Supporting Information

In situ chemistry-encapsulated controlled SnS$_2$ nanocrystal composites for durable lithium/sodium-ion batteries

Yan-Fei Li a†, Shu-Guang Wang b†, Yan-Hong Shi a, Chao-Ying Fan c, Jian Lin a, Xing-Long Wu a, Hai-Ming Xie a, Jing-Ping Zhang a and Hai-Zhu Sun a*

a College of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, No. 5268 Renmin Street, Changchun 130024, China.

b School of Energy and Mechanics, Dezhou University, No. 566 West University Road, Dezhou 253023, China.

c Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.

† These authors contributed equally.

* Corresponding author, Tel: +86-431-85099667, E-mail: sunhz335@nenu.edu.cn, Fax: +86-431-85099667.
Experimental Section

The Preparation of C-SnS$_2$@rGO-X (X=0.1, 0.2, 0.4), SnS$_2$@rGO and SnS$_2$.

First, 0.1 g of GO was dissolved into a solution consisting of water (40 mL) and alcohol (20 mL) by ultrasonication of 2 h to obtain the GO dispersing solution. After that, various amounts of glucose (i.e. 0.1, 0.2 and 0.4 g), 0.16 g NaOH, 0.71 g SnCl$_4$·5H$_2$O and 1 g thiourea were added to the above solution, then stirred continued for 12 h. The resulted solution was injected into a 100 mL Teflon autoclave and was kept at 180 °C for 12 h. The C-SnS$_2$@rGO-X (X=0.1, 0.2, 0.4) was washed with deionized water and collected by centrifugation, and then dried at 60 °C. For comparison, the SnS$_2$@rGO was prepared without adding glucose; similarly, SnS$_2$ was prepared without adding rGO and glucose.

Characterization of Materials.

X-ray diffractometer (XRD) was performed on a Rigaku SmartLab X-ray diffractometer with Cu Ka radiation. Raman spectra were obtained with a JY HR-800 Lab Ram confocal Raman microscope. Scanning electron microscopy (SEM, XL 30 ESEM-FEG, FEI Company) and transmission electron microscopy (TEM) were employed to investigate the morphologies of the samples. X-ray photoelectron spectra (XPS) was tested with Mg-Kα excitation (1253.6 eV) in a VGESCALAB MKII spectrometer.

Electrochemical Characterization.

The SnS$_2$-based composites (80%), polyvinylidene fluoride (10%) and acetylene black (10%) were mixed in N-methyl-2-pyrrolidone, and then coated on the Cu foils as
working anodes. The mass loading of SnS$_2$-based composites in electrode was approximately 1.1 mg cm$^{-2}$. 2032-type coin cells were manufactured with 1 M LiPF$_6$ dissolved in dimethyl carbonate and ethylene carbonate (1:1 by volume). The charge/discharge measurements were carried out on a multichannel battery testing system (LAND CT2001A). The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests were measured on an electrochemical workstation (CHI 750 E).

Theoretical Calculation.

We perform first-principle calculations by using Vienna ab initio simulation package with the Perdew-Burke-Ernzerhof-type generalized gradient approximation for the exchange-correlation functional and the projector augmented wave method. All atoms are relaxed until the residual force was less than 0.01 eV/Å. A 3 × 3 × 1 grid of k points and a plane-wave cutoff energy of 400 eV are used for the self-consistent calculations and charge analysis. The d$_2$ vdW interactions are considered through all the calculations.
Fig. S1 The size of SnS$_2$ NCs under different content of glucose, demonstrating the size of SnS$_2$ NCs is well controlled.

![Figure S1](image1)

Fig. S2 The Raman spectrum of C-SnS$_2$@rGO-0.2, demonstrating the disordered structure of carbon.

![Figure S2](image2)

Fig. S3 XPS survey spectra of SnS$_2$@rGO.

![Figure S3](image3)
Fig. S4 XPS survey spectra of C-SnS$_2$@rGO-0.1 and C-SnS$_2$@rGO-0.4.

Fig. S5 XPS spectra of C-SnS$_2$@rGO-0.1 and C-SnS$_2$@rGO-0.4: (a, d) Sn 3d, (b, e) C 1s and (c, f) S 2p, revealing that the C-S bonds gradually become stronger with glucose increased in the preparation process.
Fig. S6 FT-IR spectrum of C-SnS$_2$@rGO-0.2, indicating the presence of C-S bonds.

