Electronic supplementary information

Homo- and hetero-dinuclear Pt(II)/Pd(II) complexes: studies of the hydrolysis, nucleophilic substitution reactions, DNA/BSA interactions,

DFT calculation, molecular docking and cytotoxic activity

Dušan Ćoćić,¹ Snežana Jovanović-Stević,² Ratomir Jelić,³ Sanja Matić,³ Suzana Popović,⁴

Predrag Djurdjević,^{5,6} Dejan Baskić^{4,7} and Biljana Petrović*¹

 ¹University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
 ²University of Kragujevac, Institute of Information Technologies, Jovana Cvijića bb, 34000 Kragujevac, Serbia
 ³University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia
 ⁴University of Kragujevac, Faculty of Medical Sciences, Centre for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia
 ⁵University of Kragujevac, Faculty of Medical Sciences, Department of Internal medicine, Svetozara Markovića 69, 34000 Kragujevac, Serbia
 ⁶Clinic for Haematology, Clinical Centre Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
 ⁷Public Health Institute, Nikole Pašića 1, 34000 Kragujevac, Serbia

*Corresponding author: Prof. Dr. Biljana Petrović, Phone: +381(0)34336223,

Fax: +381(0)34335040, e-mail: <u>biljana.petrovic@pmf.kg.ac.rs</u>

	HTB140					
Conc. (µM)	0 (control)	1 µM	3 μΜ	10 µM	30 µM	100 µM
CA						
SF (mean)		0.51	0.10	0.0025	0	0
		H460				
Conc. (µM)	0 (control)	1 µM	3 μΜ	10 µM	30 µM	100 µM
CA						
SF (mean)		0.025	0.0025	0	0	0

 Table S1. Clonogenic surival of HTB140 and H460 cells after PP2 treatment.

T [K] $10^{3} C_{L} [M]$ kobsd1 [s⁻¹] Ligand λ [nm] k_{obsd2} [s⁻¹] 20.89(5) Tu 288 300 10.49(4)1 2 39.73(3) 19.84(5)3 59.74(5) 30.74(4)4 79.26(4) 40.36(4)5 50.94(5) 101.35(4)298 1 28.23(3) 12.61(4)2 58.13(5) 24.19(4) 3 87.03(4) 36.24(3) 4 114.51(4) 48.87(5) 5 143.89(3) 61.24(4)310 1 41.52(5) 16.47(4)2 80.17(4) 33.61(3) 3 119.87(4) 50.13(4) 4 160.23(3) 67.03(4) 5 203.12(3) 83.24(3) Ligand $10^{3} C_{L} [M]$ T [K] kobsd1 [s⁻¹] kobsd2 [s⁻¹] λ [nm] L-Met 288 8.40(5) 3.59(5) 260 1 2 15.98(4) 7.33(4) 3 24.87(4)11.05(5) 4 33.01(3) 14.53(4)5 40.94(5)18.21(3)298 1 9.73(4) 4.48(3)2 20.55(4)8.88(5) 3 30.13(3) 13.08(4)4 40.75(3)17.65(4)5 50.02(5) 22.11(3)310 1 14.77(4)6.43(5) 2 29.97(5) 12.77(5)

Table S2. Observed *pseudo*-first order rate constants as a function of nucleophile concentration and temperature for the substitution reactions of **PP1** in 25 mM Hepes buffer (pH = 7.2), 50 mM NaCl.

