Supporting information:

Pentamethylcyclopentadienyl-substituted hypersilylsilylene: reversible and irreversible activation of C=C double bonds and dihydrogen

Kinga I. Leszczyńska,*^a Peter Deglmann,^b Carsten Präsang,^a Volker Huch,^a Michael Zimmer,^a David Schweinfurth,^b David Scheschkewitz^a

^aKrupp-Chair of General and Inorganic Chemistry, Saarland University, D-66123 Saarbrücken, Germany

^b BASF SE, Carl-Bosch-Str. 38, 67056 Ludwigshafen am Rhein, Germany

Contents

General Methods	S3
Experimental procedure, data and plots of spectra of:	
(Hypersilyl)(pentamethylcyclopentadienyl)silylene 2	S3
(Hypersilyl)(pentamethylcyclopentadienyl)silirane 3	S9
(Dihydro)(hypersilyl)(pentamethylcyclopentadienyl)silane 4a	S12
(Dideutero)(hypersilyl)(pentamethylcyclopentadienyl)silane 4b	S15
(Dihydro)(hypersilyl)(pentamethylcyclopentadienyl)silane + 1,3,4,5-tetramethyl-imidazol-2-ylid (<i>in situ</i> formation of 5a (hydrido)(hypersilyl)silylene complex with 1,3,4,5-tetramethyl-imidazol	ene -2-
ylidene)	S17
(Dideutero)(hypersilyl)(pentamethylcyclopentadienyl)silane + 1,3,4,5-tetramethyl-imidazol-2-y (<i>in situ</i> formation of 5b (deutero)(hypersilyl)silylene complex with 1,3,4,5-tetramethyl-imidazol	lidene l-2-
ylidene)	S21
(Hypersilyl)(pentamethylcyclopentadienyl)silylene complex with 1,3,4,5-tetramethyl-imidazol-2 ylidene 6	<u>2</u> - S24
(1,3-di-tert-butyl-7'-(1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)-1',2',3',4',5'-pentame 1,3-dihydro-7'-silaspiro[[1,3,2]diazasilole-2,6'-tricyclo[3.2.0.02,7]heptan]-3'-ene) 7	ethyl- S28
Details on X-ray Diffraction Studies	S39
Computational Part	S43
References	S71

General Methods

All manipulations were carried out under a protective atmosphere of argon (purity >99.999%), using Schlenk techniques or in a glovebox. Solvents (hexane, toluene, thf) were purified using a Pure Solv MD7 system from INERT or were refluxed over Na/benzophenone and distilled before use (pentane, benzene, Et₂O). Deuterated solvents (benzene- d_6 , toluene- d_8) were dried over sodium/potassium alloy and then distilled under argon. UV/Vis spectra were acquired on a PerkinElmer Lambda 35 spectrometer or a Shimadzu UV-2600 spectrometer using quartz cells with a path length of 0.1 cm. NMR spectra in solution were recorded on a Bruker Avance III 300 MHz spectrometer or a Bruker Avance IV 400 NMR spectrometer. ¹H and ¹³C NMR spectra were referenced to residual signals of the solvent; ²⁹Si NMR was referenced to external SiMe₄. NMR spectra in the solid state were recorded on a Bruker AV400 WB spectrometer: 100.6 MHz ¹³C CP/MAS spectrum at 13 KHz MAS rate, 79.5 MHz ²⁹Si CP/MAS spectrum at 2 kHz, 3 kHz, 4 kHz, 5 kHz, 6 kHz, 8 kHz and 13 kHz MAS rate for compound 2 and 13 kHz MAS rate for compound 7. Mass spectra were recorded on a Finnigan MAT950S spectrometer (CI) or on a Bruker Solarix 7.0T spectrometer (ESI). Elemental analysis was performed on an elementar vario MICRO cube analyzer. Pentamethylcyclopentadiene (Carbolution chemicals, 95%, distilled under reduced pressure before use), tetrabromosilane (Sigma-Adrich), tetrakis(trimethylsilyl)silane (ABCR, 98%), dihydrogen (Air Liquid 99,9%), ethylene (Air Liquid, 99,9%), deuterium (Aldrich, 99,8% D atom %) were purchased. Tribromo(pentamethylcyclopentadienyl)silane,^[S1] potassium hypersilyl salt $(thf)_n[KSi(SiMe_3)_3]$, [S2] 1,3,4,5-(tetramethylimidazol)-2-ylidene, [S3] 1,3-di-tert-butyl-2,3-dihydro-1H-1,3,2-diazasilol-2-ylidene^[S4] were prepared according to literature procedures.

(Hypersilyl)(pentamethylcyclopentadienyl)silylene 2:

A precooled solution (0 °C) of potassium hypersilyl salt $(thf)_{1.5}$ [KSi(SiMe₃)₃][#] (1.22 g, 3.09mmol) in hexane (~120 mL) was added via a cannula to a stirred and precooled (-78 °C) solution of tribromo(pentamethylcyclopentadienyl)silane (0.620 g, 1.54 mmol) in hexane (~50 mL) placed in a 250 mL Schlenk flask equipped with a magnetic stirrer. Immediately, a change of colour from pale yellow to purple and precipitation of a white solid were observed. The reaction mixture was stirred at low temperature for 0.5 h. Then the cooling bath was removed and stirring was continued for additional 2 h to afford a purple suspension. Filtration followed by concentration and crystallization from hexane (~4 mL) at -30 °C gave purple crystals of the target silylene which was recrystallized from hexane at -30 °C to remove traces of contamination by BrSi(SiMe₃)₃.* Yield 36% (0.230 g, 0.560 mmol).

[#]variable amounts of coordinated thf were observed depending on the batch

* After recrystallization traces of $BrSi(SiMe_3)_3$ (~3%) were still observed and could not be removed by repeated recrystallization. Deviations in EA are primarily ascribed to the highly air and moisture sensitive nature of silylene **2**.

¹**H NMR** (300.13 MHz, 300 K, benzene- d_6): $\delta = 0.40$ (s, 27H, Si Me_3), 1.92 (s, 15H, Cp*-Me).

¹³C{¹H} NMR (75.47 MHz, 300 K, benzene- d_6): δ = 4.0 (s, Si*Me*), 11.2 (s, Cp*-*Me*), 121.5 (s, Cp*-*C*).

²⁹Si {¹H} NMR (79.49 MHz, 300 K, benzene-*d*₆): δ =-110.0 (*Si*(SiMe₃)₃), -8.9 (*Si*Me₃), 207.2 (*Si*:).

¹³C CP-MAS/NMR (100.65 MHz, 13 kHz, 300 K): δ = 5.4 (s, Si*Me*₃)₃, 12.7 (s, Cp*-*Me*), 122.3 (s, Cp*-*C*).

²⁹Si CP-MAS/NMR (79.53 MHz, 13 kHz, 300 K): δ = -108.3 (*Si*(SiMe₃)), -8.4 (Si(*Si*Me₃)), 203.1 (*Si*-Cp*).

M. p. 94-96 °C; **EA** (%): Calculated for C₁₉H₄₂Si₅ [410.97]: C 55.53, H 10.30; found C 54.76, H 9.94.

UV/Vis (hexane): $\lambda_{max}(\epsilon) = 285 \text{ nm} (22374 \text{ M}^{-1} \text{ cm}^{-1}), 525 \text{ nm} (201 \text{ M}^{-1} \text{ cm}^{-1}).$

HR-MS (ESI, m/z): [M+H]⁺ calculated 411.2206, found 411.2210

Fig. S3. ²⁹Si{¹H} NMR (79.49 MHz, 300 K, benzene- d_6) of compound **2**.

Fig. S4. ^{13}C CP-MAS/NMR (100.65 MHz, 13 kHz, 300K) of 2.

Fig. S5. ²⁹Si CP-MAS NMR (79.53 MHz, 13 kHz, 300 K) of compound **2**.

Fig. S6. ²⁹Si CP-MAS NMR (79.53 MHz, 300 K) of compound **2** at: 13 kHz (a), 10 kHz (b), 8 kHz (c), 6 kHz (d).

Fig. S7. UV/Vis spectrum of silylene **2** in hexane.

Fig. S8. UV/Vis spectrum of silylene 2 in hexane.

Fig. S9. VT UV/Vis spectrum of silylene **2** in hexane, concentration (at 298 K) 1.46 *10⁻³ mol/L.

Fig. S10. Extinction coefficient ϵ =22374 M⁻¹cm⁻¹ (λ = 285 nm) for silylene **2**.

Fig. S11. Extinction coefficient ϵ =201 M⁻¹cm⁻¹ (λ = 525 nm) for silylene **2**.

Cp*[(TMS)₃Si]Si(CH₂CH₂) 3

240 mg of (hypersilyl)(pentamethylcyclopentadienyl)silylene **2** (5.84 mmol) were dissolved in 2 mL of benzene- d_6 and placed in a 250mL Schlenk flask equipped with a magnetic stirrer. The flask was shortly evacuated and refilled with ethylene (pressure ~1 bar). Immediately, a change of colour from purple to pale yellow was observed. Stirring was continued for 15 minutes. The reaction mixture was analysed by multinuclear NMR to show quantitative conversion to silirane **3**. Overnight crystallization from benzene- d_6 at RT afforded colourless crystals of silirane **3** (150 mg, 3.64 mmol), yield 62.3%.

¹**H NMR** (300.13 MHz, 300 K, benzene- d_6): $\delta = 0.25$ (s, 27H, (Si Me_3)₃), 0.46 (m, 2H, CH₂), 0.72 (m, 2H, CH₂), 0.79 (br, s, 3H, Cp*-Me), 1.84 (br, s, 6H, Cp*-Me), 2.00 (br, s, 6H, Cp*-Me).

¹³C{¹H} NMR (75.47 MHz, 300 K, benzene- d_6): $\delta = -3.15$ (s, CH_2), 3.47 (Si Me_3)₃, 12.28 (s, Cp^*-Me), 12.92 (s, Cp^*-Me), 17.59 (s, Cp^*-Me), 52.02 (s, Cp^*-C), 135.16 (s, Cp^*-C), 140.90 (s, Cp^*-C).

²⁹Si{¹H} NMR (59.63 MHz, 300 K, benzene- d_6): $\delta = -129.91 (Si(SiMe_3)), -100.08 (Si(CH_2CH_2)), -8.69 (Si(SiMe_3)).$

M. p. 125-127 °C

EA (%): Calculated for C₂₁H₄₆Si₅ [439.02]: C 57.45, H 10.56; found C 57.16, H 10.59.

Testing of possible reversibility of ethene addition to silylene **2**: 29 mg of the silirane **3** were placed in an NMR tube and heated (within ~1h) from RT to 140 °C under vacuum (4*10⁻² mbar). The remaining colourless residue was analysed by NMR (in benzene- d_6) to show pure substrate, silirane **3**.

Fig. S13. ¹³C {¹H} NMR (75.47 MHz, 300 K, benzene *d*₆) of **3**.

Fig. S15. $^{1}H/^{29}Si$ HMBC NMR (300 K, benzene- d_{6}) of compound **3**.

Fig. S16. ¹³C{¹H} DEPT135 NMR (75.47 MHz, 300 K, benzene-*d*₆) of compound **3**.

