Supporting Information

In situ chemistry-encapsulated controlled SnS₂ nanocrystal composites for durable lithium/sodium-ion batteries

Yan-Fei Li^{a†}, Shu-Guang Wang^{b†}, Yan-Hong Shi^a, Chao-Ying Fan^c, Jian Lin^a, Xing-Long Wu^a, Hai-Ming Xie^a, Jing-Ping Zhang^a and Hai-Zhu Sun^{a*}

^a College of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, No. 5268 Renmin Street, Changchun 130024, China.

^b School of Energy and Mechanics, Dezhou University, No. 566 West University Road, Dezhou 253023, China.

^c Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.

[†] These authors contributed equally.

* Corresponding author, *Tel*: +86-431-85099667, E-mail: sunhz335@nenu.edu.cn, *Fax*: +86-431-85099667.

Experimental Section

The Preparation of C-SnS₂@rGO-X (X=0.1, 0.2, 0.4), SnS₂@rGO and SnS₂.

First, 0.1 g of GO was dissolved into a solution consisting of water (40 mL) and alcohol (20 mL) by ultrasonication of 2 h to obtain the GO dispersing solution. After that, various amounts of glucose (*i.e.* 0.1, 0.2 and 0.4 g), 0.16 g NaOH, 0.71 g SnCl₄·5H₂O and 1 g thiourea were added to the above solution, then stirred continued for 12 h. The resulted solution was injected into a 100 mL Teflon autoclave and was kept at 180 °C for 12 h. The C-SnS₂@rGO-X (X=0.1, 0.2, 0.4) was washed with deionized water and collected by centrifugation, and then dried at 60 °C. For comparison, the SnS₂@rGO was prepared without adding glucose; similarly, SnS₂ was prepared without adding rGO and glucose.

Characterization of Materials.

X-ray diffractometer (XRD) was performed on a Rigaku SmartLab X-ray diffractometer with Cu K α radiation. Raman spectra were obtained with a JY HR-800 Lab Ram confocal Raman microscope. Scanning electron microscopy (SEM, XL 30 ESEM-FEG, FEI Company) and transmission electron microscopy (TEM) were employed to investigate the morphologies of the samples. X-ray photoelectron spectra (XPS) was tested with Mg-K α excitation (1253.6 eV) in a VGESCALAB MKII spectrometer.

Electrochemical Characterization.

The SnS_2 -based composites (80%), polyvinylidene fluoride (10%) and acetylene black (10%) were mixed in N-methyl-2-pyrrolidone, and then coated on the Cu foils as

working anodes. The mass loading of SnS_2 -based composites in electrode was approximately 1.1 mg cm⁻². 2032-type coin cells were manufactured with 1 M LiPF₆ dissolved in dimethyl carbonate and ethylene carbonate (1:1 by volume).The charge/discharge measurements were carried out on a multichannel battery testing system (LAND CT2001A). The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests were measured on an electrochemical workstation (CHI 750 E).

Theoretical Calculation.

We perform first-principle calculations by using Vienna ab initio simulation package with the Perdew-Burke-Ernzerhof-type generalized gradient approximation for the exchange-correlation functional and the projector augmented wave method. All atoms are relaxed until the residual force was less than 0.01 eV/Å. A $3 \times 3 \times 1$ grid of k points and a plane-wave cutoff energy of 400 eV are used for the self-consistent calculations and charge analysis. The d2 vdW interactions are considered through all the calculations.

Fig. S1 The size of SnS_2 NCs under different content of glucose, demonstrating the size of SnS_2 NCs is well controlled.

Fig. S2 The Raman spectrum of C-SnS₂@rGO-0.2, demonstrating the disordered structure of carbon.

Fig. S3 XPS survey spectra of SnS₂@rGO.

Fig. S4 XPS survey spectra of C-SnS₂@rGO-0.1 and C-SnS₂@rGO-0.4.

Fig. S5 XPS spectra of C-SnS₂@rGO-0.1 and C-SnS₂@rGO-0.4: (a, d) Sn 3d, (b, e) C 1s and (c, f) S 2p, revealing that the C-S bonds gradually become stronger with glucose increased in the preparation process.

Fig. S6 FT-IR spectrum of C-SnS₂@rGO-0.2, indicating the presence of C-S bonds.

Fig. S7 CV curves of $SnS_2@rGO$, C- $SnS_2@rGO$ -0.1 and C- $SnS_2@rGO$ -0.4, exhibiting the similar electrochemical processes as C- $SnS_2@rGO$ -0.2.

Fig. S8 The cycle performances of (a) C-SnS₂@rGO-X (X=0.1, 0.2, 0.4), SnS₂@rGO and SnS₂, (b) C-SnS₂@rGO-X (X=0.1, 0.2, 0.4) electrode.

Fig. S9 The XPS spectra of C-SnS₂@rGO-0.2 (a) S 2p, (b) C 1s after 50 cycles at 1 A g^{-1} .

Fig. S10 SEM images of C-SnS2@rGO-0.2 after 1000 cycles, indicating the stable electrode structure.

Fig. S11 The TGA curve of C-SnS₂@rGO-0.2 at atmosphere from room temperature to 1000 °C.

As shown in **Fig. S11**, the sharp weight loss before approximately 650 $^{\circ}$ C is ascribed to the conversion from SnS₂ to SnO₂ and the burning of carbon. According to

the equation (1):
$$m_{SnS_2} = \frac{\Delta m}{M_{SnO_2}} \times M_{SnS_2} \times 100\%$$
(1)

Where *n*, *M*, Δm and m_{SnS2} are the quantity of matter, molar mass, the content of SnO₂ and , SnS₂ respectively.

The contents of SnS₂ and carbon are calculated to be 78.8% and 21.2%, respectively.

Samples	Current (A g ⁻¹)	Reversible Capacity (mAh g ⁻¹)	Cycle number	Ref.
C-SnS ₂ @rGO- 0.2	0.1	1428.7	300	
	1.0	938.4	400	This work
	2.0	704	1000	
	5.0	453	500	
TC-RGO-CNT	0.5	100	150	[52]
SnS@G	0.1	1462	200	[48]
	1.0	1020	500	
MXene- decorated SnS ₂ /Sn ₃ S ₄	0.1	462.3	100	[53]
	5.0	101.4	500	
graphene@SnS ₂	0.3	664	200	[54]
SnS ₂ /MoS ₂ /CFC	0.1	1294	120	[55]
SnS ₂ /CN	0.1	444.7	100	[56]
SnS ₂ /rGO/SnS ₂	0.1	1357	200	[30]
	1.0	909	200	
SnS ₂ /rGO	0.1	1010	200	[57]
	1.0	910	1000	
SnS@SG	0.1	800	100	[49]
	1.0	527	300	
SnS ₂	0.1	912	100	[50]
	0.5	800	300	
SnS ₂ @C	0.1	1150	200	[58]

Table S1 The comparison of the electrochemical stability of C-SnS₂@rGO-0.2 with other with/without protective layer for SnS_x-based materials reported in previous literatures.

	1.0	676	500	
rGO/SnS ₂ /TiO ₂	1.0	485	200	[59]
SnS/MoS ₂ –C	0.2	989.7	60	[60]
	2.0	718	700	
SnS ₂ @C	0.1	690	100	[51]
	1.0	435	150	