			3	46.15(4)	19.27(4)
			4	60.34(4)	25.37(5)
			5	74.88(4)	32.01(4)
Ligand	T [K]	λ [nm]	$10^{3} C_{L} [M]$	k _{obsd1} [s ⁻¹]	k _{obsd2} [s ⁻¹]
GSH	288	260	1	5.29(4)	2.23(5)
			2	10.41(4)	4.39(4)
			3	15.37(3)	6.67(5)
			4	20.87(5)	8.84(5)
			5	25.97(4)	11.07(4)
	298		1	7.43(4)	3.21(5)
			2	15.11(3)	6.36(4)
			3	22.31(5)	9.45(4)
			4	29.75(4)	12.71(4)
			5	37.39(5)	15.85(3)
310			1	10.51(4)	4.33(5)
			2	21.13(3)	8.57(4)
			3	31.18(5)	13.01(4)
			4	41.57(4)	17.13(3)
			5	52.53(4)	21.55(4)
Ligand	T [K]	λ [nm]	10 ³ C _L [M]	k _{obsd1} [s ⁻¹]	k _{obsd2} [s ⁻¹]
5'-GMP	288	320	1	3.23(5)	0.61(4)
			2	6.29(4)	1.27(3)
			3	9.41(5)	1.93(5)
			4	12.54(4)	2.51(4)
			5	15.83(3)	3.13(3)
298			1	4.64(4)	0.88(5)
			2	9.01(3)	1.84(4)
			3	13.57(5)	2.73(4)
			4	18.03(4)	3.57(3)
			5	22.77(5)	4.46(5)
	310		1	6.25(4)	1.24(4)
			2	12.57(5)	2.55(4)

 3	18.92(4)	3.77(5)
4	25.23(5)	4.97(4)
5	31.23(4)	6.21(3)

^aNumber of runs in parenthesis

Ligand	T [K]	λ [nm]	$10^{3} C_{L} [M]$	10 ³ k _{obsd1} [s ⁻¹]	10 ⁴ k _{obsd2} [s ⁻¹]
Tu	298	320	1	4.52(2)	6.33(2)
			2	9.31(2)	13.11(3)
			3	13.53(3)	19.20(2)
			4	18.01(2)	25.64(2)
			5	22.65(2)	32.11(3)
Ligand	T [K]	λ [nm]	$10^{3} C_{L} [M]$	$k_{obsd1} [s^{-1}]$	$k_{obsd2} [s^{-1}]$
L-Met	298		1	1.96(2)	2.31(2)
			2	3.85(2)	4.75(3)
			3	5.84(3)	7.11(2)
			4	7.81(2)	9.42(3)
			5	9.58(3)	11.62(2)
Ligand	T [K]	λ [nm]	$10^{3} C_{L} [M]$	$k_{obsd1} [s^{-1}]$	$k_{obsd2} [s^{-1}]$
GSH	298		1	1.22(2)	1.67(2)
			2	2.47(2)	3.35(2)
			3	3.78(3)	5.01(2)
			4	5.05(2)	6.58(2)
			5	6.11(3)	8.27(3)
Ligand	T [K]	λ [nm]	$10^{3} C_{L} [M]$	k _{obsd1} [s ⁻¹]	$k_{obsd2} [s^{-1}]$
5'-GMP	298		1	0.91(2)	1.15(2)
			2	1.78(3)	2.37(3)
			3	2.63(2)	3.45(2)
			4	3.56(2)	4.61(3)
			5	4.42(3)	5.71(2)

Table S3. Observed *pseudo*-first order rate constants as a function of nucleophile concentration and temperature for the substitution reactions of **PP2** in 25 mM Hepes buffer (pH = 7.2), 50 mM NaCl.

