Structural Variations in (001)-Oriented Layered Lead Halide Perovskites, Templated by 1,2,4-Triazolium

Yuan-Yuan Guo, Lin-Jie Yang, Jason A. McNulty, Alexandra M. Z. Slawin and Philip Lightfoot*

School of Chemistry and EaStChem, University of St Andrews, St Andrews, KY16 9ST, United Kingdom

E-Mail: pl@st-andrews.ac.uk (PL)

Supplementary Information

Figure S1. The Rietveld high resolution (synchrotron) P-XRD data for T₂PbCl₄ at 298K.

Figure S2. Ball and stick representations of the octahedra present in T_2PbCl_4 (93 K and 173 K) and T_2PbBr_4 -II.

Figure S3. Thermal Gravimetric Analysis (TGA) for T₂PbCl₄.

Figure S4. Crystal structure of $T_4Pb_3I_{10}\Box 2H_2O$.

Table S1. Single crystal and structure refinement data for T_2PbCl_4 and $T_4Pb_3I_{10}\Box 2H_2O$.

Table S2. Selected bond lengths (Å) and bond angles (°) for T₂PbCl₄ at 173 K and 298 K.

Table S3. Selected bond lengths (Å) and bond angles (°) for T_2PbCl_4 at 93 K and 125 K.

Table S4. Selected bond lengths (Å) and bond angles (°) for T₂PbBr₄-II.

Table S5. Hydrogen bond lengths (Å) and angles (°) for T₂PbCl₄ at 173 K and 298 K.

Table S6. Hydrogen bond lengths (Å) and angles (°) for T₂PbCl₄ at 93 K.

Table S7. Hydrogen bond lengths (Å) and angles (°) for T_2PbCl_4 at 125 K.

Table S8. Hydrogen bond lengths (Å) and angles (°) for T_2PbBr_4 -II.

Table S9: Key distortion mode amplitudes for the inorganic portion of T₂PbCl₄ at 93 K.

Figure S1. The Rietveld high resolution (synchrotron, 298 K) P-XRD and expanded (inset) data for T_2PbCl_4 ($\chi^2 = 19.03$, wRp = 0.145), the corresponding colours represent the experimental (red), the calculated (green) pattens and the difference between these two patterns (purple). This is included simply to demonstrate phase purity.

Figure S2. Ball and stick representations of the octahedra present in T₂PbCl₄ (93 K and 173 K) and T₂PbBr₄-II at 173 K highlighting the distortion in both bond lengths and bond angles.

Figure S3. Thermal Gravimetric Analysis (TGA) for T_2PbCl_4 in air, demonstrating sample stability up to ~ 150 °C.

Figure S4. Crystal structure of $T_4Pb_3I_{10}\Box 2H_2O$, view along (a) *a*-axis and (b) *b*-axis.

Temperature	298 K	125 K	93 K
Formula	$C_4H_8N_6PbCl_4$	$C_4H_8N_6PbCl_4$	$C_8H_{16}N_{12}Pb_3I_{10}\Box 2H_2$ O
Formula weight	489.15	489.15	2206.93
Colour/Habit	Colorless/Platelet	Colorless/Platelet	Yellow/Prism
Crystal size (mm ³)	$0.24 \times 0.13 \times 0.06$	$0.15 \times 0.10 \times 0.01$	$0.02 \times 0.01 \times 0.01$
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic
Space group	Стст	$P2_{1}2_{1}2_{1}$	Cmce
<i>a</i> (Å)	8.3092(5)	8.321(5)	9.6028(12)
b (Å)	7.5086(5)	21.465(12)	20.805(2)
<i>c</i> (Å)	21.5925(17)	22.084(10)	19.776(3)
V (Å ³)	1347.17(16)	3944(4)	3951.0(9)
Z	4	12	4
$ ho_{ m calc}$ (g/cm ³)	2.412	2.471	3.710
μ (mm ⁻¹)	13.296	13.623	20.593
F(000)	896	2688	3776
Refins collected	5443	49442	20834
Independent refins	653	6913	1847
F(000)	[R(int) = 0.0491]	[R(int) = 0.0895]	[R(int) = 0.0443]
Goodness of Fit	1.230	0.868	1.180
Final P indices $(I > 2-(I))$	$R_1 = 0.0240$	$R_1 = 0.0339$	$R_1 = 0.0151$
$\Gamma \min \Lambda \min(\cos (1 - 20(1)))$	$wR_2 = 0.0566$	$wR_2 = 0.0692$	$wR_2 = 0.0336$
Largest diff. peak/hole (e Å-3)	1.124/-1.265	1.255/-3.435	0.799/-1.554