$Cp*[(TMS)_3Si]SiH_2$ 4a

A solution of 0.110 g (hypersilyl)(pentamethylcyclopentadienyl)silylene 2 in C₆D₆ (0.8 mL) was placed in a 50mL Schlenk flask equipped with a magnetic stirrer. The flask was shortly evacuated and refilled with dihydrogen (~1 bar). The reaction mixture was stirred at room temperature for 18h. Slowly a gradual change of colour from purple to colourless was observed. The post reaction mixture was analysed bv MS and multinuclear NMR to show the conversion to dihydrido(hypersilyl)(pentamethylcyclopentadienyl)silane with a selectivity of ~95%. Efforts to crystallize this product were unsuccessful.

¹**H NMR** (300.13 MHz, 300 K, benzene- d_6): $\delta = 0.23$ (s, 27H, (Si Me_3)₃), 1.29 (very br, 3H, Cp*-Me), 1.84 (br, s, 12H, Cp*-Me), 4.14 (s,¹J_{Si-H} =180 Hz, 2H, Si-H).

¹³C{¹H} NMR (75.47 MHz, 300 K, benzene- d_6): $\delta = 2.19 (SiMe_3)_3$, 11.47, 19.44 (br, Cp*-Me), 50.90, 134.05, 138.67 (br, Cp*-C).

²⁹Si{¹H} NMR (59.63 MHz, 300 K, benzene- d_6): $\delta = -137.96$ (Si(SiMe₃)), -36.31 (Si-H), -9.16 (Si(SiMe₃)).

HR MS (CI, m/z): $[M]^+$ found 412.2288, calculated for $C_{19}H_{44}Si_5$ 412.2289.

Fig. S18. ¹³C {¹H} NMR (75.47 MHz, 300 K, benzene d_6). Post-reaction mixture **2** + H₂.

Fig. S19. ²⁹Si{¹H} NMR (59.63 MHz, 300 K, benzene- d_6). Post-reaction mixture **2** + H₂.

Fig. S20. ${}^{1}H/{}^{29}Si$ 2D NMR (300 K, benzene- d_{6}). Post-reaction mixture **2** + H₂.

Cp*[(TMS)₃Si]SiD₂4b

A solution of a (hypersilyl)(pentamethylcyclopentadienyl)silylene **2** (0.098 g) in C_6D_6 (0.6 mL) was placed in a 50mL Schlenk flask equipped with a magnetic stirrer. The flask was shortly evacuated and refilled with deuterium (~1 bar). The reaction mixture was stirred at RT for 16h. Slowly a gradual change of colour from purple to colourless was observed. The post reaction mixture was analysed by MS and multinuclear NMR to show a conversion to dideuteride(hypersilyl)(pentamethylcyclopentadienyl)silane **4b** with a selectivity of ~95%. Efforts to crystallize this product were unsuccessful.

¹**H NMR** (300.13 MHz, 300 K, benzene- d_6): δ = 0.24 (s, 27H, (Si Me_3)₃), 1.29 (very br, 3H, Cp*-Me), 1.84 (br, s, 12H, Cp*-Me).

²**H NMR** (46.07 MHz, 300 K, benzene-*d*₆): δ = 4.14 (s, Si-*D*).

¹³C{¹H} NMR (75.47 MHz, 300 K, benzene- d_6): $\delta = 2.19$ (Si Me_3)₃, 11.46, 19.44 (br, Cp*-Me), 50.84, 134.02, 138.60 (br, Cp*-C).

²⁹Si {¹H} NMR (59.63 MHz, 300 K, benzene- d_6): $\delta = -138.33$ (*Si*(SiMe₃)), -37.01 (quint, ¹J_{Si-D} = 27 Hz, *Si*-D), -9.16 (Si(*Si*Me₃)).

HR MS (CI, m/z): $[M]^+$ found 414.2418, calculated for $C_{19}H_{42}D_2Si_5$ 414.2415.

Fig. S21. ¹H NMR (300.13 MHz, 300 K, benzene- d_6). Post-reaction mixture **2** + D₂.

Fig. S22. ²H NMR (46.07 MHz, 300 K, benzene- d_6). Post-reaction mixture **2** + D₂.

Fig. S23. ¹³C {¹H} NMR (75.47 MHz, 300 K, benzene *d*₆). Post-reaction mixture **2** + D₂.

Fig. S24. ²⁹Si{¹H} NMR (59.63 MHz, 300 K, benzene-*d*₆). Post-reaction mixture **2** + D₂.

Cp*[(TMS)₃Si]SiH₂ 4a + NHC (in situ formation of 5a)

Solid 1,3,4,5-tetramethylimidazol-2-ylidene (31 mg, 0.25 mmol) was added to the crude product obtained from the reaction of silylene **2** (130 mg, 0.316 mmol) with H₂ in C₆D₆ (0.6 mL). The reaction mixture changed colour from colourless to orange. The sample was analysed by multinuclear NMR to show the formation of silylene-NHC adduct NHC[(TMS)₃Si](H)Si: **5a** under elimination of pentamethycyclopentadiene Cp*H with a selectivity of ~80%. Time dependent NMR shows complete decomposition of NHC stabilized silylene hydride **5a** within ~1 day in C₆D₆ solution. The formation of an orange solid insoluble in common organic solvents is observed and TMS₄Si is found as a byproduct soluble in C₆D₆. Decomposition of compound **5a** in solution prevented the isolation of analytically pure samples of compound **5a** and its further characterization.

¹**H NMR** (300.13 MHz, 300 K, benzene- d_6): NHC[(TMS)₃Si](H)Si: : δ = 0.36 (s, 27H, (Si Me_3)₃), 1.30 (s, 6H, NHC-Me), 3.20 (s, ¹J_{Si-H} = 94 Hz, 1H, Si-H), 3.21 (s, 6H, NHC-Me); Cp*H: δ = 0.98 (d, ³J_{H-H} = 7.6 Hz, 3H, Cp*H-Me), 1.72 (s, 6H, Cp*H-Me), 1.78 (s, 6H, Cp*H-Me), 2.36 (br, 1H, Cp*H); traces of TMS₄Si: 0.26 (s, 36H, Si(Si Me_3)₄) and traces of free NHC: δ = 1.61 (s, 6H, NHC-Me), 3.35 (s, 6H, NHC-Me).

¹³C {¹H} NMR (100.61 MHz, 300 K, benzene- d_6): NHC[(TMS)₃Si](H)Si: : δ = 2.5 (Si Me_3)₃, 7.9 (NHC-Me), 33.5 (NHC-Me), 124.3 (NHC-C=C), 175.9 (NHC-C:); Cp*H: δ = 10.9, 11.4, 13.9 (Cp*H-Me), 51.4, 134.0, 137.1 (Cp*H-C); traces of TMS₄Si: δ = 2.5 Si(Si Me_3)₄ and traces of free NHC: δ = 8.5, 34.8 (NHC-Me), 122.2 (NHC-C=C), 212.8 (NHC-C:).

²⁹Si{¹H} NMR (59.63 MHz, 300 K, benzene- d_6): NHC[(TMS)₃Si](H)Si: $\delta = -145.3$ (*Si*-H), -130.3 (*Si*(SiMe₃)₃), -9.3 Si(*Si*Me₃)₃; TMS₄Si: $\delta = -135.9$ (*Si*(SiMe₃)₄), -10.2 (Si(*Si*Me₃)₄).

Fig. S25. ¹H NMR (300.13 MHz, 300 K, benzene- d_6). Crude Cp*[(TMS)₃Si]SiH₂ + NHC. NHC[(TMS)₃Si](H)Si: **5a** (a), free NHC (b), Cp*H (c), TMS₄Si (d), Cp*[(TMS)₃Si]Si: **2** (e).

Fig. S26. ¹H NMR (300.13 MHz, 300 K, benzene- d_6). Crude Cp*[(TMS)₃Si]SiH₂ + NHC. Reaction mixture ~6.5 h after addition of carbene. NHC[(TMS)₃Si](H)Si: **5a** (a), free NHC (b), Cp*H (c), TMS₄Si (d).

Fig. S27. ¹³C{¹H} NMR (75.47 MHz, 300 K, benzene-*d*₆). Crude Cp*[(TMS)₃Si]SiH₂ + NHC.

Fig. S28. ¹H/²⁹Si 2D NMR (300 K, benzene-*d*₆). Crude Cp*[(TMS)₃Si]SiH₂ + NHC.

Fig. S29. ²⁹Si{¹H} NMR (59.63 MHz, 300 K, benzene-*d*₆). Cp*[(TMS)₃Si]SiH₂ + NHC.

Cp*[(TMS)₃Si]SiD₂ 4b + NHC (*in situ* formation of 5b)

Solid 1,3,4,5-tetramethylimidazol-2-ylidene (26 mg, 0.21 mmol) was added to the crude product obtained from the reaction of silylene **2** (88 mg, 0.238 mmol) with D_2 in C_6D_6 (0.6 mL). The reaction mixture changed colour from colourless to orange. The sample was analysed immediately by multinuclear NMR to show the formation of silylene NHC[(TMS)₃Si](D)Si: **5b** and deuterated pentamethycyclopentadiene Cp*D. Presence of Cp*D was also confirmed by HR_MS. While stored the sample changes colour to deep orange and a precipitation of plenty of an orange solid insoluble in common solvents is observed. Moreover, decomposition of the silylene NHC(TMS₃Si)(D)Si: and formation of TMS₄Si as a byproduct is found based on NMR and MS studies. Decomposition of compound **5b** in solution prevented the isolation of analytically pure samples of compound **5b** and its further characterization.

¹**H NMR** (300.13 MHz, 300 K, benzene- d_6): NHC[(TMS)₃Si](D)Si: : δ = 0.36 (s, 27H, (Si Me_3)₃), 1.31 (s, 6H, NHC-Me), 3.21 (s, 6H, NHC-Me); Cp*D: δ = 0.96 (br, Cp*D-Me), 1.72 (br, 6H, Cp*D-Me), 1.78 (br, 6H, Cp*D-Me); traces of TMS₄Si: 0.25 (s, 36H, Si(Si Me_3)₄) and traces of free NHC: δ = 1.61 (s, 6H, NHC-Me), 3.34 (s, 6H, NHC-Me). ²**H NMR** (46.07 MHz, 300 K, benzene- d_6): δ = 3.21 (Si-D), 2.35 (Cp*D).

¹³C {¹H} NMR (100.61 MHz, 300 K, benzene- d_6): NHC[(TMS)₃Si](D)Si: δ = 2.5 (Si Me_3)₃, 7.9 (NHC-Me), 33.5 (NHC-Me), 124.3 (NHC-C=C), 176.0 (NHC-C:); Cp*D: δ = 10.9, 11.4, 13.9 (Cp*D-Me), 51.0 (t, ¹ J_{C-D} = 19 Hz, Cp*D-CD), 134.0, 137.1 (Cp*D-C); traces of TMS₄Si: δ = 2.5 Si(Si Me_3)₄ and traces of free NHC: δ = 8.5, 34.8 (NHC-Me), 122.2 (NHC-C=C), 212.8 (NHC-C:).

²⁹Si{¹H} NMR (59.63 MHz, 300 K, benzene- d_6): NHC[(TMS)₃Si](D)Si: $\delta = -146.0$ (t, ¹J_{Si-D} = 14 Hz, *Si*-D), - 130.5 (*Si*(SiMe₃)₃), -9.3 Si(*Si*Me₃)₃ ; TMS₄Si: $\delta = -135.9$ (*Si*(SiMe₃)₄), -10.2 (Si(*Si*Me₃)₄).

Fig. S30. ¹H NMR (300.13 MHz, 300 K, benzene- d_6). Crude Cp*[(TMS)₃Si]SiD₂ + NHC. The reaction mixture directly after addition of NHC. NHC[(TMS)₃Si](D)Si: **5b** (a), free NHC (b), Cp*D (c), TMS₄Si (d), Cp*[(TMS)₃Si]Si: **2** (e).

