Supporting Information

Development of New and Efficient Copper(II) Complexes of Hexyl bis(pyrazolyl)acetate Ligands as Catalyst for Allylic Oxidation

Serena Gabrielli,*^a Maura Pellei,*^a Iole Venditti,^b Ilaria Fratoddi,^c Chiara Battocchio,^b Giovanna Iucci,^b Irene Schiesaro,^b Carlo Meneghini,^b Alessandro Palmieri,^a Enrico Marcantoni,^a Luca Bagnarelli,^a Riccardo Vallesi^a and Carlo Santini^a

 ^aSchool of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
^bDepartment of Science, Roma Tre University, Via della Vasca Navale 79, 00146, Rome, Italy
^cChemistry Department, Sapienza University of Rome, Italy

*email: serena.gabrielli@unicam.it; maura.pellei@unicam.it

Table S1. Detailed SR-XPS data analysis results concerning C1s, N1s, O1s, Cl2p and Cu2p core levels (Binding Energy (BE), Full Width Half Maximum (FWHM), and assignments), confirming the proposed molecular structures.

Sample	Signal	BE (eV)	FWHM (eV)	Assignment	
1	Cls	284.87	1.56	C-C aromatic + aliphatic	
		286.52	1.56	C-N, C-O	
		288.03	1.56	C=O (impurities)	
		289.37	1.56	COOR	
	N1s	400.31	2.85	C-N	
		402.49	2.85	C=N	
	Ols	532.21	1.61	C=O	
		533.52	1.61	С-О, ОН	
3	Cls	284.59	1.81	C-C aromatic + aliphatic	
		286.39	1.81	C-N, C-O	
		288.59	1.81	COOR	
	N1s	400.58	3.34	C-N	
	Ols	532.02	2.04	C=O	
		533.59	2.04	С-О, ОН	
	Cl2p _{3/2}	197.10	2.71	Cl-Cu complex	
	Cu2p _{3/2}	933.50	3.75	Cu(II) in CuCl ₂ or CuO	
		936.03	3.75	Cu(II) in coordination compound	
5	Cls	284.50	1.59	C-C aromatic + aliphatic	
		286.11	1.59	C-N, C-O	
		288.35	1.59	COOR	
	N1s	400.60	2.78	C-N	
	Ols	532.15	1.65	C=O	
		533.50	1.65	С-О, ОН	
	Cl2p _{3/2}	198.30	2.71	Cl-Cu complex	
	Cu2p _{3/2}	933.24	3.53	Cu(II) in CuCl ₂ or CuO	
		936.00	3.53	Cu(II) in coordination compound	

Table S2. Best fit results for Cu K Edge XAFS Data Analysis of 5 and 3.

	5		3	
	R (Å)	$\sigma^2(\times 10^{-2}\text{\AA}^2)$	R (Å)	$\sigma^2(\times 10^{-2} \text{ Å}^2)$
Cu-N	1.948(5)	0.48(2)	2.002(5)	0.52(3)
Cu-Cl	2.20(5)	0.29(1)	2.256(5)	0.55(3)
Cu-N(2)	2.95(1)	0.93(5)	2.96(1)	1.10(6)
Cu-N-C(2)	4.22(1)	0.91(5)	4.68(1)	0.55(3)
Cu-N-C(2)-N	4.57(1)	1.20(6)	4.25(1)	0.95(5)

Figure S1. C1s spectra of 1, 3 and 5.

Figure S2. N1s spectra of 1, 3 and 5.

Figure S3. Cl2p spectra of complexes 3 and 5.

Figure S4. Cu2p spectra of complexes 3 and 5.

Figure S5. Structure of complex 5. First and second shell are indicated with dotted lines.

¹H-NMR of compound $\mathbf{1}$ (L^{2OHex}).

¹³C-NMR of compound $\mathbf{1}$ (L^{2OHex}).

ESI-MS(+) of compound 1 (L^{2OHex}) in CH₃CN.

¹H-NMR of compound 2 (L^{OHex}).

¹³C-NMR of compound 2 (L^{OHex}).

L7c 18060401 23 (0.232) Cm (22:33) Scan ES+ 1.31e8 299.1 100₇ ~ 315.0 277.1 340.1 209.2 127.1 202.2 85.0 130.2 341.2 380.0 421.1 437.1 473.0 513.1 575.2 615.1 655.1 699.2 744.2 787.5 812.0 300 350 400 450 500 550 600 650 700 750 800 8 864.7 899.1 943.1970.9 m/z 0-100 150 250 850 900 950

ESI-MS(+) of compound 2 (L^{2OHex}) in CH₃CN.

L20Hex-2-L7.C 20091500 20 (0.202) Cm (18:25) 299.1 Scan ES+ 3.10e7 100₋ ~ 277.1 575.1 300.2 526.0 122.5 315.0 462.9^{525.0} 464.9 205.1 576.2 143.1 ,224.0 340.1 527.0 530 <u>1099.5.1121.2 1226.2 1314.0 1352.1 1429.1 1451.6</u> <u>1100 1200</u> 1300 1400 615.1 677.9 697.1739.1782.9 867.1 905.0 966.3 0-**|444** 100 1000 200 400 500 600 700 800 900 300

ESI-MS(+) of compound $2 (L^{2OHex})$ in H₂O.

ESI-MS(-) of compound $2 (L^{2OHex})$ in H₂O.

ESI-MS(+) of compound **3**, $[(L^{2OHex})CuCl_2]$ in CH₃CN.

ESI-MS(-) of compound **3**, $[(L^{2OHex})CuCl_2]$ in CH₃CN.

ESI-MS(+) of compound 4, $[(L^{2OHex})CuBr_2]$ in CH₃CN.

ESI-MS(-) of compound 4, $[(L^{2OHex})CuBr_2]$ in CH₃CN.

ESI-MS(+) of compound 5, $[(L^{OHex})CuCl_2]$ in CH₃CN.

ESI-MS(-) of compound 5, $[(L^{OHex})CuCl_2]$ in CH₃CN.

¹H-NMR of compound **8**.

¹H-NMR of compound **9**.

¹³C-NMR of compound **9**.

¹H-NMR of compound **10**.

¹³C-NMR of compound **10**.