Table S1. Single crystal and structure refinement data for T_2PbCl_4 and $T_4Pb_3I_{10}\Box 2H_2O$.

Temperature	173 K	298 K
Pb(1)-Cl(2)#1	2.764(3)	2.776(2)
Pb(1)-Cl(2)	2.764(3)	2.776(3)
Pb(1)-Cl(2)#2	2.841(3)	2.834(3)
Pb(1)-Cl(2)#3	2.841(3)	2.834(2)
Pb(1)-Cl(1)	2.868(3)	2.866(2)
Pb(1)-Cl(1)#4	2.868(3)	2.866(2)
Cl(2)#1-Pb(1)-Cl(2)	88.7(3)	88.8(2)
Cl(2)#1-Pb(1)-Cl(2)#2	84.228(10)	84.277(8)
Cl(2)-Pb(1)-Cl(2)#3	84.227(10)	84.277(8)
Cl(2)#2-Pb(1)-Cl(2)#3	102.9(3)	102.6(2)
Cl(2)#1-Pb(1)-Cl(1)	89.43(5)	89.45(4)
Cl(2)-Pb(1)-Cl(1)	89.43(5)	89.45(4)
Cl(2)#2-Pb(1)-Cl(1)	90.50(4)	90.49(3)
Cl(2)#3-Pb(1)-Cl(1)	90.50(4)	90.49(3)
Cl(2)#1-Pb(1)-Cl(1)#4	89.43(5)	89.45(4)
Cl(2)-Pb(1)-Cl(1)#4	89.43(5)	89.45(4)
Cl(2)#2-Pb(1)-Cl(1)#4	90.50(4)	90.48(3)
Cl(2)#3-Pb(1)-Cl(1)#4	90.50(4)	90.48(3)
Pb(1)-Cl(2)-Pb(1)#6	172.9(3)	173.1(2)

Table S2. Selected bond lengths (Å) and bond angles (°) for T_2PbCl_4 at 173 K and 298 K.

#1 -x+1,y,-z+3/2 #2 x-1/2,y-1/2,z #3 -x+3/2,y-1/2,-z+3/2

#4 x,y,-z+3/2 #5 -x,y,z #6 x+1/2,y+1/2,z

Table S3. Selected bond lengths (Å) and bond angles (°) for T_2PbCl_4 at 93 K and 125 K.

Temperature	93 K	125 K
Pb(1)-Cl(4)	2.788(5)	2.790(5)
Pb(1)-Cl(3)	2.808(5)	2.815(5)
Pb(1)- $Cl(2)$	2.841(4)	2.846(5)
Pb(1)-Cl(1)	2.882(4)	2.879(5)
Pb(1)-Cl(6)	2.882(5)	2.883(5)
Pb(1)-Cl(5)#1	2.886(5)	2.885(6)
Pb(2)-Cl(9)	2.800(5)	2.802(6)
Pb(2)-Cl(10)	2.813(4)	2.812(6)
Pb(2)-Cl(8)	2.857(4)	2.860(5)
Pb(2)-Cl(7)	2.864(4)	2.876(5)
Pb(2)-Cl(4)	2.879(5)	2.877(5)
Pb(2)-Cl(3)#1	2.880(5)	2.878(5)
Pb(3)-Cl(5)	2.791(5)	2.794(6)