Fig. S31. ¹H NMR (300.13 MHz, 300 K, benzene-*d*₆). Crude Cp*[(TMS)₃Si]SiD₂ + NHC. NHC[(TMS)₃Si](D)Si: **5b** (a), free NHC (b), Cp*D (c), TMS₄Si (d), Cp*[(TMS)₃Si]Si: **2** (e).

Fig. S32. ²H NMR (46.07 MHz, 300 K, benzene-*d*₆). Crude Cp*[(TMS)₃Si]SiD₂ + NHC. NHC[(TMS)₃Si](D)Si: **5b** (a), Cp**D* (b).

Fig. S33. ¹³C{¹H} NMR (75.47 MHz, 300 K, benzene-*d*₆). Crude Cp*[(TMS)₃Si]SiD₂ + NHC.

Fig. S34. ²⁹Si{¹H} NMR (59.63 MHz, 300 K, benzene-*d*₆). Crude Cp*[(TMS)₃Si]SiD₂ + NHC.

(NHC)[(Me₃Si)₃Si(Cp*)]Si: 6: Solid 1,3,4,5-tetramethylimidazol-2-ylidene (62 mg, 0.50 mmol) was added at room temperature to a solution of (hypersilyl)(pentamethylcyclopentadienyl)silylene **2** (210 mg, 0.511 mmol) in benzene (2 mL). Immediately, a change of colour from purple to orange was observed. Crystallization from benzene at room temperature afforded orange crystals of the adduct (210 mg, 0.392 mmol). Yield 78%.

¹**H NMR** (400.13 MHz, 298 K, benzene-*d*₆): δ = 0.47 (s, 27H, (Si*Me*₃)₃), 1.24 (s, 3H, NHC-*Me*), 1.38 (s, 3H, NHC-*Me*), 1.79 (br, 15H, Cp*-*Me*), 3.45 (s, 3H, NHC-*Me*), 3.47 (s, 3H, NHC-*Me*).

¹³C {¹H} NMR (100.61 MHz, 300 K, benzene-*d*₆): δ = 4.0 (Si*Me*₃)₃, 7.8, 8.2 (NHC-*Me*), 13.2 (br, Cp*-*Me*), 34.2, 37.2 (NHC-*Me*), 123.8, 124.3 (NHC-C=C), 168.9 (NHC-C:).

²⁹Si{¹H} NMR (79.49 MHz, 300 K, benzene- d_6): $\delta = -134.2$ (Si(SiMe₃)₃), -15.7 (Cp*Si), -9.9 Si(SiMe₃)₃.

M.p. 132-135 °C (partial decomposition)

UV/Vis (hexane): $\lambda_{max}(\varepsilon) = 239 \text{ nm} (33992 \text{ M}^{-1}\text{cm}^{-1})$, 277 nm (13477 M⁻¹cm⁻¹), 320 nm (10336 M⁻¹cm⁻¹), 450 nm (789 M⁻¹cm⁻¹).

EA (%): Calculated for C₂₆H₅₄N₂Si₅ [535.16]: C 58.35, H 10.17, N 5.23; found C 57.83, H 9.42, N 5.74.

HR-MS (ESI, m/z): calculated for [M+Na]⁺ 557.3026, found 557.3036

Fig. S35. ¹H NMR (400.13 MHz, 298 K, benzene- d_6) of compound **6**.

Fig. S36. ¹³C{H} NMR (100.61 MHz, 300 K, benzene- *d*₆) of compound **6**.

Fig. S37. ²⁹Si{H} NMR (79.49 MHz, 300 K, benzene-*d*₆) of compound **6**.

Fig. S38. UV/Vis spectrum of **6** in hexane.

Fig. S39. Extinction coefficient ϵ =789 M⁻¹cm⁻¹ (λ = 450 nm) for **6**.

Fig. S40. Extinction coefficient ϵ =10336 M⁻¹cm⁻¹ (λ = 320 nm) for **6**.

Fig. S41. Extinction coefficient ε =33992 M⁻¹cm⁻¹ (λ = 239 nm) for **6**.

Fig. S42. Extinction coefficient ϵ = 13477 M⁻¹cm⁻¹ (λ = 277 nm) for **6**.

Synthesis of 7:

1. A solution of potassium hypersilyl salt (thf)_{1.85}[KSi(SiMe₃)₃] (1.20 g, 2.86 mmol) in hexane (~50 mL) was added via a cannula to a stirred solution of tribromo(pentamethylcyclopentadienyl)silane (0.568 g, 1.41 mmol) in hexane (~30 mL) placed in 100 mL Schlenk flask equipped with a stir bar. Immediately, a change of colour from pale yellow to purple and precipitation of a white solid were observed. The reaction mixture was stirred at room temperature for 2 h and then filtered. A solution of *N*,*N'*-di-tert-butyl-1,3-diaza-2-sila-2-ylidene (0.277 g, 1.41 mmol) in hexane (~10 mL) was added dropwise at room temperature to the stirred filtrate. A change in intensity of colour of the solution from intense purple to pink was observed. The reaction mixture was stirred at neuron temperature of the solution from intense purple solid residue was dissolved in hexane (~5 mL). Concentration of the hexane solution followed by storage at 5 ° afforded a yellow precipitate, which was washed with cold hexane. Further crystallization

from hexane at -30 °C followed by washing with a cold pentane afforded a second crop of yellow crystals, together 247 mg (yield: 41%).

Dissolving the yellow crystals of disilane **7** in toluene at room temperature results in a pinkish/purple solution which gradually reversibly changes the colour to yellow when cooled to 223 K.

Crystallization at 5 °C from hexane afforded crystals suitable for X-ray analysis.

2. Solid *N*,*N*'-di-tert-butyl-1,3-diaza-2-sila-2-ylidene (35 mg, 18 mmol) was added to a solution of **2** (72 mg, 18 mmol) in benzene- d_6 (0.6 mL) placed in an NMR tube. A change in intensity of colour of the solution from intense purple to pink/reddish was observed. NMR analysis gave the same results as for dissolved crystals of **7**. Crystallization from hexane at -30°C afforded **7** as yellow crystals 45 mg (yield 42%).

¹**H NMR** (300.13 MHz, 223 K, toluene- d_8): $\delta = 0.37$ (s, 27H, (Si Me_3)₃), 1.28 (s, 3H, Me), 1.30 (s, 9H, Me_3 C), 1.34 (s, 3H, Me), 1.51 (s, 9H, Me_3 C), 1.55 (s, 3H, Me), 1.64 (s, 3H, Me), 1.89 (s, 3H, Me), 5.75 (d, ³J_{H-H} = 3.9 Hz, 1H, CH=CH), 5.86 (d, ³J_{H-H} = 3.9 Hz, 1H, CH=CH).

¹³C{¹H} NMR (75.47 MHz, 223 K, toluene- d_8): δ = 2.81 (s, Si Me_3)₃, 12.34 (s, Me), 12.92 (s, Me), 13.71 (s, Me), 15.65 (s, Me), 19.40 (s, Me), 30.89 (s, Me_3 C), 32.10 (s, Me_3 C), 45.78 (s, cyclopentene), 51.22 (s, Me₃C), 51.93 (s, cyclopentene), 52.87 (s, Me₃C), 65.28 (s, cyclopentene), 113.24 (s, NCH=CHN), 115.02 (s, NCH=CHN), 130.31 (s, C=C-cyclopentene), 133.26 (s, C=C-cyclopentene).

²⁹Si {¹H} NMR (59.63 MHz, 223 K, toluene-*d*₈): δ = -135.95 (*Si*(SiMe₃)), -105.35(*Si*-SiN), -21.23 (Si-*Si*N), -9.44(Si(*Si*Me₃)).

¹³**C CP-MAS/NMR** (100.65 MHz, 13 kHz, 300K) : $\delta = 3.69$ (s, Si*Me*₃)₃, 14.42 (s, *Me*), 15.11 (s, *Me*), 19.36 (s, *Me*), 32.31 (s, *Me*₃C), 33.80 (s, *Me*₃C), 46.78 (s, cyclopentene), 51.33 (s, Me₃C), 51.74 (s, cyclopentene), 53.54 (s, Me₃C), 64.08 (s, cyclopentene), 113.44 (s, NCH=CHN), 116.28 (s, NCH=CHN), 130.13 (s, C=C-cyclopentene), 134.54 (s, C=C-cyclopentene).

²⁹Si CP-MAS/NMR (79.53 MHz, 13 kHz, 300 K): $\delta = -131.80 (Si(SiMe_3)), -105.59 (Si-SiN), -21.23 (Si-SiN), -9.75(Si(SiMe_3)).$

M.p. 117-120 °C (starts to change colour to red/purple from ~70 °C)

EA (%): Calculated for $C_{29}H_{62}N_2Si_6$ [607.34]: C 57.35, H 10.29, N 4.61; found C 56.45, H 9.73, N 4.34. Deviations in EA are primarily ascribed to the highly air and moisture sensitive nature of heterodimer **7**.

Addition of ethylene (~1bar) to dissolved crystals of **7** in benzene- d_6 gives quantitively compound **3** and free West silylene as confirmed by multinuclear NMR: 50 mg of compound **7** was dissolved in benzene- d_6 (0.7 mL) placed in 25mL Schlenk flask equipped with a stir bar. The Schlenk flask was shortly evacuated and refilled with ethylene (~1bar). The pink color of the reaction mixture disappeared and a colorless solution was formed. The reaction mixture was stirred for 10 minutes followed by NMR analysis.

Fig. S43. ¹H NMR (300.13 MHz, 223 K, toluene- *d*₈) of **7**.

Fig. S45. 29 Si{ 1 H} NMR (59.63 MHz, 223 K, toluene- d_{8}) of **7**.

Fig. S47. ¹H NMR (300.13 MHz, 300 K, toluene- d_8) of compound **7**.

-14.19

Fig. S48. ¹³C{¹H} NMR (75.47 MHz, 300 K, toluene-*d*₈) of compound **7**.

Fig. S49. ²⁹Si{¹H} NMR (59.63 MHz, 300 K, toluene- *d*₈) of **7**.

Fig. S53. ^{13}C CP-MAS/NMR (100.65 MHz, 13 kHz, 300K) of 7.

Fig. S54. ²⁹Si CP-MAS/NMR (79.53 MHz, 13 kHz, 300 K) **7**. * side bands.

Fig. S55. UV/Vis of dissolved crystals of **7** in hexane at RT.

Fig. S56. UV/Vis of dissolved crystals of **7** in hexane at RT.

Fig. S57. VT UV/Vis spectra of dissolved crystals of **7** in hexane, concentration 1.50*10⁻³mol/L.

Fig. S58. VT UV/Vis spectra of dissolved crystals of **7** in hexane, concentration 1.50*10⁻³mol/L.

Fig. S59. Extinction coefficient ε =22435 M⁻¹cm⁻¹ (λ = 285 nm) for **7** dissolved in hexane.

Fig. S60.Extinction coefficient ε =215 M⁻¹cm⁻¹ (λ = 525 nm) for **7** dissolved in hexane.

Details on X-ray diffraction studies

Table S1. Crystal data and structure refinement for (hypersilyl)(pentamethylcyclopentadienyl)silylene **2** (CCDC: 2002462).

