Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

### **Supporting Information**

for

# Low-Coordinate Sm(II) and Yb(II) Complexes Derived from Sterically-Hindered 1,2-Bis(imino)acenaphthene (Ar<sup>BIG</sup>-bian)

Daria A. Lukina,<sup>a</sup> Alexandra A. Skatova,<sup>a</sup> Vladimir G. Sokolov,<sup>a</sup> Evgenii V. Baranov,<sup>a</sup> Serhiy Demeshko,<sup>b</sup> Sergey Yu. Ketkov<sup>a</sup> and Igor L. Fedushkin<sup>\*a</sup>

<sup>a</sup> G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences,
Tropinina Str. 49, Nizhny Novgorod 603137, Russian Federation
<sup>b</sup> Institut für Anorganische Chemie, Georg-August-Universität Tammannstrasse 4, Göttingen 37077,
Germany

**X-ray crystallography.** The X-ray data for **2a**, **2b** and **3** were collected at 100(2) K on a Bruker AXS D8 Quest diffractometer (MoKa-radiation,  $\omega$ - and  $\varphi$ -scan technique,  $\lambda = 0.71073$  Å). The structures were solved by direct methods using "dual-space" algorithm with SHELXT program [Sheldrick G.M. (2015) Acta Cryst., A71, 3-8] and were refined by full-matrix least squares on  $F^2$  using SHELXTL [Sheldrick G.M. (2003). SHELXTL v. 6.14, Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin, USA]. All hydrogen atoms were placed in calculated positions and were refined in the riding model. SADABS [Sheldrick G.M. (2016). SADABS v.2016/2, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, Wisconsin, USA] was used to perform area-detector scaling and absorption corrections. Solvent molecules of toluene and DME predominantly located in the common position were found in the crystal of **2a**, **3** and **2b** respectively. The ratios of solvate molecules per Ln complex are 1:1 for **2a**, **3** and 2.5:1 for **2b**. Toluene molecules in **2b** are disordered in both common and special positions. Crystallographic data and structural refinement details are given in Table 1S. CCDC 2022601 (**2a**), 2022602 (**2b**) and 2022603 (**3**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data\_request/cif</u>.

#### **DFT** calculations.

Full reference for the Gaussian 09 program package:

*Gaussian 09, Revision B.01,* M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

#### Cartesian coordinates of the optimized structure of 2c:

Sm 0.57230002 -1.29289997 -0.12400000 N 0.59820002 1.11240005 -0.42260000 N -1.66299999 -0.58010000 0.34130001 C -0.71120000 1.39189994 -0.76050001 C -1.82560003 0.54710001 -0.42510000 C -3.06089997 1.21850002 -0.88980001 C -2.65179992 2.42090011 -1.54610002 C -1.23179996 2.56069994 -1.50430000 C -0.67250001 3.68490005 -2.11439991 H 0.41270000 3.86159992 -2.11360002 C -1.53799999 4.63619995 -2.73990011 H -1.08440006 5.51889992 -3.21760011 C -2.92370009 4.49679995 -2.75070000 H -3.55679989 5.26109982 -3.22849989 C -3.52920008 3.35540009 -2.12899995 C -4.92990017 3.06809998 -2.02329993 H -5.66720009 3.75939989 -2.46099997 C -5.34840012 1.91980004 -1.35599995 H -6.42710018 1.71560001 -1.26610005 C -4.43389988 0.98199999 -0.78160000 H -4.82840014 0.09240000 -0.26989999 C 1.50790000 2.17560005 -0.26650000 C 1.32480001 3.18300009 0.73809999 C 2.27859998 4.20949984 0.87099999 H 2.11840010 4.98089981 1.64250004 C 3.42199993 4.26789999 0.06110000 C 3.60419989 3.28780007 -0.92150003 H 4.48330021 3.33240008 -1.58529997