Pb(3)-Cl(6)	2.809(5)	2.813(5)
Pb(3)-Cl(11)	2.845(4)	2.848(5)
Pb(3)-Cl(9)#2	2.874(5)	2.876(6)
Pb(3)-Cl(10)#3	2.874(5)	2.877(6)
Pb(3)-Cl(12)	2.883(4)	2.888(5)
Cl(4)-Pb(1)-Cl(3)	84.57(15)	85.15(17)
Cl(4)-Pb(1)-Cl(2)	90.39(12)	90.45(15)
Cl(3)-Pb(1)-Cl(2)	88.59(13)	88.63(16)
Cl(4)-Pb(1)-Cl(1)	91.75(12)	91.35(15)
Cl(3)-Pb(1)-Cl(1)	89.15(12)	88.98(15)
Cl(3)-Pb(1)-Cl(6)	85.04(18)	85.0(2)
Cl(2)-Pb(1)-Cl(6)	88.65(13)	88.59(15)
Cl(1)-Pb(1)-Cl(6)	88.80(12)	89.20(15)
Cl(4)-Pb(1)-Cl(5)#1	81.08(18)	81.5(2)
Cl(2)-Pb(1)-Cl(5)#1	92.78(13)	92.67(16)
Cl(1)-Pb(1)-Cl(5)#1	90.00(12)	90.12(15)
Cl(6)-Pb(1)-Cl(5)#1	109.33(16)	108.33(18)
Cl(9)-Pb(2)-Cl(10)	84.36(15)	85.05(18)
Cl(9)-Pb(2)-Cl(8)	91.31(14)	91.11(16)
Cl(10)-Pb(2)-Cl(8)	90.18(14)	90.13(17)
Cl(9)-Pb(2)-Cl(7)	90.41(14)	90.22(17)
Cl(10)-Pb(2)-Cl(7)	86.92(14)	87.16(16)
Cl(9)-Pb(2)-Cl(4)	80.85(18)	81.3(2)
Cl(8)-Pb(2)-Cl(4)	92.27(12)	92.28(15)
Cl(7)-Pb(2)-Cl(4)	91.05(12)	90.73(15)
Cl(10)-Pb(2)-Cl(3)#1	85.40(16)	85.2(2)
Cl(8)-Pb(2)-Cl(3)#1	88.87(13)	89.37(16)
Cl(7)-Pb(2)-Cl(3)#1	88.90(13)	88.83(15)
Cl(4)-Pb(2)-Cl(3)#1	109.38(15)	108.44(17)
Cl(5)-Pb(3)-Cl(6)	84.51(16)	85.05(18)
Cl(5)-Pb(3)-Cl(11)	89.79(13)	89.56(16)
Cl(6)-Pb(3)-Cl(11)	87.77(12)	87.75(15)
Cl(5)-Pb(3)-Cl(9)#2	80.42(17)	81.0(2)
Cl(11)-Pb(3)-Cl(9)#2	92.27(13)	92.13(16)
Cl(6)-Pb(3)-Cl(10)#3	85.48(17)	85.6(2)
Cl(11)-Pb(3)-Cl(10)#3	88.58(14)	89.04(16)
Cl(9)#2-Pb(3)-Cl(10)#3	109.59(15)	108.33(18)
Cl(5)-Pb(3)-Cl(12)	92.38(12)	92.24(15)
Cl(6)-Pb(3)-Cl(12)	90.44(12)	90.47(16)
Cl(9)#2-Pb(3)-Cl(12)	90.07(14)	90.07(17)
Cl(10)#3-Pb(3)-Cl(12)	88.94(14)	88.87(16)
Pb(1)-Cl(3)-Pb(2)#4	145.95(19)	147.6(2)
Pb(1)-Cl(4)-Pb(2)	170.41(19)	170.6(2)
Pb(3)-Cl(5)-Pb(1)#4	169.9(2)	170.1(2)
Pb(3)-Cl(6)-Pb(1)	145.3(2)	147.0(2)

Pb(2)-Cl(9)-Pb(3)#5	170.9(2)	171.0(2)
Pb(2)-Cl(10)-Pb(3)#6	145.70(19)	147.7(2)

#1 x-1,y,z #2 -x+3/2,-y+1,z-1/2 #3 -x+1/2,-y+1,z-1/2 #4 x+1,y,z #5 -x+3/2,-y+1,z+1/2 #6 -x+1/2,-y+1,z+1/2

Table S4. Selected bond lengths (Å) and bond angles (°) for T₂PbBr₄-II.

