Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

ESI

Metal organic frameworks decorated with free carboxylic acid groups: topology,

metal capture and dye adsorption properties

M. Naqi Ahamad^a, M. Shahnawaz Khan^a, M. Shahid^{*a}, Musheer Ahmad^b

^aFunctional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.

^bDepartment of Applied Chemistry (ZHCET), Aligarh Muslim University, Aligarh 202002, India. *Corresponding author, E-mail: shahid81chem@gmail.com

Scheme 1S. Selected binding modes of 1,3,5-benzenetricarboxylic acid.

Fig 1S. FTIR spectra of the MOFs in the carboxylate frequency region.

Fig 2S. As synthesized and simulated PXRD patterns of Cu-MOF-2COOH, Ni-MOF-COOH and Cd-MOF.

Fig 3S. Colour changes observed in the crystals after soaking Cu-MOF-2COOH in various cationic solutions in

different solvents after 24 h.

Fig. 4S. PXRD patterns recorded for both the post synthetically modified MOFs before and after adsorption of dye.

Fig. 5S. PXRD patterns recorded for both the post synthetically modified MOFs at varying pH.

[Cu(H ₂ -BTC) ₂ (4,4'-bipy)] _n (Cu-MOF-2COOH)									
Atom	Atom	Length (Å)	Atom	Atom	Atom	Angle (°)			
Cu1	Oli	2.4297(18)	O1 ⁱ	Cu1	01	175.46(9)			
Cu1	01	2.4297(18)	$O2^i$	Cu1	O1 ⁱ	58.56(7)			
Cu1	$O2^i$	2.0162(18)	O2	Cu1	O1 ⁱ	121.45(7)			
Cu1	O2	2.0162(18)	N1	Cu1	$O2^i$	89.97(5)			
Cu1	N1	1.976(3)	O2	Cu1	01	58.56(7)			
Cu1	N2 ⁱⁱ	1.979(3)	O2	Cu1	$O2^i$	179.94(10)			
01	C1	1.259(3)	N1	Cu1	O1 ⁱ	92.27(4)			
02	C1	1.272(3)	C1	Cu1	01	29.13(7)			
03	H3	0.8400	N2 ⁿ	Cu1	N1	180.000			
03	C5	1.334(3)	N2 ⁱⁱ	Cul	O11	87.73(4)			
N1	C10 ¹	1.338(3)	N2 ⁿ	Cu1	02	90.03(5)			
N1	C10	1.338(3)	C1 ¹	Cu1	$O2^{1}$	29.43(8)			
N2	C15	1.335(3)	C1 ¹	Cul	02	150.58(8)			
N2	C15 ¹	1.335(3)	C1 ¹	Cul	N1	91.14(6)			
Cl	C2	1.493(4)	Cl	Cul	N2 ⁱⁱ	88.86(6)			
<u> </u>	01		$\frac{Cd(H-BTC)(H_2O)_2]_n}{O2}$	0.11	01	52.52(()			
Cdl	01	2.2768(16)	02	Cdl		53.52(6)			
Cdl	02	2.56/4(17)	03	Cdl		159.00(6)			
Cdl	03	2.5354(18)	03	Cdl	02	146.48(6)			
Cdl	04	2.2350(17)	04	Cdl		146.0/(6)			
	05	2.28/1(1/)	04	Cdl	02	92.59(6)			
	0/	2.3808(19)	04	Cdl	03	54.64(6)			
	08	2.297(2)	05			80.42(6)			
01		1.275(3) 1.248(2)	05		02	133.94(0)			
02	C^{0}	1.248(3) 1.248(2)	05	Cd1	03	79.51(0) 122.42(6)			
03		1.248(3) 1.270(2)	03	Cd1	04	133.42(0) 01.52(6)			
04		1.279(3) 1.228(3)	07	Cd1	01	91.32(0) 92.34(6)			
05	C_{9}	1.228(3) 1.207(3)	07	Cd1	02	92.34(0) 03.18(6)			
C1	C_{2}	1.307(3) 1.480(3)	07	Cd1	03	93.18(0) 88.01(7)			
C^2	C_2	1.469(3) 1 301(3)	07	Cd1	04	87.87(7)			
C^2	C7	1.391(3)	08	Cd1	01	87.87(7) 88.74(7)			
C_2	C_{4}	1.395(3) 1.385(3)	08	Cd1	O^2	88.74(7) 84.10(7)			
C_{4}	C5	1.303(3)	08	Cd1	03	88 21(7)			
C4 C4	C9 ⁱ	1.393(3) 1.479(3)	08	Cd1	O_4	89.21(7)			
C5	C6	1 393(3)	08	Cd1	05	96.73(7)			
C6	C7	1.393(3) 1.391(3)	08	Cd1	07	175 38(7)			
	07	{[Ni ₂ (H-BT	$\frac{00}{(C)_{2}(4.4'-biny)_{2}(H_{2}O)}$	(U_{1})	07	175.56(7)			
Ni1	01	2 183(3)	02	Ni1	01	62 18(10)			
Nil	02	2.105(3) 2.084(3)	08	Nil	01	97.42(11)			
Nil	08	2.001(3) 2.008(3)	08	Nil	$\frac{01}{02}$	15957(12)			
Nil	N1	2.101(3)	N1	Ni1	01	156.85(12)			
Nil	N3	2.081(3)	N1	Ni1	02	95.05(12)			
Nil	N6 ⁱ	2.089(3)	N1	Ni1	08	$105\ 21(13)$			
Ni1	C1	2.450(4)	N3	Ni1	01	85.76(12)			
Ni2	06	2.027(3)	N3	Ni1	02	88.43(12)			
Ni2	011 ⁱⁱ	2.128(3)	N3	Ni1	08	91.18(13)			
Ni2	O12 ⁱⁱ	2.118(3)	N3	Nil	N1	98.41(13)			
Ni2	O13	2.072(3)	N6 ⁱ	Ni1	01	87.89(12)			
Ni2	N4 ⁱⁱⁱ	2.078(4)	N6 ⁱ	Ni1	O2	88.92(12)			
Ni2	N5	2.073(4)	N6 ⁱ	Ni1	O8	89.29(13)			
Ni2	C37 ⁱⁱ	2.439(4)	O11 ⁱⁱ	Ni2	O6	96.46(11)			