Identification code	sh3832	
Empirical formula	C19 H42 Si5	
Formula weight	410.97	
Temperature	152(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 9.0809(7) Å	α = 89.447(2)°.
	b = 9.9667(9) Å	β = 89.918(2)°.
	c = 14.8247(13) Å	γ = 87.141(2)°.
Volume	1340.0(2) Å ³	
Z	2	
Density (calculated)	1.019 Mg/m ³	
Absorption coefficient	0.268 mm ⁻¹	
F(000)	452	
Crystal size	0.603 x 0.404 x 0.188 r	mm ³
Theta range for data collection	1.374 to 32.651°.	
Index ranges	-13<=h<=13, -15<=k<=	15, -22<=l<=22
Reflections collected	31861	
Independent reflections	9753 [R(int) = 0.0235]	
Completeness to theta = 25.242°	99.4 %	

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7464 and 0.6930
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	9753/0/231
Goodness-of-fit on F ²	1.135
Final R indices [I>2sigma(I)]	R1 = 0.0504, wR2 = 0.1361
R indices (all data)	R1 = 0.0593, wR2 = 0.1396
Extinction coefficient	n/a
Largest diff. peak and hole	0.690 and -0.307 e.Å ⁻³

Table S2. Crystal data and structure refinement for (hypersilyl)(pentamethylcyclopentadienyl) silirane **3** (CCDC: 2002464).

1		
Identification code	sh4047	
Empirical formula	C21 H46 Si5	
Formula weight	439.03	
Temperature	142(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2₁/m	
Unit cell dimensions	a = 9.5450(4) Å	α = 90°.
	b = 14.1726(6) Å	β = 103.274(2)°.
	c = 10.4229(4) Å	γ = 90°.
Volume	1372.31(10) Å ³	
Z	2	
Density (calculated)	1.062 Mg/m ³	
Absorption coefficient	0.265 mm ⁻¹	
F(000)	484	
Crystal size	0.449 x 0.341 x 0.210 mm ³	
Theta range for data collection	2.008 to 34.279°.	
Index ranges	-12<=h<=15, -22<=k<=18, -16<=l<=16	
Reflections collected	22047	
Independent reflections	5843 [R(int) = 0.0205]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7467 and 0.7229	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5843/0/221	
Goodness-of-fit on F ²	1.051	
Final R indices [I>2sigma(I)]	R1 = 0.0269, wR2 = 0.0743	

R indices (all data)	R1 = 0.0349, wR2 = 0.0790
Extinction coefficient	n/a
Largest diff. peak and hole	0.453 and -0.253 e.Å ⁻³

Table S3. Crystal data and structure refinement for **6** (CCDC: 2002463)

Identification code	sh3854		
Empirical formula	C26 H54 N2 Si5	C26 H54 N2 Si5	
Formula weight	535.16		
Temperature	142(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	a = 40.367(13) Å	α = 90°.	
	b = 9.976(3) Å	β = 99.403(19)°.	
	c = 16.657(5) Å	γ = 90°.	
Volume	6618(4) Å ³		
Z	8		
Density (calculated)	1.074 Mg/m ³		
Absorption coefficient	0.232 mm ⁻¹		
F(000)	2352		
Crystal size	0.463 x 0.294 x 0.104	0.463 x 0.294 x 0.104 mm ³	
Theta range for data collection	2.045 to 33.367°.	2.045 to 33.367°.	
Index ranges	-62<=h<=59, -15<=k<=	-62<=h<=59, -15<=k<=15, -25<=l<=25	
Reflections collected	91027	91027	
Independent reflections	12649 [R(int) = 0.0481	12649 [R(int) = 0.0481]	
Completeness to theta = 25.242°	100.0 %	100.0 %	
Absorption correction	Semi-empirical from e	equivalents	
Max. and min. transmission	0.7465 and 0.6931		
Refinement method	Full-matrix least-squa	Full-matrix least-squares on F ²	
Data / restraints / parameters	12649 / 0 / 514		
Goodness-of-fit on F ²	1.019		
Final R indices [I>2sigma(I)]	R1 = 0.0329, wR2 = 0.	R1 = 0.0329, wR2 = 0.0830	
R indices (all data)	R1 = 0.0505, wR2 = 0.	0920	
Extinction coefficient	n/a		
Largest diff. peak and hole	0.415 and -0.245 e.Å ⁻	0.415 and -0.245 e.Å ⁻³	

Table S4. Crystal data and structure refinement for 7 (CCDC: 2002465).Identification codesh4217

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges **Reflections collected** Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole

C29 H62 N2 Si6 607.34 130(2) K 0.71073 Å Monoclinic P2₁/c a = 10.7576(4) Å a= 90°. b = 34.3258(13) Å b= 111.6700(10)°. c = 11.0315(4) Å g = 90°. 3785.6(2) Å³ 4 1.066 Mg/m^3 0.240 mm⁻¹ 1336 0.355 x 0.305 x 0.206 mm³ 2.122 to 35.694°. -17<=h<=16, -56<=k<=56, -18<=l<=18 116316 17503 [R(int) = 0.0413] 99.8 % Semi-empirical from equivalents 0.7470 and 0.7070 Full-matrix least-squares on F² 17503 / 75 / 582 1.209 R1 = 0.0742, wR2 = 0.1632 R1 = 0.0869, wR2 = 0.1683 n/a 0.495 and -0.671 e.Å⁻³

Computational part

Computational Details

All structures were optimized with the program package TURBOMOLE^[S5] (version 7.2) at the B3-LYP level of theory^[S6] including Grimme's dispersion correction^[S7] (DFTD3 with BJ-damping) using a def-TZVP basis set^[S8]. For more refined reactions thermodynamics (and kinetics, as well as for calculation of singlet-triplet-gaps), the same DFT method with the larger def2-TZVPD basis set^[S9] was used. The same larger basis set was also used for computing electronic excitation spectra with TD-DFT, for deriving NBO partial charges and for obtaining orbital energies. Thermodynamic functions were computed assuming a gas phase at 25°C and 1 bar and applying the usual approximations for statistic thermodynamics (rigid rotor, harmonic oscillator).

Fig. S61.Calculated structure of Cp*[(Me₃Si)₃Si]Si: 2'.

Table 5. Coordinates of Cp*[(Me₃Si)₃Si]Si: 2'.

```
66
```

Ener	rgy = -2196.50	56254722	
Si	-0.9367176	1.0324927	-0.9033034
С	-2.9203429	-0.6931722	-1.4525603
С	-1.5466427	-0.8194506	-1.8453735
С	-1.3018477	0.2025453	-2.8517893
С	-2.5377615	0.9130005	-3.0283606
С	-3.5144414	0.3511935	-2.1859537
С	-3.5894937	-1.5278349	-0.4109212
Н	-4.3176929	-0.9513078	0.1613265
Н	-4.1269169	-2.3635050	-0.8718746
Н	-2.8686691	-1.9497837	0.2893386
С	-4.9091604	0.8637375	-2.0006636
Н	-5.2504443	0.7315993	-0.9722110

Н	-4.9781839	1.9274998	-2.2341229
Н	-5.6224498	0.3432567	-2.6478236
С	-0.6896417	-2.0261887	-1.5968941
Н	0.3675251	-1.7951588	-1.6935897
Н	-0.8449022	-2.4280235	-0.5945348
Н	-0.9259996	-2.8214446	-2.3113889
С	-2.7272806	2.0680606	-3.9555602
Н	-3.4063751	2.8138205	-3.5393403
Н	-1.7812526	2.5612027	-4.1790214
Н	-3.1561378	1.7335374	-4.9062740
С	-0.1702528	0.2060698	-3.8374910
н	0.1136533	1.2182041	-4.1297297
Н	0.7123319	-0.2724041	-3,4233708
Н	-0.4504062	-0.3366389	-4.7464412
Si	1.4804078	0.8268924	-0.5566635
Si	1.6366562	-0.0674257	1.6248685
Si	1,9313686	3,1392753	-0.3638170
Si	3,2604149	-0.0858595	-1.8210190
c	3 0649700	0.6963474	2 6198157
н	4 0229341	0.5525635	2.0190197
н	2 9178099	1 7689/71	2 759/01/
н	3 1281576	0 23/33/0	3 6095732
C	0 0223810	0.2343340	2 5816356
с u	0.0223013	0.2579525	2.5810550
п ц	0.1020300	1 2020520	2 6422506
п ц	-0.2003741 0.2015510	1.30303030	2.0422300
п С	1 0172441	1 047465	1 52508001
с u	1.91/2441	-1.94/4052	2 5405510
	1.9421108	-2.3/93912	2.5405510
	1.1105059	-2.439/390	1 0457406
н с	2.8630614	-2.18/1434	1.045/406
C II	3.//10139	3.5365834	-0.095/120
н	4.1505944	3.0588243	0.8092154
н	4.3816174	3.1992353	-0.9353519
H	3.9111881	4.6166203	0.00/2405
C	1.3618851	3.9916533	-1.9681513
н	1.5564/45	5.06/3438	-1.9333935
н	1.8/93/24	3.5820646	-2.8381221
Н	0.2884341	3.8494162	-2.1185/22
C	0.944/343	3.8843800	1.0/985/8
Н	1.0885248	4.9679493	1.1236603
Н	-0.1233864	3.6879322	0.9652417
Н	1.2617691	3.4651071	2.0368005
С	4.8306149	-0.1087556	-0.7468535
Н	5.0637945	0.8809494	-0.3531581
Н	4.7212180	-0.7892648	0.0995645
Н	5.6845569	-0.4481042	-1.3408631
С	2.9885489	-1.8778775	-2.4036343
Н	3.9112132	-2.2498669	-2.8588169
Н	2.7402708	-2.5355052	-1.5684586
Н	2.1963082	-1.9654152	-3.1490269
С	3.6231048	0.9836608	-3.3512290
Н	4.4618632	0.5644423	-3.9145145
Н	2.7626059	1.0392334	-4.0198848
Н	3.8895042	2.0028762	-3.0650849

Fig. S62. Calculated structure of Cp*[Tip₂(C₆H₃)]Si: **1b'**.