Temperature	173 K
Pb(1)-Br(2)	2.9926(6)
Pb(1)-Br(2)#1	2.9926(6)
Pb(1)-Br(2)#2	2.9951(6)
Pb(1)-Br(2)#3	2.9951(6)
Pb(1)-Br(1)	3.0009(6)
Pb(1)-Br(1)#1	3.0009(6)
Br(2)-Pb(1)-Br(2)#2	89.920(6)
Br(2)#1-Pb(1)-Br(2)#2	90.080(6)
Br(2)-Pb(1)-Br(2)#3	90.080(6)
Br(2)#1-Pb(1)-Br(2)#3	89.920(6)
Br(2)-Pb(1)-Br(1)	96.744(18)
Br(2)#1-Pb(1)-Br(1)	83.257(18)
Br(2)#2-Pb(1)-Br(1)	95.147(18)
Br(2)#3-Pb(1)-Br(1)	84.853(18)
Br(2)-Pb(1)-Br(1)#1	83.256(19)
Br(2)#1-Pb(1)-Br(1)#1	96.743(19)
Br(2)#2-Pb(1)-Br(1)#1	84.853(18)
Br(2)#3-Pb(1)-Br(1)#1	95.147(18)
Pb(1)-Br(2)-Pb(1)#4	165.12(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 x,-y+1/2,z-1/2 #3 -x+1,y+1/2,-z+3/2 #4 -x+1,y-1/2,-z+3/2

Table S5. Hydrogen bond lengths (Å) and angles (°) for T₂PbCl₄ at 173 K and 298 K.

T ₂ PbCl ₄	D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
173K	N(1)-H(2)Cl(1)	0.91(2)	2.27(4)	3.147(7)	163.0(9)
298K	N(1)-H(2)Cl(1)	0.90(2)	2.27(3)	3.156(6)	168.0(10)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)Cl(1)	0.86	2.42	3.185(17)	148.5
N(3)-H(2)Cl(1)#4	0.86	2.28	3.135(16)	172.3
N(4)-H(5)Cl(2)#1	0.86	2.46	3.196(17)	144.4
N(4)-H(5)Cl(6)#1	0.86	2.92	3.428(17)	119.4
N(6)-H(6)Cl(2)	0.86	2.28	3.130(16)	170
N(7)-H(9)Cl(7)#4	0.86	2.41	3.171(18)	148.3
N(10)-H(13)Cl(3)	0.86	2.98	3.472(18)	118.2
N(10)-H(13)Cl(8)#4	0.86	2.43	3.188(18)	146.6
N(12)-H(14)Cl(8)	0.86	2.28	3.137(17)	171.6
N(13)-H(17)Cl(10)#2	0.86	2.99	3.472(18)	117.6
N(13)-H(17)Cl(11)#4	0.86	2.43	3.191(18)	147.7
N(15)-H(18)Cl(11)	0.86	2.3	3.151(17)	169.7
N(16)-H(21)Cl(12)#4	0.86	2.39	3.166(17)	149.9
N(18)-H(22)Cl(12)	0.86	2.28	3.135(17)	173.6

Table S6. Hydrogen bond lengths (Å) and angles (°) for T_2PbCl_4 at 93 K.