| С | 2.66210008  | 2.25889993  | -1.10889995 |
|---|-------------|-------------|-------------|
| С | 0.15070000  | 3.15820003  | 1.69369996  |
| н | -0.69370002 | 2.58829999  | 1.25860000  |
| С | 0.42280000  | 2.61240005  | 3.09179997  |
| С | 1.71940005  | 2.36059999  | 3.58500004  |
| Н | 2.58699989  | 2.54740000  | 2.93409991  |
| С | 1.91579998  | 1.87750006  | 4.89120007  |
| Н | 2.93910003  | 1.69009995  | 5.25339985  |
| С | 0.81930000  | 1.63639998  | 5.73269987  |
| н | 0.97350001  | 1.25860000  | 6.75500011  |
| С | -0.47960001 | 1.88399994  | 5.25500011  |
| н | -1.35060000 | 1.69900000  | 5.90310001  |
| С | -0.67210001 | 2.36360002  | 3.95110011  |
| Н | -1.69420004 | 2.55040002  | 3.58299994  |
| С | 2.84439993  | 1.29439998  | -2.25920010 |
| Н | 1.83519995  | 0.94379997  | -2.57030010 |
| С | 3.71190000  | 0.07350000  | -2.00099993 |
| С | 3.97460008  | -0.39700001 | -0.69660002 |
| Н | 3.59130001  | 0.17739999  | 0.16300000  |
| С | 4.77629995  | -1.53499997 | -0.48730001 |
| Н | 5.00250006  | -1.86129999 | 0.53979999  |
| С | 5.31850004  | -2.23320007 | -1.57679999 |
| Н | 5.95310020  | -3.11730003 | -1.41149998 |
| С | 5.06269979  | -1.77639997 | -2.88179994 |
| Н | 5.49510002  | -2.30509996 | -3.74569988 |
| С | 4.27400017  | -0.63470000 | -3.08669996 |
| Н | 4.09800005  | -0.27190000 | -4.11289978 |
| С | -2.64980006 | -1.54349995 | 0.54610002  |
| С | -2.83360004 | -2.03859997 | 1.87520003  |
| С | -3.83850002 | -2.98130012 | 2.14019990  |
| Н | -3.98490000 | -3.32999992 | 3.17589998  |
| С | -4.64839983 | -3.48679996 | 1.10810006  |
| С | -4.37909985 | -3.10459995 | -0.21660000 |
| Н | -4.94000006 | -3.56890011 | -1.04509997 |
| С | -3.37490010 | -2.16810012 | -0.51990002 |
| С | -1.84679997 | -1.58190000 | 2.92680001  |
| Н | -1.88039994 | -0.48080000 | 3.05710006  |
| С | -0.41970000 | -1.97130001 | 2.56669998  |
| С | 0.66610003  | -1.09560001 | 2.80699992  |
| Н | 0.47690001  | -0.10860000 | 3.25270009  |

| С | 1.98689997 - | -1.46809995 | 2.47210002  |
|---|--------------|-------------|-------------|
| Н | 2.81139994   | -0.76889998 | 2.67890000  |
| С | 2.24810004 - | -2.73659992 | 1.89999998  |
| Н | 3.27729988   | -3.03839993 | 1.65859997  |
| С | 1.17820001 - | -3.61879992 | 1.65840006  |
| Н | 1.37119997   | -4.61490011 | 1.23230004  |
| С | -0.14530000  | -3.23440003 | 1.97689998  |
| Н | -0.98110002  | -3.92449999 | 1.78540003  |
| С | -2.92810011  | -1.93400002 | -1.94949996 |
| Н | -3.12870002  | -0.89670002 | -2.28620005 |
| С | -1.44710004  | -2.22530007 | -2.15739989 |
| С | -0.62879997  | -1.34500003 | -2.90510011 |
| Н | -1.06589997  | -0.41990000 | -3.31040001 |
| С | 0.73760003 - | -1.63789999 | -3.12919998 |
| Η | 1.35200000   | -0.95620000 | -3.73460007 |
| С | 1.31180000 - | 2.81080008  | -2.59850001 |
| Н | 2.37579989   | -3.03160000 | -2.77390003 |
| С | 0.50809997 - | -3.69499993 | -1.84700000 |
| Н | 0.94080001   | -4.62330008 | -1.44430006 |
| С | -0.85850000  | -3.40280008 | -1.62890005 |
| Η | -1.48769999  | -4.09889984 | -1.05280006 |
| Н | -3.51320004  | -2.60030007 | -2.61989999 |
| Η | -5.44630003  | -4.21150017 | 1.32819998  |
| Н | -2.10739994  | -2.04099989 | 3.90549994  |
| Η | -0.22810000  | 4.19799995  | 1.81019998  |
| Н | 4.15509987   | 5.07900000  | 0.18619999  |
| Н | 3.26830006   | 1.83620000  | -3.13100004 |

