Electronic supplementary information

Near-Infrared emitting AIE multinuclear cationic Ir(III) complexes assembled nanoparticles for photodynamic therapy

Lijuan Li,‡^a Liping Zhang,‡^a Xiaofan Tong,^a Yite Li,^b Zhiyu Yang,^b Dongxia Zhu,^{*a} Zhongmin Su,^{*a} Zhigang Xie^{*b}

^a Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, P. R. China. E-mail: zhudx047@nenu. edu.cn; zmsu@nenu.edu.cn

^b State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, P. R. China. E-mail: xiez@ciac.ac.cn

Supplementary Figures and Tables

PS3

Scheme S1 Synthetic routes of L1, L3, PS1 and PS3.

Fig. S1 ¹H NMR spectrum of L1 in CDCl₃.

Fig. S2 ¹H NMR spectrum of L3 in CDCl₃.

Fig. S3 ¹H NMR spectrum of **PS1** in DMSO- d_6 .

Fig. S4 ¹H NMR spectrum of **PS3** in DMSO- d_6 .

Fig. S7 ESI mass spectrum of PS1.

Fig. S8 MALDI-TOF mass spectrum of PS3.

Fig. S9 DLS results of A) PS1 NPs and B) PS3 NPs in water at room temperature.

Fig. S10 UV–vis absorption spectra of A) **PS1** and B) **PS3** at different concentration in DMSO/water (v/v) = 4/1. C) Standard curves of **PS1** and **PS3** in DMSO/water (v/v) = 4/1.

Fig. S11 A) PL spectra of **PS1** NPs in water and **PS1** in DMSO/water mixtures with different water fractions at room temperature. B) PL spectra of **PS3** NPs in water and **PS3** in DMSO/water mixtures with different water fractions at room temperature. (**PS1** or **PS3** or **PS1** NPs or **PS3** NPs) = 10^{-5} M

Fig. S12 UV-vis absorption spectra of ICG (6.5×10^{-6} M) in the presence of A) **PS1**, B) **PS3**, C) **PS1** NPs and D) **PS3** NPs (5×10^{-6} M) at different times under dark. The time interval of UV recording = 30 s.

Fig. S13 UV-vis absorption spectra of A) **PS1**, B) **PS3**, C) **PS1** NPs and D) **PS3** NPs (5×10^{-6} M) at different times upon irradiation of a 450 nm LED at 20 mW cm⁻² (0.6 J cm⁻²). The time interval of UV recording = 30 s.

Fig. S14 UV-vis absorption spectra of ICG (6.5×10^{-6} M) at different times upon irradiation of a 450 nm LED at 20 mW cm⁻² (0.6 J cm⁻²). The time interval of UV recording = 30 s.

Fig. S15 UV-vis absorption spectra of ICG (6.5×10^{-6} M) in the presence of A) **PS1** and B) **PS3** (5×10^{-6} M) at different times upon irradiation of a 450 nm LED at 20 mW cm⁻² (0.6 J cm⁻²). The time interval

of	UV	recording	=	30	s.
----	----	-----------	---	----	----

Fig. S16 The viability of HeLa cells pretreated with **PS3** and **PS3** NPs in the A) absence and B) presence of light. The cells were not washed before irradiation.

Fig. S17 The cytotoxicity dose-response curves of PS3 and PS3 NPs in HeLa cells A) under dark or B)lightirradiation.Thecellswerewashedbeforeirradiation.

Table S1.	The average diameter	er and polydispersity	/ index (PDI) results	of PS1/PS3 NPs r	neasured by
DLS.					

Sample	PS1 NPs	PS3 NPs
Average diameter (nm)	73	87
PDI	0.128	0.186

 Table S2.
 Photophysical data of PS1, PS3 and their corresponding NPs.

	λ_{abs} (nm)	$\lambda_{ m em}$ (nm)	$arPhi_{ m p}$ (%)	T _p (ns)
PS1 ^[a]	257; 378	710	6	53.57
PS3 ^[a]	260; 375	730	4	24.12
PS1 NPs ^[b]	257; 378	710	25	60.85
PS3 NPs ^[b]	260; 375	730	22	32.97

^[a]Measured in DMSO/water (v/v = 1/9) at 298 K (1.0×10⁻⁵ M, λ_{ex} = 380 nm). ^[b]Measured in water at 298 K (1.0×10⁻⁵ M, λ_{ex} = 380 nm).