Table S6. Coordinates of Cp*[Tip₂(C₆H₃)]Si: 1b'. 111 Energy = -2080.526532292Si -1.2122395-4.8799127 4.1486884 С -3.3508002 -6.3686236 3.4452223 С -2.0223599 -6.5305361 2.9298495 С -1.7469888-5.3815197 2.0893275 С -2.9097669 -4.5458533 2.1346121 С -3.8788045 -5.1636083 2.9531436 С 4.3883649 -4.0039911 -7.3260935 Н -4.7641085 -6.8401115 5.0006696 Н -4.4908818 -8.1430008 3.8445063 Н -3.2707580 -7.7750439 5.0583191 С -5.1816648 -4.5368381 3.3465426 Н -5.8593686 -5.2663384 3.7901699 Н -5.0342980 -3.7350987 4.0779753 Н -5.6900002 -4.0994606 2.4842080 С -1.2722547 -7.8223124 2.8667476 Н -0.2088553 -7.6498305 2.7207296 Н -1.3866669 -8.4063854 3.7768524 н -1.6293051 -8.4293394 2.0267177 С -3.0518038 -3.2260181 1.4500331 Н -3.6055039 -2.5122562 2.0629298 Н -2.0805615 -2.7877024 1.2285025 Н -3.5958188 -3.3346036 0.5050216 С -0.6805578 -5.3401399 1.0420935 Н -0.4777005 -4.3217951 0.7197136 Н 0.2541809 1.4081074 -5.7616577

-5.9200170

-4.9946168

-3.8589485

-3.5878770

-4.4302909

0.1641827

4.4021463

4.0681543

4.7406500

5.7407646

Н

С

С

С

С

-0.9869103

0.7466929

1.5215587

2.7133813

3.1752561

С	2.4491831	-5.5687468	6.0560588
С	1.2537288	-5.8608855	5.3994877
С	1.0809053	-2.8880709	3.0128677
Ĥ	3.2698370	-2.6946233	4.4862722
н	/ 0012888	_1 2001155	6 2712927
н Ц	2 7002614	-4.2001100	6 0007077
	2.7992014	-0.2300000	0.033/0//
C	0.526/452	-/.1118696	5./91/295
C	-0.542/833	-/.05/5/32	6./086519
С	-1.2122878	-8.2345477	7.0367828
С	-0.8278773	-9.4692632	6.5215622
С	0.2655299	-9.5081710	5.6647163
С	0.9495088	-8.3548800	5.2821544
С	1.6103226	-2.9760565	1.7069257
С	1.2003584	-2.0531870	0.7492237
С	0.2873039	-1.0416558	1.0405818
Ċ	-0.1962414	-0.9522525	2.3389674
c	0.1902111	-1 8/6639/	3 3380000
ц	-2 0/21600	-8 1880876	7 7301151
	-2.0421090		7.7501131 E 2711100
	0.5/96965	-10.40/3/32	5.2/11199
н	1.6006884	-2.1263009	-0.2534924
Н	-0.889/161	-0.1562979	2.5809487
С	-0.2685928	-1.6119021	4.7700231
Н	-0.1268025	-2.5400992	5.3238264
С	2.6594340	-4.0209698	1.3452611
Н	2.5285241	-4.8637333	2.0270420
С	-0.1614622	-0.0581614	-0.0232592
н	-0.8679676	0.6281652	0.4542660
С	-0.8928256	-5.7678824	7.4383755
H	-0.5208169	-4.9331298	6.8434287
c	2 1559318	-8 4692873	4 3592508
ч	2.1999910	-7 /0/0830	3 899907
Ċ	1 5750545	10 7200/05	6 970/222
	1 0550645	-10.7566405	0.0794555
Н	-1.0559645	-11.5654296	0.385150/
C	3.420/030	-8.8128551	5.1646424
Н	3.6209469	-8.0696096	5.93461/4
Н	3.3071236	-9.7836955	5.6539119
Н	4.2925590	-8.8640408	4.5073162
С	1.9834925	-9.4936363	3.2297268
Н	2.8271448	-9.4250967	2.5393319
Н	1.9637769	-10.5161861	3.6127935
Н	1.0679442	-9.3315943	2.6626022
С	-0.1559474	-5.7245506	8.7870952
н	-0.4809561	-6.5459328	9.4305935
н	0 9223841	-5 8114911	8 6472692
ц	-0.3583003	_/ 7838/03	0.305/37/
\hat{c}	2 2062754	-4.7030423	7 6200472
C	-2.3903/34	-2.2219982	7.6299472
н	-2.5/61230	-4.56/2532	8.0668132
н	-2.9214914	-5.5955933	6.6/59549
Н	-2.8328854	-6.2917918	8.3049444
С	-3.0149772	-10.7095266	6.3460111
Н	-3.5887101	-9.9056269	6.8130984
Н	-3.0307368	-10.5460955	5.2667710
Н	-3.5260258	-11.6521433	6.5570455
С	-1.5528393	-11.0120115	8.3890827
Н	-2.0380029	-11.9645151	8.6161205

Н	-0.5288307	-11.0498193	8.7652645
Н	-2.0818284	-10.2300387	8.9388750
С	-1.7497473	-1.2388067	4.8829846
Н	-1.9602431	-0.2625779	4.4404795
Н	-2.3756237	-1.9867412	4.3953306
Н	-2.0413377	-1.1905109	5.9344171
С	0.6183169	-0.5470326	5.4349659
Н	0.3265187	-0.4018670	6.4782118
Н	1.6684780	-0.8414028	5.4126425
Н	0.5254975	0.4115971	4.9183652
С	2.5488707	-4.5531613	-0.0898373
Н	1.5424630	-4.8910985	-0.3303771
Н	2.8335234	-3.7945277	-0.8224001
Н	3.2304124	-5.3963957	-0.2212582
С	4.0762796	-3.4604577	1.5597704
Н	4.8272488	-4.2164598	1.3167496
Н	4.2422021	-2.5959670	0.9119912
Н	4.2353893	-3.1459813	2.5892577
С	1.0120575	0.7767042	-0.5533297
Н	1.7420416	0.1459405	-1.0663881
Н	0.6621457	1.5279074	-1.2656541
Н	1.5275636	1.2888851	0.2611143
С	-0.8995057	-0.7614104	-1.1710860
Н	-1.2520423	-0.0337118	-1.9059246
Н	-0.2420376	-1.4654063	-1.6869695
Н	-1.7613911	-1.3197623	-0.8018083

Fig. S63. Calculated structure of Cp*(TMS)Si: 1g'.

Table S7. Coordinates of Cp*(TMS)Si: 1g'.

39				
Energy = -1088.631253927				
Si	-1.1840408	1.3753210	-0.8138223	
С	-2.9150702	-0.5781073	-1.3503649	
С	-1.5076273	-0.5823729	-1.6310264	
С	-1.2971571	0.3628169	-2.7187548	
С	-2.5918673	0.8762366	-3.0751122	

С	-3.5620847	0.2885425	-2.2525636
С	-3.5800305	-1.3678527	-0.2705209
Н	-4.3310770	-0.7766478	0.2557683
Н	-4.0892616	-2.2411261	-0.6921760
Н	-2.8601676	-1.7291493	0.4632657
С	-5.0085070	0.6720609	-2.2033968
Н	-5.6288159	-0.1492081	-1.8403374
Н	-5.1711301	1.5262614	-1.5363389
Н	-5.3802993	0.9524623	-3.1903081
С	-0.5698675	-1.6901166	-1.2426385
Н	0.4694297	-1.4127927	-1.4030066
Н	-0.6765546	-1.9653008	-0.1924223
Н	-0.7691289	-2.5852472	-1.8408832
С	-2.8476597	1.9140767	-4.1189227
Н	-3.5351783	2.6828442	-3.7609760
Н	-1.9261182	2.4043781	-4.4313954
Н	-3.2996387	1.4631846	-5.0087070
С	-0.0927529	0.4003437	-3.6170821
Н	0.0982865	1.4037181	-4.0020780
Н	0.8049081	0.0757296	-3.0981582
Н	-0.2373997	-0.2604482	-4.4779611
Si	1.1571453	1.2520950	-0.0951616
С	1.6002470	3.0463096	0.3805918
Н	2.5676391	3.0889055	0.8895260
Н	1.6587947	3.6868443	-0.5033545
Н	0.8492233	3.4749395	1.0486999
С	2.6018634	0.6210074	-1.1756844
Н	3.5386041	0.7286903	-0.6200882
Н	2.5015148	-0.4319349	-1.4465782
Н	2.6956544	1.1995941	-2.0970964
С	1.1637418	0.2249660	1.5163344
Н	2.1198572	0.3334272	2.0367410
Н	0.3747743	0.5514314	2.1985355
Н	1.0109811	-0.8370125	1.3130543

Fig. S64. Calculated structure of $Cp^*[(Me_3Si)_2N]Si: 1a'$.

Table S8. Coordinates of $Cp^*[(Me_3Si)_2N]Si: 1a'$.

53

Energ	y = -1552.6	588887347	
Si	-0.5667112	1.2316177	-0.4530560
С	-2.6617211	-0.2461797	-1.0994229
Ċ	-1.3470588	-0.7103698	-1.3763251
Ċ	-0.8158352	0.1195316	-2.4308212
C	-1.8626932	1.0285553	-2.8264045
c	-2 9673634	0 8111901	-2 0048524
c	-3 6133099	-0 78581/7	-0 0813/70
с ц	-1 0036011	0.0030132	0.5652778
ц	-4.0050011	-1 2500000	-0.57256/1
	2 1502260	1 5272640	0.5725041
п С	4 2405021		1 0702720
	-4.2405021	1.599//15	-1.9/05/50
	-5.1150942	0.9441389	-1.9957045
н	-4.3148616	2.2040501	-1.0608585
H	-4.3180284	2.2/53630	-2.8222565
C	-0.6941745	-1.96/3840	-0.8920217
н	0.3199892	-1./805223	-0.5321893
н	-1.25/0499	-2.424884/	-0.0/93039
Н	-0.6286809	-2.7035298	-1.6994048
C	-1.7254139	2.0524520	-3.9081531
Н	-2.4021708	2.8941131	-3.7581856
Н	-0.7103953	2.4510794	-3.9509583
Н	-1.9460568	1.6232448	-4.8916980
С	0.3407601	-0.2725569	-3.3000131
Н	0.7184179	0.5677896	-3.8824517
Н	1.1695963	-0.6814953	-2.7262043
Н	0.0305594	-1.0445639	-4.0130698
Ν	0.9357003	0.6830710	0.3773467
Si	0.7808495	0.2024909	2.0821392
Si	2.5411449	0.9839198	-0.3076770
С	1.0704194	1.6655248	3.2448497
Н	2.0926940	2.0400569	3.2032603
Н	0.4001798	2.4882365	2.9828420
Н	0.8584809	1.3764577	4.2779775
С	-0.9671874	-0.4278460	2.4314277
Н	-1.0501968	-0.6558820	3.4978581
Н	-1.7353607	0.3086292	2.1893438
Н	-1.1864261	-1.3400037	1.8778981
С	1.9830115	-1.1975573	2.4962489
Н	1.8242595	-1.5201633	3.5289530
н	1.8152543	-2.0581646	1.8452927
н	3.0285065	-0.9012451	2.4012716
C	3.7077689	1.8043590	0.9389413
н	3.3112635	2.7620871	1.2803547
Н	3.9076956	1.1862918	1.8151585
н	4.6663049	1,9945459	0.4476172
C	3 3778663	-0 6182437	-0 8686649
н	4 3317114	-0 3952012	-1 3549347
н	3,5835489	-1,2641845	-0.0129964
н	2.7683895	-1, 1869784	-1.5708057
Ċ	2 3927873	2 2027221	-1 7466395
н	3 3792102	2.2027224	-2 189/910
	J . J / J <u>L I U L</u>		

Н	1.7260546	1.8644597	-2.5374324
Н	2.0272594	3.1678658	-1.3877795

Fig. S65. Calculated structure of $Cp^{*}[Cp^{*}(CO)_{2}Fe]Si: 1c'$.

Table S9. Coordinates of $Cp^{*}[Cp^{*}(CO)_{2}Fe]Si: 1c'$.