## Cartesian coordinates of the optimized structure of decamethylsamarocene Cp\*<sub>2</sub>Sm:

C 2.39050007 -1.21280003 0.20039999
C 2.08990002 -0.34650001 1.30680001
C 2.19580007 1.0101001 0.84670001
C 2.56329989 0.98110002 -0.54079998
C 2.68409991 -0.39240000 -0.94050002
C 2.47160006 -2.71580005 0.25900000
H 3.47420001 -3.06859994 0.59240001
H 2.29139996 -3.1879007 -0.72990000
H 1.73870003 -3.15170002 0.97079998
C 1.85309994 -0.78270000 2.72799933
H 2.80809999 -0.90069997 3.28959900

| Н  | 1.33280003 -1.76170003 2.78889990    |
|----|--------------------------------------|
| Н  | 1.24119997 -0.05170000 3.29450011    |
| С  | 2.05640006 2.24250007 1.70140004     |
| Н  | 3.01149988 2.50600004 2.21029997     |
| Н  | 1.29960001 2.11770010 2.50410008     |
| Н  | 1.76250005 3.13479996 1.11010003     |
| С  | 2.84960008 2.17750001 -1.40999997    |
| Н  | 3.93300009 2.43589997 -1.42439997    |
| Н  | 2.31960011 3.08839989 -1.06120002    |
| Н  | 2.56180000 2.01340008 -2.47110009    |
| С  | 3.11700010 -0.87769997 -2.29909992   |
| Н  | 4.22580004 -0.92830002 -2.39359999   |
| Н  | 2.77150011 -0.21170001 -3.11929989   |
| Н  | 2.74239993 -1.89890003 -2.52239990   |
| С  | -2.61179996 -0.88889998 -0.61250001  |
| С  | -2.24539995 -1.04630005 0.76660001   |
| С  | -2.06850004 0.26220000 1.33169997    |
| С  | -2.32470012 1.22780001 0.29830000    |
| С  | -2.66280007 0.51630002 -0.90170002   |
| С  | -2.96199989 -1.99899995 -1.56850004  |
| Н  | -4.04670000 -2.25060010 -1.53989995  |
| Н  | -2.42249990 -2.94250011 -1.33920002  |
| Н  | -2.73659992 -1.73730004 -2.62450004  |
| С  | -2.15939999 -2.34990001 1.51650000   |
| Н  | -3.13400006 -2.63170004 1.97630000   |
| Н  | -1.42219996 -2.30990005 2.34540009   |
| Н  | -1.87070000 -3.19790006 0.86030000   |
| С  | -1.81900001 0.57819998 2.78200006    |
| Н  | -2.77010012 0.74830002 3.33690000    |
| Н  | -1.21190000 1.49820006 2.91589999    |
| Н  | -1.28960001 -0.24270000 3.30649996   |
| С  | -2.33660007 2.72300005 0.48269999    |
| Н  | -3.30349994 3.08430004 0.90149999    |
| Н  | -2.19079995 3.26640010 -0.47409999   |
| Н  | -1.54750001 3.07100010 1.18309999    |
| С  | -3.07890010 1.12930000 -2.21300006   |
| Н  | -4.18529987 1.22689998 -2.29780006   |
| н  | -2.75850010 0.52389997 -3.08839989   |
| Н  | -2.66790009 2.15140009 -2.35139990   |
| Sn | n 0.00050000 -0.02920000 -0.46050000 |