^aNumber of runs in parenthesis

Ligand	T [K]	λ [nm]	$10^{3} C_{L} [M]$	k _{obsd1} [s ⁻¹]	$10^3 k_{obsd2} [s^{-1}]$
Tu	298	290	1	15.88(5)	4.07(2)
			2	31.75(4)	8.36(2)
			3	47.09(5)	12.47(2)
			4	63.52(4)	16.47(2)
			5	78.94(3)	20.53(2)
Ligand	T [K]	λ [nm]	$10^{3} C_{L} [M]$	$k_{obsd1} [s^{-1}]$	k _{obsd2} [s ⁻¹]
L-Met	298	265	1	5.68(4)	1.58(2)
			2	10.53(4)	3.16(2)
			3	15.72(4)	4.68(2)
			4	21.55(5)	6.22(3)
			5	26.85(5)	7.83(2)
Ligand	T [K]	λ [nm]	$10^{3} C_{L} [M]$	$k_{obsd1} [s^{-1}]$	k _{obsd2} [s ⁻¹]
GSH	298	260	1	3.36(4)	0.79(5)
			2	6.83(3)	1.58(2)
			3	10.33(5)	2.37(2)
			4	13.63(4)	3.14(2)
			5	16.85(5)	3.96(3)
Ligand	T [K]	λ [nm]	$10^{3} C_{L} [M]$	$k_{obsd1} [s^{-1}]$	k _{obsd2} [s ⁻¹]
5'-GMP	298	320	1	1.27(3)	0.56(2)
			2	2.63(5)	1.14(3)
			3	4.01(4)	1.69(2)
			4	5.21(4)	2.23(2)
			5	6.47(5)	2.79(3)

Table S4. Observed *pseudo*-first order rate constants as a function of nucleophile concentration and temperature for the substitution reactions of **PP3** in 25 mM Hepes buffer (pH = 7.2), 50 mM NaCl.

^aNumber of runs in parenthesis

Figure S1. Potentiometric titration of $[M(H_2O)_2]^{4+}$ ion (M = $[Pd_2L]^{4+}$ and L = tpbd) with standard NaOH in 0.1 M NaClO₄ ionic medium at 298 K.

Figure S2. Potentiometric titration of $[M(H_2O)_2]^{4+}$ ion (M = $[Pt_2L]^{4+}$ and L = tpbd) with standard NaOH in 0.1 M NaClO₄ ionic medium at 298 K.

Figure S3. Potentiometric titration of $[M(H_2O)_2]^{4+}$ ion $(M = [PdPtL]^{4+}$ and L = tpbd) with standard NaOH in 0.1 M NaClO₄ ionic medium at 298 K.

Figure S4. Distribution diagram of the species formed in 0.1 M NaClO₄ ionic medium at 298 K for $[Pt_2L(H_2O)_2]^{4+}$ (M), $C_M = 1 \times 10^{-3}M$.

Figure S5. Distribution diagram of the species formed in 0.1 M NaClO₄ ionic medium at 298 K for $[PdPtL(H_2O)_2]^{4+}$ (M), $C_M = 1 \times 10^{-3}M$.

Figure S5. Plots of the $k_{obsd(i)}$ *vs.* nucleophile concentration at three different temperatures for the substitution reactions of **PP1** with L-Met and GSH, *I* = 25 mM Hepes buffer, 50 mM NaCl.

Figure S7. Plots of $k_{obsd(i)}$ *vs.* nucleophile concentration at 298 K for the substitution reaction of **PP2**, *I* = 25 mM Hepes buffer, 50 mM NaCl.

Figure S8. Plots of $k_{obsd(i)}$ *vs.* nucleophile concentration at 298 K for the substitution reaction of **PP3**, *I* = 25 mM Hepes buffer , 50 mM NaCl.

Figure S9. Absorption spectra of **PP2** at different temperatures in PBS buffer upon addition of CT-DNA. [complex]= 1×10^{-5} M, [DNA]= $(0-1.5) \times 10^{-5}$ M. Arrow shows the change of absorbance with the increase of DNA concentrations. Inset: plot of [DNA]/($\varepsilon_a - \varepsilon_f$) vs. [DNA].

Figure S10. Absorption spectra of **PP3** at different temperatures in PBS buffer upon addition of CT-DNA. [complex]= 1×10^{-5} M, [DNA]= $(0-1.5) \times 10^{-5}$ M. Arrow shows the change of absorbance with the increase of DNA concentrations. Inset: plot of [DNA]/ $(\varepsilon_a - \varepsilon_f)$ vs. [DNA].

