.-R Jiménez, B. Doistau, C. M. Cruz, C. Besnard, J. M. Cuerva, A. G. Campaña and C. Piguet. J. Am. Chem. Soc. 2019, 141, 13244-13252.

[^0]: ${ }^{a}$ Not given because of the overlap with LMCT