Table 1S. Selected bond lengths (Å) and angles (°) for Cu-MOF-2COOH, Ni-MOF-COOH and Cd-MOF.

01	C1	1.265(5)	O12 ⁱⁱ	Ni2	O6	158.74(11)
O2	C1	1.270(5)	O12 ⁱⁱ	Ni2	O11 ⁱⁱ	62.46(11)
O3	C8	1.197(6)	O13	Ni2	O6	95.59(13)
O4	H4	0.8400	O13	Ni2	O11 ⁱⁱ	166.11(12)
O4	C8	1.327(6)	O13	Ni2	O12 ⁱⁱ	105.03(12)
O5	C5	1.258(5)	N4 ⁱⁱⁱ	Ni2	O6	91.22(12)
N1	C10	1.338(6)	N4 ⁱⁱⁱ	Ni2	O11 ⁱⁱ	91.83(12)
N1	C14	1.336(5)	N4 ⁱⁱⁱ	Ni2	O12 ⁱⁱ	92.13(12)
N2	C17	1.327(6)	N4 ⁱⁱⁱ	Ni2	O13	94.80(12)
N2	C18	1.342(6)	N5	Ni2	O6	89.97(12)
N3	C20	1.342(5)	N5	Ni2	O11 ⁱⁱ	87.33(12)
N3	C24	1.332(6)	N5	Ni2	O12 ⁱⁱ	86.50(12)