56

Ener	gy = -2559.83	37637589	
Si	-1.1264974	0.8684753	0.2801429
С	-3.6688014	-0.3090262	-0.0385482
С	-3.0468721	-1.0912317	0.9484509
С	-1.7542611	-1.4568314	0.4937119
С	-1.5824986	-0.9195310	-0.8374878
С	-2.7804592	-0.1660761	-1.1353257
С	-4.9892041	0.3778127	0.1123128
Н	-5.3919047	0.6933582	-0.8505494
Н	-5.7248236	-0.2811500	0.5792947
Н	-4.9074723	1.2679686	0.7454045
С	-3.0972915	0.4689137	-2.4548279
Н	-3.6872829	1.3789723	-2.3346446
Н	-2.1957006	0.7305574	-3.0060562
Н	-3.6770604	-0.2173421	-3.0819434
С	-3.6044896	-1.3622399	2.3098141
Н	-3.0959422	-2.1955233	2.7951505
Н	-3.5073133	-0.4882833	2.9630180
Н	-4.6678447	-1.6072092	2.2583767
С	-0.6675063	-1.5035660	-1.8755690
Н	-0.4822187	-0.8148356	-2.6969076
Н	0.2939956	-1.7970062	-1.4598310
Н	-1.1267855	-2.4024141	-2.3008836
С	-0.8091489	-2.4005353	1.1726956
Н	0.2115536	-2.2802403	0.8133908
Н	-0.7994973	-2.2545499	2.2539391
Н	-1.1018895	-3.4393808	0.9845053
Fe	0.9505044	1.7877206	-0.3275158
С	0.4834075	1.6343780	-2.0037866

С	1.6481553	0.1939505	-0.1689871
0	2.1866240	-0.8206296	-0.0386508
0	0.2270928	1.6083903	-3.1307629
С	2.5146135	3.2465985	-0.1809760
С	2.3202964	2.6210248	1.0870470
С	1.2891280	3.8880793	-0.5324653
С	0.3517241	3.6932118	0.5354700
С	0.9895123	2.9106110	1.5373074
С	3.7855367	3.2737213	-0.9689953
Н	4.4021901	4.1345168	-0.6886584
Н	4.3782603	2.3746521	-0.8009991
Н	3.5898425	3.3426422	-2.0390031
С	1.0602482	4.7314210	-1.7467182
Н	0.0192174	4.7017681	-2.0672026
Н	1.3135856	5.7752542	-1.5370632
Н	1.6734393	4.4037672	-2.5857262
С	-1.0108907	4.2958516	0.6434396
Н	-1.7191444	3.5999974	1.0980837
Н	-0.9848029	5.1972945	1.2635977
Н	-1.4034258	4.5758949	-0.3340953
С	0.4037233	2.5596873	2.8656833
Н	-0.6474911	2.2775127	2.7759236
Н	0.9315609	1.7261017	3.3281231
Н	0.4620219	3.4131272	3.5486278
С	3.3670079	1.8979052	1.8745357
Н	2.9320690	1.1267931	2.5100525
Н	4.0976392	1.4162080	1.2252467
Н	3.9062811	2.5966025	2.5215044

Fig. S66. Calculated structure of $Cp^*[(Me_3Si)_3Si]SiH_2 4a'$.

Table S10. Coordinates of $Cp^*[(Me_3Si)_3Si]SiH_24a'$.

```
68
Energy = -2197.803293823
Si -0.4010352 1.5293538 -1.5399469
```

С	-2.9332446	-0.8809571	-1.2338975
С	-1.6367646	-0.9431093	-1.6282575
С	-1.3645194	0.1913498	-2.5760177
С	-2.7181307	0.8250438	-2.7708474
Ċ	-3.6040563	0.2144622	-1.9428871
c	-3 6351303	-1 7596916	-0 2469085
н	-1 0528732	_1 1735210	0.2400000
н ц	-4.0520752	2 2024222	0.3772002
	-4.4/05/02	-2.2924/25	-0./112141
H	-2.9660507	-2.5048859	0.1828/42
C	-5.0451159	0.5515820	-1./23924/
н	-5.2255599	0.8551952	-0.68/602/
Н	-5.3767345	1.3651926	-2.3680265
Н	-5.6903797	-0.3109035	-1.9165969
С	-0.6096045	-1.9695736	-1.2859602
Н	0.3552374	-1.5158605	-1.0564569
Н	-0.9046471	-2.5735822	-0.4279900
Н	-0.4379819	-2.6529397	-2.1247862
С	-2.9641144	1.9415356	-3.7330797
н	-4.0076809	2.2553601	-3.7221076
н	-2.3515239	2.8205597	-3.5114124
н	-2.7218307	1.6419059	-4.7582232
c	-0 6147176	-0 1794515	-3 8570546
ц	-0 /301915	0.1754515	-1 1823035
н Ц	0.4501515	0.0000011	2 6201420
	1 1000504	-0.030/09/	-3.0301420
H C:	-1.1999504	-0.8946598	-4.4413439
51	1./0/4606	1.0/05002	-0.5814395
Si	1.4237740	-0.1046137	1.4621081
Si	2.4114529	3.2854804	-0.1103961
Si	3.2642961	0.0963053	-2.0651882
С	2.3702334	0.7485991	2.8712659
Н	3.4448611	0.7629554	2.6810133
Н	2.0383116	1.7775121	3.0196290
Н	2.2020122	0.2044167	3.8052411
С	-0.4129092	-0.1300944	1.9333845
н	-0.5574294	-0.7001090	2.8555238
Н	-0.7792789	0.8849109	2.1022784
н	-1 0302876	-0 5726138	1 1517223
Ċ	2 0944899	-1 8800668	1 3655682
ц	1 971273/	-2 3730857	2 33/28/2
н ц	1 5900051	2.3730037	2.5542042
	1.5600951	-2.4/99112	1 1264265
	3.1002033	-1.8/92924	1.1204305
C	4.0184528	3.3639/56	0.8980113
Н	3.8960431	2.9333108	1.8913315
Н	4.8319184	2.8350917	0.3992990
Н	4.3213300	4.4084001	1.0176495
С	2.7047913	4.2376280	-1.7273688
Н	2.8660812	5.2982587	-1.5140744
Н	3.5898062	3.8658628	-2.2478642
Н	1.8534840	4.1532264	-2.4044249
С	1.0381335	4.1596330	0.8688713
Н	1.3466145	5.1743373	1.1357158
н	0.1179886	4.2283948	0.2854338
Н	0.8053129	3,6254664	1.7926986
C	5,0058493	0,3036297	-1,3335148
н	5 205//10	1 2550060	-1 2000061
11	7.2224410	T. J. J. J. D.	TOGOOOT

Н	5.0643845	-0.1001909	-0.3202229
Н	5.7413924	-0.2226248	-1.9483579
С	2.9819584	-1.7599014	-2.3498535
Н	3.7644052	-2.1449408	-3.0102733
Н	3.0234666	-2.3213282	-1.4158833
Н	2.0196185	-1.9629405	-2.8207327
С	3.2020103	0.9730152	-3.7474651
Н	3.9500767	0.5468796	-4.4222073
Н	2.2236346	0.8625381	-4.2176189
Н	3.4049308	2.0399697	-3.6482492
Н	-0.2073737	2.7001768	-2.4551049
Н	-1.3131396	1.9730189	-0.4501665

Fig. S67. Calculated structure of $Cp^*[(Me_3Si)_3Si]Si: \leftarrow NHC 6'$.

Table S11. Coordinates of Cp*[(Me₃Si)₃Si]Si:← NHC 6'.

```
87
```

```
Energy = -2579.978716004
     -0.1575924
                    1.5466370
                                -2.2231696
Si
С
     -2.9431015
                   -0.7309110
                                -0.9620563
С
     -1.7297123
                   -0.8970186
                                 -1.5560471
С
     -1.5744025
                    0.1077893
                                -2.6460635
С
     -2.8882323
                    0.8229845
                                -2.6575361
С
     -3.6572257
                    0.3534348
                                -1.6391276
С
     -3.5159884
                   -1.4920655
                                  0.1913526
Н
     -3.7107585
                   -0.8443260
                                  1.0546725
                                -0.0706902
Н
     -4.4728783
                   -1.9543819
     -2.8489942
                   -2.2870440
Н
                                  0.5251595
С
     -5.0136677
                    0.8333386
                                -1.2261386
Н
     -5.0286252
                    1.1558533
                                -0.1782141
     -5.3462511
                    1.6751608
                                -1.8344910
Н
н
     -5.7678380
                    0.0446894
                                -1.3159954
С
     -0.7255905
                   -1.9730260
                                -1.3205150
Н
      0.2896983
                   -1.5754042
                                -1.3226938
Н
     -0.8833678
                   -2.4830863
                                 -0.3704277
Н
     -0.7671403
                   -2.7323273
                                -2.1101607
```

С	-3.2508713	1.8400502	-3.6924266
Н	-3.9441645	2.5931181	-3.3091758
Н	-2.3634994	2.3546542	-4.0652141
н	-3.7263824	1.3730624	-4.5621071
С	-1.1596323	-0.4966697	-3,9938044
н	-1.0868845	0.2702024	-4.7663216
н	-0 18/2030	-0 9828/23	-3 9302586
н Ц	1 2004060	1 2470205	- J.
п с÷	-1.0904000	-1.24/0303	-4.3134/32
21	1.4196400	1.0105024	-0.4450108
51	1.4802989	-0.5093360	1.3952600
51	2.0109835	3.13426/2	0.4555401
Si	3.3157600	0.4374412	-1.7368550
С	2.7450722	0.0975333	2.6854422
Н	3.7442498	0.1660755	2.2528053
Н	2.4860897	1.0758889	3.0927309
Н	2.7873619	-0.6122139	3.5172909
С	-0.1648637	-0.7446489	2.3255661
н	-0.0433893	-1.5328248	3.0743557
Н	-0.4622843	0.1651869	2.8505594
н	-0 9776960	-1 0350753	1 6600895
Ċ	2 0806106	-2 2/77//0	0 8958061
с u	2.0000400	2.24//440	1 0020000
	2.2290000	-2.0415200	1.0020550
	1.30/3188	-2.//4034/	0.2642109
Н	3.03295//	-2.2099835	0.3661108
C	3.8322210	3.20/4/52	1.0031553
Н	4.0807274	2.4310219	1.7255763
Н	4.5010758	3.0987379	0.1477532
Н	4.0356115	4.1789965	1.4638975
С	1.7867313	4.5503754	-0.7995156
Н	2.3285650	5.4361707	-0.4549574
Н	2.1601973	4.2823355	-1.7881580
Н	0.7349867	4.8179950	-0.8948077
С	0.9513081	3,6145100	1.9700184
H	1.3752024	4.4996071	2.4530118
н	-0 0665828	3 8618911	1 6644390
н	0.00000020	2 8187312	2 7155301
\hat{c}	4 9572576	2.010/012	0 7042022
	4.05/25/0	0.0059000	-0.7042032
н	5.1639456	0.8426384	-0.0/53221
н	4.6896694	-0.8549504	-0.055/046
Н	5.690//49	-0.2365132	-1.3/02/16
C	2.9094469	-1.0665502	-2.8277593
Н	3.7707599	-1.3373568	-3.4452612
Н	2.6375731	-1.9365574	-2.2269181
Н	2.0752064	-0.8418592	-3.4950181
С	3.7777191	1.8806572	-2.8842329
Н	4.5706025	1.5832750	-3.5765882
Н	2.9073639	2.1908582	-3.4655926
н	4.1334197	2.7435563	-2.3171746
С	-2.3635239	4.8357757	-0.8911575
N	-1.5776386	4.0921040	-1.7658790
Ċ	-1.3035860	2.8588889	-1,2605171
N	-1 02207/2	2 8/61017	-0 0560151
C	-1,9229/43 _9 E09921E	7.0401917	0.0000401 0 1020060
c c	-2.JO2JO1JAA	4.0400000	0 0601000
	-1.9291240	1./20314/	0501000
н	-2.9508143	1.4038309	1.0536335

Н	-1.3780081	0.9139845	0.4162986
н	-1.4594897	2.0204521	1.8053469
С	-3.3455980	4.2871227	1.4449319
Н	-3.7723688	5.2887291	1.4388514
Н	-4.1654567	3.5733711	1.5589585
Н	-2.7064194	4.2010319	2.3271448
С	-2.8086298	6.2212233	-1.1936288
Н	-3.4267711	6.6023624	-0.3822971
Н	-1.9608389	6.9005431	-1.3140147
Н	-3.3990002	6.2636352	-2.1122933
С	-1.0965078	4.6126494	-3.0393598
Н	-0.5433784	5.5369005	-2.8748542
Н	-0.4343761	3.8637006	-3.4720235
Н	-1.9346791	4.7997275	-3.7100642

Fig. S68. Calculated structure of $[(Me_3Si)_3Si](H)Si: \leftarrow NHC 5a'$.