Fig. S7 CV curves of SnS$_2$@rGO, C-SnS$_2$@rGO-0.1 and C-SnS$_2$@rGO-0.4, exhibiting the similar electrochemical processes as C-SnS$_2$@rGO-0.2.
Fig. S8 The cycle performances of (a) C-SnS$_2$@rGO-X (X=0.1, 0.2, 0.4), SnS$_2$@rGO and SnS$_2$, (b) C-SnS$_2$@rGO-X (X=0.1, 0.2, 0.4) electrode.

Fig. S9 The XPS spectra of C-SnS$_2$@rGO-0.2 (a) S 2p, (b) C 1s after 50 cycles at 1 A g$^{-1}$.
Fig. S10 SEM images of C-SnS$_2$@rGO-0.2 after 1000 cycles, indicating the stable electrode structure.

Fig. S11 The TGA curve of C-SnS$_2$@rGO-0.2 at atmosphere from room temperature to 1000 $^\circ$C.

As shown in **Fig. S11**, the sharp weight loss before approximately 650 $^\circ$C is ascribed to the conversion from SnS$_2$ to SnO$_2$ and the burning of carbon. According to the equation (1):

$$ m_{\text{SnS}_2} = \frac{\Delta m}{M_{\text{SnO}_2}} \times M_{\text{SnS}_2} \times 100\% $$

(1)

Where n, M, Δm and m_{SnS_2} are the quantity of matter, molar mass, the content of SnO$_2$ and SnS$_2$ respectively.

The contents of SnS$_2$ and carbon are calculated to be 78.8% and 21.2%, respectively.
Table S1 The comparison of the electrochemical stability of C-SnS$_2$@rGO-0.2 with other with/without protective layer for SnS$_x$-based materials reported in previous literatures.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Current (A g$^{-1}$)</th>
<th>Reversible Capacity (mAh g$^{-1}$)</th>
<th>Cycle number</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-SnS$_2$@rGO-0.2</td>
<td></td>
<td></td>
<td></td>
<td>This work</td>
</tr>
<tr>
<td>0.1</td>
<td>1428.7</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>938.4</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>704</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>453</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC-RGO-CNT</td>
<td>0.5</td>
<td>100</td>
<td>150</td>
<td>[52]</td>
</tr>
<tr>
<td>SnS@G</td>
<td>0.1</td>
<td>1462</td>
<td>200</td>
<td>[48]</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>1020</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>MXene-decorated SnS$_2$/Sn$_3$S$_4$</td>
<td>0.1</td>
<td>462.3</td>
<td>100</td>
<td>[53]</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>101.4</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>graphene@SnS$_2$</td>
<td>0.3</td>
<td>664</td>
<td>200</td>
<td>[54]</td>
</tr>
<tr>
<td>SnS$_2$/MoS$_2$/CFC</td>
<td>0.1</td>
<td>1294</td>
<td>120</td>
<td>[55]</td>
</tr>
<tr>
<td>SnS$_2$/CN</td>
<td>0.1</td>
<td>444.7</td>
<td>100</td>
<td>[56]</td>
</tr>
<tr>
<td>SnS$_2$/rGO/SnS$_2$</td>
<td>0.1</td>
<td>1357</td>
<td>200</td>
<td>[30]</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>909</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>SnS$_2$/rGO</td>
<td>0.1</td>
<td>1010</td>
<td>200</td>
<td>[57]</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>910</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>SnS@SG</td>
<td>0.1</td>
<td>800</td>
<td>100</td>
<td>[49]</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>527</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>SnS$_2$</td>
<td>0.1</td>
<td>912</td>
<td>100</td>
<td>[50]</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>800</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>SnS$_2$@C</td>
<td>0.1</td>
<td>1150</td>
<td>200</td>
<td>[58]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>----</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>676</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>rGO/SnS$_2$/TiO$_2$</td>
<td>1.0</td>
<td>485</td>
<td>200</td>
<td>[59]</td>
</tr>
<tr>
<td>SnS/MoS$_2$–C</td>
<td>0.2</td>
<td>989.7</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>718</td>
<td>700</td>
<td>[60]</td>
</tr>
<tr>
<td>SnS$_2$@C</td>
<td>0.1</td>
<td>690</td>
<td>100</td>
<td>[51]</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>435</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>