Figure S11. Emission spectra of EB bound to DNA in the presence of **PP2** and **PP3**. [EB]= 25 μ M; [DNA]= 25 μ M; [complex]= (0-50) μ M; λ_{ex} =527 nm. Arrows show the intensity changes upon increasing the concentration of complex. Inset graph: Plot of I₀/I *vs*. [Q], with \blacksquare for the experimental data points and the full line for the linear fitting of the data.

Figure S12. Emission spectra of Hoe bound to DNA in the presence of **PP2** and **PP3**. [Hoe] = $25 \,\mu$ M; [DNA] = $25 \,\mu$ M; [complex]= (0 - 50) μ M; λ_{ex} = 346 nm. Arrows show the intensity changes upon increasing the concentration of complex. Inset graph: Plot of I₀/I vs. [Q], with \blacksquare for the experimental data points and the full line for the linear fitting of the data.

Figure S13. Relative viscosity $(\eta/\eta_0)^{1/3}$ of CT-DNA (0.01 mM) in PBS buffer solution with the addition of increasing amounts (r) of **PP1**, **PP2** and **PP3** complexes.

Figure S14. (A) Emission spectra of BSA in the presence of **PP1** at different temperatures. [BSA] = 2 μ M, [complex] = 0 – 50 μ M, λ_{ex} = 285 nm. Arrows show the intensity changes upon increasing the concentrations of complex. Inset graph: Plot of I₀/I vs. [Q], with **•** for the experimental data points and the full line for the linear fitting of the data; (B) Plot of log[(I₀-I)/I] vs. log[Q] for BSA-PP1 complex system at different temperatures.

Figure S15. (A) Emission spectra of BSA in the presence of **PP2** at different temperatures. [BSA] = 2 μ M, [complex] = 0 - 60 μ M, λ_{ex} = 285 nm. Arrows show the intensity changes upon increasing the concentrations of complex. Inset graph: Plot of I₀/I vs. [Q], with **•** for the experimental data points and the full line for the linear fitting of the data; (B) Plot of log[(I₀-I)/I] vs. log[Q] for BSA-PP2 complex system at different temperatures.

Figure S16. (A) Emission spectra of BSA in the presence of **PP3** at different temperatures. [BSA] = 2 μ M, [complex] = 0 - 60 μ M, λ_{ex} = 285 nm. Arrows show the intensity changes upon increasing the concentrations of complex. Inset graph: Plot of I₀/I *vs.* [Q], with **•** for the experimental data points and the full line for the linear fitting of the data; (B) Plot of log[(I₀-I)/I] *vs.* log[Q] for BSA-PP3 complex system at different temperatures.

Figure S17. Stern-Volmer plots describing BSA quenching caused by PP1, PP2 and PP3 complexes at three different temperatures.

Figure S18. Vant't Hoff plots for the binding of CT-DNA to investigated complexes.

Figure S19. Vant't Hoff plots for the binding of BSA to investigated complexes.

Figure S20. Dose-response curves of HTB14 and H460 cells treated for 48 h with six concentrations of PP1, PP2 and PP3 determined by MTT assay.

Figure S21. Mitotic catastrophe following treatment with **PP2**; Fluorescence microscopy of AO/EB stained cells (left panel) showing: apoptotic cells (A) characterized by cell shrinkage, nuclear fragmentation and condensation that results in homogeneous bright green fluorescence; multinucleated cells undergoing mitotic catastrophe (MC) with organized structure of uncondensed chromatin; healthy cells (H) with nucleus with organized structure. Right panel is representative image obtained by inverted microscope.

Figure S22. ESI-MS spectrum of PP1 complex.

Figure S23. ESI-MS spectrum of PP2 complex.

Figure S24. ESI-MS spectrum of PP3 complex.

Figure S25. IR spectrum of PP1 complex.

Figure S26. IR spectrum of PP2 complex.

Figure S27. IR spectrum of PP3 complex.

Figure S28. ¹H NMR spectrum of PP1 complex.

Figure S29. ¹H NMR spectrum of PP2 complex.

Figure S30. ¹H NMR spectrum of PP3 complex.