Table S12. Coordinates of $[(Me_3Si)_3Si](H)Si: \leftarrow NHC 5a'$.

63

Ener	Energy = -2190.574397474				
Si	-2.1019046	0.2934684	-0.3690776		
Si	-0.1820631	-0.0031158	1.0656819		
Si	-0.4138507	-1.9070424	2.4330330		
Si	-0.2763788	1.8557103	2.5137675		
Si	1.9913090	0.0100263	0.1474094		
С	1.1603827	-2.2459044	3.4480061		
Н	2.0009731	-2.4995407	2.7980271		
Н	1.4470687	-1.3763400	4.0415710		
Н	1.0009904	-3.0850687	4.1312601		
С	-1.8641252	-1.6422172	3.6328109		
Н	-2.0511052	-2.5453887	4.2206112		
Н	-1.6606006	-0.8250689	4.3274554		
Н	-2.7767565	-1.3973752	3.0848917		
С	-0.7892294	-3.4867115	1.4379289		
Н	-0.9347218	-4.3321511	2.1165897		
Н	-1.7010673	-3.3692098	0.8492170		
Н	0.0295540	-3.7414364	0.7613944		
С	0.7040140	1.5959906	4.1248320		
Н	0.2858165	0.7757346	4.7117861		

Н	1.7523846	1.3652953	3.9284541
Н	0.6655433	2.4998958	4.7398313
С	0.4264013	3.3923004	1.6372755
Н	0.3006108	4.2816370	2.2613932
Н	1.4908816	3.2806048	1.4215457
Н	-0.0941587	3.5665101	0.6930529
С	-2.0799689	2.2222989	2.9830280
Н	-2.1352099	3.0984290	3.6358293
Н	-2.6801590	2.4217697	2.0934481
Н	-2.5321159	1.3793617	3.5085220
С	3.2867155	0.3636304	1.4962326
Н	3.1523759	1.3623821	1.9161003
Н	3.2202191	-0.3532313	2.3159152
Н	4.2957661	0.3087291	1.0767839
С	2.4579878	-1.6563585	-0.6553756
Н	3.5149617	-1.6576585	-0.9370206
Н	2.2917445	-2.4951742	0.0237779
Н	1.8756495	-1.8306549	-1.5620178
С	2.2036169	1.3392793	-1.1996265
Н	3.2640959	1.4716422	-1.4328987
Н	1.6912234	1.0447773	-2.1156010
Н	1.8036051	2.3022722	-0.8787134
Н	-2.0787221	1.8130489	-0.3265004
С	-0.1345944	-0.8487494	-3.8251840
Ν	-0.7536903	-1.0298487	-2.5894236
С	-1.1221240	0.1595483	-2.0386842
Ν	-0.7542386	1.0891072	-2.9626929
С	-0.1427888	0.4883942	-4.0655397
С	-0.9188624	2.5250789	-2.8171688
Н	0.0078214	3.0314470	-3.0839917
Н	-1.7286491	2.8882539	-3.4524758
Н	-1.1612239	2.7325598	-1.7793127
С	0.3832626	1.2757645	-5.2111855
Н	0.7748504	0.6089480	-5.9777569
Н	-0.3955077	1.8901813	-5.6703961
Н	1.1937836	1.9427121	-4.9047286
С	0.3997705	-1.9788084	-4.6296031
Н	0.8873346	-1.6016110	-5.5270641
Н	1.1377968	-2.5567652	-4.0674292
Н	-0.3902940	-2.6656069	-4.9454044
С	-0.9961124	-2.3092687	-1.9467495
Н	-1.0698221	-3.0903879	-2.6997079
Н	-0.1989581	-2.5530168	-1.2472484
Н	-1.9343150	-2.2410573	-1.3948626

Fig. S69. Calculated structure of $Cp^{*}[(Me_{3}Si)_{3}Si]Si(H_{2}CCH_{2})$ 3'.

Table S13. Coordinates of $Cp^{*}[(Me_{3}Si)_{3}Si]Si(H_{2}CCH_{2})$ 3'.

72			
Ener	gy = -2275.1	75263875	
Si	-0.6471972	1.3010348	-1.0635819
С	-3.1940563	-1.0288531	-1.7855684
С	-1.8411860	-1.0346222	-1.8497090
С	-1.3845499	0.2360345	-2.5238517
С	-2.6680400	0.8988983	-2.9394132
С	-3.7077881	0.1698635	-2.4672960
С	-4.0900341	-2.0348069	-1.1342897
Н	-4.6880538	-1.5774846	-0.3396733
Н	-4.7954289	-2.4654274	-1.8515912
Н	-3.5255997	-2.8557502	-0.6929764
С	-5.1689095	0.4615389	-2.6029901
Н	-5.6585367	0.4969166	-1.6248862
Н	-5.3479524	1.4146316	-3.1000692
Н	-5.6783089	-0.3154756	-3.1817554
С	-0.8875598	-2.0623533	-1.3369512
Н	-0.0820660	-1.6115749	-0.7510134
Н	-1.3847367	-2.7951020	-0.7013270
Н	-0.4062348	-2.6088065	-2.1545926
С	-2.7005033	2.1111798	-3.8128994
Н	-3.6572261	2.6312960	-3.7500737
Н	-1.9160327	2.8214568	-3.5449396
Н	-2.5433034	1.8437493	-4.8641213
С	-0.3778200	0.0589325	-3.6626063
Н	-0.1049308	1.0182141	-4.1060460
Н	0.5371003	-0.4161491	-3.3175127
Н	-0.8081102	-0.5679010	-4.4483972
Si	1.6075080	1.1213476	-0.3960013
Si	1.8138898	0.1634547	1.7603383
Si	2.3238294	3.3745429	-0.2739746
Si	3.1406063	-0.0069477	-1.8055970
С	3.4145003	0.7998329	2.5650261

Н	4.2911508	0.5829280	1.9537001
Н	3.3756250	1.8787279	2.7254128
Н	3.5562238	0.3227626	3.5390970
С	0.3650408	0.6231051	2.8925504
Н	0.5453241	0.2362140	3.8996316
Н	0.2410726	1.7052172	2.9643259
Н	-0.5707468	0.1989486	2.5263502
С	1.9174473	-1.7311219	1.6642197
Н	2.0214479	-2.1502170	2.6691419
Н	1.0205993	-2.1602845	1.2140085
Н	2.7780637	-2.0561606	1.0767186
С	4.2136966	3.5187940	-0.1382773
Н	4.6028693	2.9665987	0.7182779
Н	4.7092840	3.1461189	-1.0364537
Н	4.4927805	4.5694195	-0.0162431
С	1.7825585	4.3061656	-1.8352550
Н	2.0916941	5.3538883	-1.7820642
Н	2.2379083	3.8657319	-2.7249247
Н	0.7001974	4.2706493	-1.9608120
С	1.5790398	4.2013839	1.2676696
Н	1.8236839	5.2672520	1.2825723
Н	0.4933370	4.1050659	1.3042807
Н	1.9823661	3.7542332	2.1785554
С	4.8032897	-0.0941169	-0.8862147
Н	5.1549141	0.8838517	-0.5598947
Н	4.7316752	-0.7386047	-0.0081256
Н	5.5605399	-0.5219710	-1.5496423
С	2.7026827	-1.8115115	-2.2096278
Н	3.5571627	-2.2704992	-2.7159635
Н	2.5071129	-2.3831400	-1.3011654
Н	1.8368764	-1.9153320	-2.8616072
С	3.4019232	0.9592208	-3.4188131
Н	4.1103668	0.4344759	-4.0658945
Н	2.4696635	1.0864606	-3.9707202
Н	3.8080450	1.9516771	-3.2134856
С	-1.5210536	2.9376001	-0.6969437
С	-1.9000300	1.7819088	0.2464194
Н	-0.9693651	3.7600254	-0.2573976
Н	-2.2999264	3.2752122	-1.3693785
Н	-1.5963757	1.8792414	1.2807855
Н	-2.9033544	1.3854808	0.1308374

Fig. S70. Calculated structure of transition state for oxidative addition of H_2 to ${f 2'}$.

Table S14. Coordinates of transition state for oxidative addition of H_2 to ${\bm 2'}.$

68

Energy = -2197.547787407							
Si	-1.0739619	0.5236584	-0.4277991				
С	-4.3302371	0.3643169	0.5961482				
С	-3.2074641	-0.2830590	1.0053876				
С	-2.5017087	-0.8512545	-0.2036104				
С	-3.4388381	-0.5316813	-1.3336319				
С	-4.4746069	0.2092007	-0.8519229				
С	-5.3082154	1.1307915	1.4347003				
Н	-5.3788837	2.1740446	1.1105295				
Н	-6.3155258	0.7087271	1.3605740				
Н	-5.0301028	1.1320590	2.4884815				
С	-5.6180440	0.8016935	-1.6185758				
Н	-5.6433289	1.8910555	-1.5124679				
Н	-5.5594598	0.5767013	-2.6831004				
Н	-6.5799374	0.4275745	-1.2538543				
С	-2.7276930	-0.5097485	2.4057206				
Н	-1.6544187	-0.3351450	2.5112959				
Н	-3.2338631	0.1406193	3.1196155				
Н	-2.9065811	-1.5440628	2.7224591				
С	-3.2499039	-1.0456690	-2.7270091				
Н	-3.9801575	-0.6211787	-3.4159565				
Н	-2.2555825	-0.8241865	-3.1266043				
Н	-3.3610657	-2.1352870	-2.7655033				
С	-2.0777618	-2.3141397	-0.0802036				
Н	-1.5873220	-2.6666600	-0.9883371				
Н	-1.3843893	-2.4668273	0.7476743				
Н	-2.9541300	-2.9465966	0.0992743				
Si	1.2599069	0.1236100	0.0546504				
Si	1.6514241	0.6340031	2.3638004				
Si	2.2321886	1.9046257	-1.2424059				
Si	2.3249593	-1.9478953	-0.5187071				

С	3.4567801	1.1853976	2.6367134
Н	4.1705882	0.4310739	2.2994968
Н	3.6816800	2.1172677	2.1137201
Н	3.6314055	1.3549322	3.7036540
С	0.5202727	2.0430395	2.9646718
Н	0.7277700	2.2608479	4.0168819
Н	0.6844879	2.9588876	2.3938654
Н	-0.5374644	1.7879086	2.8788783
С	1.3633567	-0.8872155	3.4784467
Н	1.4940788	-0.6075632	4.5282929
Н	0.3593082	-1.3015056	3.3684534
Н	2.0777060	-1.6838264	3.2582673
С	4.1308207	1.7472915	-1.3205309
Н	4.5854934	1.7135921	-0.3287336
Н	4.4415712	0.8525961	-1.8640884
Н	4.5435167	2.6132106	-1.8475263
С	1.5979385	1.8996155	-3.0403765
Н	2.1401044	2.6541875	-3.6184564
Н	1.7489522	0.9346570	-3.5287339
Н	0.5354962	2.1457942	-3.0960961
С	1.8142594	3.6028131	-0.4895295
Н	2.2031472	4.3977652	-1.1332331
Н	0.7355175	3.7424984	-0.3963912
Н	2.2586500	3.7312386	0.4996933
С	4.1519119	-1.9269735	0.0327698
Н	4.7008276	-1.0769590	-0.3749919
Н	4.2415200	-1.8926778	1.1210100
Н	4.6476697	-2.8409111	-0.3088197
С	1.5278587	-3.4700095	0.3035117
Н	2.1324263	-4.3558606	0.0854735
Н	1.4712133	-3.3656936	1.3889335
Н	0.5202128	-3.6544276	-0.0695685
С	2.2758573	-2.2131899	-2.4049785
Н	2.7262495	-3.1772430	-2.6598667
Н	1.2508242	-2.2144842	-2.7827171
Н	2.8282101	-1.4370618	-2.9392564
Н	-0.5083525	-0.1491163	-1.8702438
Н	-1.0208451	0.7417570	-1.9840699

Fig. S71. Calculated structure of Cp*H.

