Electronic Supplementary Information (ESI)

Local structure modulation of Mn⁴⁺-doped Na₂Si_{1-v}Ge_vF₆ red

phosphor for enhancement of emission intensity, moisture resistant,

thermal stability and application in warm pc-WLEDs

Feng Hong^{1,2}, Ge Pang¹, Lijuan Diao¹, Zhendong Fu³, Guixia Liu^{*1}, Xiangting Dong^{*1},

Wensheng Yu¹, Jinxian Wang¹

¹Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China

²College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China

³Tianjin Jinhang Technical Physics Institute, Tianjin, 300070, P.R. China

*Corresponding author. Tel.: +86-431-85383815; Tel: +86-431-85582574

E-mail address: liuguixia22@163.com; dongxiangting888@163.com.

Table 1 Cell parameters of $Na_2Si_{1-y}Ge_yF_6:0.06Mn^{4+}$ (y = 0, 0.3, 0.5, 0.7 and 1) red phosphors										
Samples		Crystalline	Space	Lattice parameters		ters				
		phase	group	a = b (Å) c (Å)	$V(Å^3)$				
NaSiF ₆ (standard)		Hexagonal	P321(150)	8.8659	5.0433	343.3				
$Na_2SiF_6:0.06Mn^{4+}$		Hexagonal	P321(150)	8.8520	5.0374	341.84				
$Na_2Si_{0.3}Ge_{0.7}F_6:0.06Mn^{4+}$		Hexagonal	P321(150)	8.8801	5.0412	344.27				
$Na_2Si_{0.5}Ge_{0.5}F_6:0.06Mn^{4+}$		Hexagonal	P321(150)	8.9593	5.1451	357.67				
$Na_2Si_{0.7}Ge_{0.3}F_6:0.06Mn^{4+}$		Hexagonal	P321(150)	9.0274	5.0767	361.40				
Na2GeF6:0.06Mn4+		Hexagonal	P321(150)	9.0392	5.10637	362.33				
Na ₂ GeF ₆ (standard)		Hexagonal	P321(150)	9.0576	5.1071	362.9				
Table 2 Spectroscopic parameters and β_1 values of Mn ⁴⁺ ions for as-reported Mn ⁴⁺ -activated										
fluorides and oxides phosphor.										
Host	Dq/cm^{-1}	B/cm ⁻¹	C/cm ⁻¹	β_{I}	$E(^{2}E_{g})/cm^{-1}$	Ref.				
$Mg_2Al_4Si_5O_{18}\\$	2141	927	2560	0.996	14409	1				
La ₃ GaGe ₅ O ₁₆	2141	900	2858	1.020	15174	2				
LaTiSbO ₆	2062	876	2752	0.989	14641	3				
La _{0.98} Lu _{0.02} AlO ₃	2018	820	2659	0.940	13991	4				
Li ₂ Ge ₄ O ₉	2252	608	3423	0.953	14948	5				
$SrMg_2La_2W_2O_{12}$	2088	746	2856	0.924	14124	6				
K7nF2	2105	607	3785	1 024	15797	7				

nuonaes and oxides phosphol.										
Host	Dq/cm^{-1}	B/cm ⁻¹	C/cm ⁻¹	β_{I}	$E(^{2}E_{g})/cm^{-1}$	Ref.				
$Mg_2Al_4Si_5O_{18}\\$	2141	927	2560	0.996	14409	1				
La ₃ GaGe ₅ O ₁₆	2141	900	2858	1.020	15174	2				
LaTiSbO ₆	2062	876	2752	0.989	14641	3				
$La_{0.98}Lu_{0.02}AlO_3$	2018	820	2659	0.940	13991	4				
Li ₂ Ge ₄ O ₉	2252	608	3423	0.953	14948	5				
$SrMg_{2}La_{2}W_{2}O_{12}$	2088	746	2856	0.924	14124	6				
KZnF ₃	2105	607	3785	1.024	15797	7				
NaHF ₂	2141	665	4016	1.095	15923	8				
CsPF ₆	2127	617	3787	1.028	16103	9				
K _{0.007} Ba _{0.965} TiF ₆	2096	610	3677	1.002	15713	10				
$Na_2Si_{0.5}Ge_{0.5}F_6$	2137	556	3858	1.017	15898	This work				

Fig. S1 Histogram of length (a) and diameter (b) of as-prepared Na₂SiF₆:0.06Mn⁴⁺ red phosphor

Fig. S2 Histogram of length (a) and diameter (b) of as-prepared Na₂Si_{0.7}Ge_{0.3}F₆:0.06Mn⁴⁺ red phosphor

Fig. S3 Histogram of length (a) and diameter (b) of as-prepared Na₂Si_{0.5}Ge_{0.5}F₆:0.06Mn⁴⁺ red phosphor

Fig. S4 Histogram of length (a) and diameter (b) of as-prepared Na₂Si_{0.3}Ge_{0.7}F₆:0.06Mn⁴⁺ red phosphor

Fig. S5 Histogram of length (a) and diameter (b) of as-prepared Na₂GeF₆:0.06Mn⁴⁺ red phosphor

References

[1] A.J. Fu, L.Y. Zhou, S. Wang, Y.H. Li, Dyes Pigments 2018, 148, 9-15.

[2] S.A. Zhang, Y.H. Hu, H. Duan, L. Chen, Y.R. Fu, G.F. Ju, T. Wang, M. He, *RSC Adv.* 2015, **5** 90499-90507.

[3] H.Y. Luo, X.Y. Li, X. Wang, M.Y. Peng, Chem. Eng. J. 2020, 384, 123272.

[4] J.Q. Chen, C.H. Yang, Y.B. Chen, J. He, Z.Q. Liu, J. Wang, J.L. Zhang, *Inorg. Chem.* 2019, **58**, 8379-8387.

[5] J.P. Xue, W.G. Ran, H.M. Noh, B.C. Choi, S.H. Park, J.H. Jeong, J.H. Kim, J. Lumin. 2017, **192**, 1072-1083.

[6] S.Y. Wang, Q. Sun, B. Devakumar, L.L. Sun, J. Liang, X.Y. Huang, *RSC Adv.* 2018, **8**, 30191-30200.

[7] T. Hu, H. Lin, F.L. Lin, Y. Gao, Y. Cheng, J. Xu, Y.S. Wang, J. Mater. Chem. C 2018, 6, 10845-10854.

[8] L.Q. Xi, Y.X. Pan, M.M. Zhu, H.Z. Lian, J. Lin, Dalton Trans. 2017, 46, 13835-13844.

[9] Y. Chen, Z.F. Yang, Q. Wang, M.Z. Rong, Q. Zhou, Z.L. Wang, *Dalton Trans.* 2019, **48**, 10901-10906.

[10] S.Q. Fang, T. Han, T.C. Lang, Y. Zhong, B.T. Liu, S.X. Cao, L.L. Peng, A.N. Yakovlev, V.I. Korepanov, J. Alloys Compd. 2019, 808, 151697.