#1 x-1,y,z #2 -x+3/2,-y+1,z-1/2 #3 -x+1/2,-y+1,z-1/2

#4 x+1,y,z #5 -x+3/2,-y+1,z+1/2 #6 -x+1/2,-y+1,z+1/2

Table S7. Hydrogen bond	l lengths (Å)	and angles (°) for '	T_2PbCl_4 at 1	25 K.
-------------------------	---------------	--------------	----------	------------------	-------

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)Cl(1)	0.86	2.4	3.174(18)	149.4
N(3)-H(2)Cl(1)#4	0.86	2.28	3.133(18)	174.1
N(4)-H(5)Cl(2)#1	0.86	2.44	3.182(19)	144.9
N(4)-H(5)Cl(6)#1	0.86	2.93	3.44(2)	119.1
N(6)-H(6)Cl(2)	0.86	2.29	3.137(17)	170.5
N(7)-H(9)Cl(7)#4	0.86	2.43	3.194(18)	148.8
N(10)-H(13)Cl(3)	0.86	3.02	3.50(2)	117.7
N(10)-H(13)Cl(8)#4	0.86	2.43	3.188(19)	147.3
N(12)-H(14)Cl(8)	0.86	2.28	3.133(18)	172.7
N(13)-H(17)Cl(10)#2	0.86	3.04	3.53(2)	117.7
N(13)-H(17)Cl(11)#4	0.86	2.43	3.194(19)	148.4
N(15)-H(18)Cl(11)	0.86	2.29	3.145(18)	170.1
N(16)-H(21)Cl(12)#4	0.86	2.4	3.180(17)	150.2
N(18)-H(22)Cl(12)	0.86	2.28	3.140(17)	173.4

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y,z #2 -x+3/2,-y+1,z-1/2 #3 -x+1/2,-y+1,z-1/2

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)Br(1)#5	0.86	2.70	3.379(7)	137.1
N(1)-H(1)Br(2)#6	0.86	3.01	3.654(6)	133.3
N(3)-H(2)Br(1)	0.86	2.52	3.316(6)	154.2

Table S8. Hydrogen bond lengths (Å) and angles (°) for T₂PbBr₄-II at 173 K.

#5 x,y,z+1 #6 -x+1,-y+1,-z+2

Distortion mode analysis

The on-line crystallographic tool ISODISTORT provides a decomposition of a distorted crystal structure in terms of irreducible representation (*irrep*) analysis. In this case, ISODISTORT is used to compare the cif file for the refined crystal structure of T_2PbCl_4 at 93 K to that of an idealised 'parent' phase. For simplicity in comparing the 'BX₄' layer structure of the present compound without needing to consider the organic moieties, the cif for the parent phase has been adjusted from the aristotype inorganic n = 1 RP phase K_2NiF_4 by removing K, renaming the Ni and F positions to Pb and Cl, respectively, and adjusting the unit cell parameters and *z*-coordinate of the Cl2 atom, to produce Pb-Cl bond lengths that are similar in dimensions to those expected. Since the ISODISTORT software uses normal mode analysis, none of these adjustments affect the key derived outputs, which are the symmetry-allowed distortion modes at the Brillouin zone boundary, and their magnitudes.

The primary modes evidenced act at the points M ($\mathbf{k} = 1, 1, 1$), X ($\mathbf{k} = \frac{1}{2}, \frac{1}{2}, 0$), Δ ($\mathbf{k} = \frac{1}{6}, \frac{1}{6}, 0$) and Y ($\mathbf{k} = \frac{1}{6}, \frac{5}{6}, 0$) of the parent *I4/mmm* Brillouin zone. The relevant *irreps* are M₅⁻, which describes the antiferrodistortive displacement of adjacent octahedral layers along the *b*-axis; X_2^+ , the cooperative rotation of the PbCl₆ octahedra around the *b*-axis; and Δ_3 and Y_3 , which together define the sinusoidal 'rippling' of the [PbCl₄]_{∞} layers, leading to the tripled unit cell along *c*.

Table S9: Distortion mode amplitudes for the inorganic portion of the structure in T_2PbCl_4 at 93 K, obtained from the ISODISTORT software suite. The 'parent' phase is a simulated aristotype based on the Ruddlesden-Popper K_2NiF_4 structure. See attached file for full ISODISTORT output.

Mode	Amplitude (Å)	<i>k</i> -active
M ₅ -	1.89	(1, 1, 1)
X_2^+	0.77	(1/2, 1/2, 0)
D ₃	0.55	(1/6, 1/6, 0)
Y ₃	0.18	(1%, 5%, 0)