Table S15. Coordinates of calculated structure of Cp*H.

26			
Ene	rgy = -390.590	03078578	
Н	-0.6416013	0.9010420	-2.1588606
С	-2.9167231	-0.8956710	-1.2552134
С	-1.6165579	-0.9253752	-1.6085794
С	-1.3535693	0.1877134	-2.5993712
С	-2.7018812	0.8592408	-2.7439708
С	-3.5937469	0.2177777	-1.9632623
С	-3.6391197	-1.7993379	-0.3067810
Н	-4.0893570	-1.2345173	0.5152408
Н	-4.4549639	-2.3291156	-0.8083021
Н	-2.9761807	-2.5472818	0.1275181
С	-5.0469493	0.5195922	-1.7768068
Н	-5.2733344	0.7512872	-0.7313148
Н	-5.3676273	1.3672119	-2.3818083
Н	-5.6685837	-0.3386440	-2.0504626
С	-0.5397101	-1.8571244	-1.1617339
Н	0.3172894	-1.3096556	-0.7551205
Н	-0.8885540	-2.5437343	-0.3900254
Н	-0.1597049	-2.4619889	-1.9923941
С	-2.9068323	2.0382959	-3.6358675
Н	-3.9253234	2.4228388	-3.5761102
Н	-2.2275200	2.8571748	-3.3760579
Н	-2.7108029	1.7894882	-4.6846667
С	-0.7766236	-0.3104239	-3.9319728
Н	-0.6201744	0.5159017	-4.6281787
Н	0.1844670	-0.8071331	-3.7847780
Н	-1.4627052	-1.0231317	-4.3952895

Fig. S72. Calculated structure of NHC.

Table S16. Coordinates of calculated structure of NHC.

```
21
Energy = -383.3476466815
С
    -0.8882001 0.5446315
                              0.0246060
Ν
    -0.0223329 -0.5539590
                             0.0215696
С
     1.2937902 -0.2029565
                             -0.0189451
Ν
     1.2217451 1.1580727
                             -0.0418650
С
    -0.0904206 1.6431332
                             -0.0164872
С
     2.4007287
                 2.0003541
                             -0.0876715
Н
     2.4534707
                 2.6520971
                              0.7877161
```

Н	3.2661145	1.3433486	-0.0978862
Н	2.4078090	2.6195343	-0.9878979
С	-0.4234114	3.0932225	-0.0352087
Н	-1.5037295	3.2357391	-0.0119071
Н	-0.0017739	3.6188050	0.8267233
Н	-0.0444044	3.5861337	-0.9353963
С	-2.3697656	0.4136399	0.0642962
Н	-2.8382098	1.3976465	0.0686026
Н	-2.7537296	-0.1318542	-0.8028605
Н	-2.7073854	-0.1173119	0.9592743
С	-0.4593537	-1.9355307	0.0630619
Н	-1.0919444	-2.1743107	-0.7949971
Н	0.4321588	-2.5561689	0.0362074
Н	-1.0170356	-2.1449962	0.9790652

Fig. S73. Calculated structure of $H_2C=CH_2$.

Table 17. Coordinates of calculated structure of $H_2C=CH_2$.

```
6
Energy = -78.56765304067
С
     -1.5300266
                 -0.0906874
                               0.0000000
С
    -0.2041034 -0.0873926
                              0.000000
Н
    -2.0982969
                -1.0139248
                             -0.0000000
     -2.1028643
Н
                 0.8297188
                              -0.000000
Н
     0.3641669
                  0.8358448
                              -0.000000
Н
     0.3687343
                -1.0077988
                             -0.0000000
```


Fig. S74. Calculated structure of H_2 .

Table 18. Coordinates of calculated structure of H_2 .

2			
Ene	rgy = -1.17306	51500466	
Н	-1.0450400	-0.3213669	0.0000000
Н	-0.3007200	-0.3155531	0.0000000

Fig. S75. Pictures of orbitals (isocontour value 0.09) of selected calculated Cp*-silylenes: $[(Me_3Si)_3Si](Cp^*)Si: 2'$

LUMO/LUMO+1/LUMO+2

HOMO/HOMO-1/HOMO-2

LUMO/LUMO+1/LUMO+2

HOMO/HOMO-1/HOMO-2

LUMO/LUMO+1/LUMO+2 [(Cp*)(CO)₂Fe](Cp*)Si: **1c'**

[(Me₃Si)₂N](Cp*)Si: **1a'**

Fig. S76. Calculated transitions (vertical bars) and simulated UV/Vis absorption spectrum of 2'.

excitation #	wavelength [nm]	oscillator strength
1	534.7	0.0006
2	378.6	0.0009
3	324.3	0.1058
4	313.0	0.0081
5	310.7	0.0398
6	291.5	0.1168
7	287.8	0.0010
8	274.6	0.1320
9	274.4	0.0114
10	267.9	0.0024

Table S19. Selected calculated transitions and optical parameters of 2'.

Fig. S77. Calculated transitions (vertical bars) and simulated UV/Vis absorption spectrum of 6'.

excitation #	wavelength [nm]	oscillator strength	
1	472.2	0.0095	
2	368.4	0.0214	
3	357.3	0.0215	
4	340.0	0.0312	
5	328.7	0.0195	
6	305.7	0.0840	
7	301.0	0.0081	
8	295.9	0.0119	
9	292.3	0.0481	
10	286.5	0.0034	

Table S20. Selected calculated transitions and optical parameters of 6'.

Table S21. Comparison of the structural parameters for Cp*-substituted silylenes Cp*(X)Si:. Experimental data versus calculated structures. ^[S10]

COMPOUND/ SUBSTITUENT X	BOND LENGTH Si-C (Cp*)/Å	DISTANCE Si- <i>C_g</i> /Å	DISTANCE Si- <i>C_f/</i> Å	Angle/° X-Si-C1(Cp*) X-Si-C2(Cp*) X-Si-C _f X-Si-C _g	BOND LENGTH Si-X/Å	DISTANCE C _g -C _f	BONDING MODE
2 /Si(SiMe₃)₃	2.100(2) 2.112(2) 2.544(2) 2.554(2) 2.806(2)	2.119(1)	1.965(1)	106.94(6) 106.15(8) 113.27(6) 135.24(4)	2.444(1)	0.793	η²
2'/Si(SiMe ₃) ₃	2.1491 2.1655 2.6634 2.6860 2.9587	2.2357	2.0284	105.52 105.28 107.77 132.64	2.451	0.940	η²
1a'/N(SiMe ₃) ₂	2.283 2.288 2.644 2.712 2.889	2.271	2.152	102.24 109.99 113.43 131.75	1.802	0.726	η²
1b/ Tip ₂ (C ₆ H ₃)	2.096(2) 2.282(2) 2.268(2) 2.673(2) 2.682(2)	2.086(1)	1.976(1)	101.94(8) 120.52(7) 120.58(8) 117.45(8) 136.10(7)	1.973(2)	0.668	η ³
1b' /Tip ₂ (C ₆ H ₃)	2.206 2.216 2.655 2.699 2.936	2.247	2.069	110.46 113.02 116.08 139.04	1.979	0.877	η²
1c /Fe(Cp*)(CO) ₂	2.136(1) 2.210(2) 2.435(1) 2.583(2) 2.732(2)	2.108(1)	2.009(1)	112.77(5) 118.92(6) 126.85(6) 144.49(3)	2.368(1)	0.639	η ³
1c'/ Fe(Cp*)(CO) ₂	2.157 2.410 2.418 2.824 2.820	2.230	2.092	112.14 128.91 124.30 144.60	2.351	0.754	η ¹ /η ³
1g'/SiMe ₃	2.146 2.160 2.665 2.710 2.984	2.247	2.023	102.11 106.55 105.45 131.17	2.452	0.978	η²

Table S22. Electronic properties computed at the B3-LYP-D/def2-TZVPD level of theory for Cp*-substituted silylenes Cp*(X)Si:. Triplet states: (v) = vertical, (a) = adiabatic.

electronic		COMPOUND/ SUBSTITUENT X					
properties B3-LYP-D/ def2-TZVPD	unit	2' /Si(SiMe₃)₃	1a' /N(SiMe ₃) ₂	1b'/ Tip₂(C ₆ H₃)	1c' /Fe(Cp [*])(CO) ₂	1g' /SiMe₃	
НОМО	eV	-4.959	-5.419	-5.189	-4.563	-4.844	
LUMO	eV	-1.711	-1.042	-1.178	-1.194	-1.748	
HOMO-LUMO gap	eV	+3.248	+4.377	+4.011	+3.369	+3.096	
singlet-triplet gap (v)	kJ/mol	+180.4	+272.3	+236.8	+167.2	+159.5	
singlet-triplet gap (a)	kJ/mol	+113.9	+163.6	+152.7	+110.3	+82.3	
partial charge at Si(II)	е	+0.644	+1.123	+1.015	+0.728	+0.487	

[S1] P. Jutzi, D. Kanne, M. Hursthouse and A. J. Howes, Chem. Ber. 1988, 121, 1299-1305.

[S2] C. Marschner, Eur. J. Inorg. Chem. 1998, 221-226.

[S3] N. Kuhn and T. Kratz, Synthesis 1993, 6, 561-562.

[S4] M. Haaf, A. Schmiedl, T. A. Schmedake, D. R. Power, A. J. Millevolte, M. Denk and R. West, *J. Am. Chem. Soc.* 1998, **120**, 12714-12719.

[S5] R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162, 165-169.

[S6] [a] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, *J. Chem. Phys.* 1994, **98**, 11623-11627; [b] C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* 1988, **37**, 785-789; [c] A. D. Becke, *J. Chem. Phys.* 1993, **98**, 5648-5652; [d] S. H. Vosko, L. Wilk and M. Nusair, *Can. J. Phys.* 1980, **58**, 1200-1211.

[S7] [a] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J. Chem. Phys*, 2010, **132**, 154104-154119; [b] S. Grimme, S. Ehrlich and L. Goerigk, *J. Comput. Chem.* 2011, **32**, 1456-1465.

[S8] A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829-5835.

[S9] F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, **7**, 3297-3305.

[S10] The distances Si- C_q and Si- C_f were calculated using OLEX2 version 1.2.10.

[S11] Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H., OLEX2: A complete structure solution, refinement and analysis program. *J. Appl. Cryst.* 2009, **42**, 339-341.