Table 1S. Crystal Data and Structure Refinement Details for Compounds 2a, 2b and 3.

|                                                | 2a                                           | 2b                                                   | 3                                                              |
|------------------------------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|
| Formula                                        | $C_{85}H_{68}N_2Sm$                          | $C_{82}H_{70}N_2O_2Sm$                               | $C_{99.50}H_{90}N_2O_2Yb$                                      |
| Formula weight                                 | 1267.76                                      | 1265.75                                              | 1518.77                                                        |
| Temperature/K                                  | 100(2)                                       | 100(2)                                               | 100(2)                                                         |
| Crystal system                                 | monoclinic                                   | monoclinic                                           | triclinic                                                      |
| Space group                                    | P21                                          | P21/c                                                | P-1                                                            |
| a/Å<br>b/Å                                     | 13.0258(7)<br>18.9888(11)                    | 13.7407(11)<br>18.7955(17)                           | 12.9233(4)<br>14.4027(5)                                       |
| c/Å                                            | 13.8042(8)                                   | 24.607(2)                                            | 22.7605(7)                                                     |
| α/deg<br>β/deg<br>γ/deg                        | 90<br>113.2396(17)<br>90                     | 90<br>104.497(3)<br>90                               | 87.887(1)<br>74.114(1)<br>67.067(1)                            |
| V/Å <sup>3</sup>                               | 3137.4(3)                                    | 6152.8(9)                                            | 3740.9(2)                                                      |
| Ζ                                              | 2                                            | 4                                                    | 2                                                              |
| density/g/sm <sup>3</sup>                      | 1.342                                        | 1.366                                                | 1.348                                                          |
| μ/mm <sup>-1</sup>                             | 0.985                                        | 1.007                                                | 1.305                                                          |
| F(000)                                         | 1308                                         | 2616                                                 | 1574                                                           |
| Crystal size /mm                               | $0.41 \times 0.10 \times 0.06$               | $0.34 \times 0.14 \times 0.06$                       | 0.35 × 0.29 × 0.27                                             |
| heta-range/deg                                 | 2.15 – 25.03                                 | 2.21 – 27.49                                         | 2.32 - 28.00                                                   |
| Index ranges                                   | -15 ≤ h ≤ 15<br>-22 ≤ k ≤ 22<br>-16 ≤ l ≤ 16 | $-17 \le h \le 17 -24 \le k \le 24 -31 \le l \le 31$ | $-17 \le h \le 17$<br>$-19 \le k \le 19$<br>$-30 \le l \le 30$ |
| Reflections collected                          | 32264                                        | 75305                                                | 39323                                                          |
| Independent<br>reflections                     | 10867 [ <i>R</i> <sub>int</sub> = 0.0795]    | 14093 [ <i>R</i> <sub>int</sub> = 0.1032]            | 17959 [ <i>R</i> <sub>int</sub> = 0.0214]                      |
| Goodness-of-fit on<br>F <sup>2</sup>           | 1.022                                        | 1.030                                                | 1.047                                                          |
| $R_1/wR_2$ ( $I>2\sigma(I)$ )                  | 0.0527 / 0.0885                              | 0.0544 / 0.0858                                      | 0.0255 / 0.0595                                                |
| $R_1/wR_2$ (all parameters)                    | 0.0752 / 0.0984                              | 0.0938 / 0.0952                                      | 0.0301 / 0.0608                                                |
| Largest diff<br>peak/hole [e Å <sup>-3</sup> ] | 1.916 / -1.070                               | 1.818 / -1.469                                       | 0.868 / -0.705                                                 |

**Table 2S**. Averaged calculated electron densities  $\rho(\mathbf{r})$ , potential and kinetic energy densities  $V(\mathbf{r})$  and  $G(\mathbf{r})$ , and their ratio  $|V(\mathbf{r})|/G(\mathbf{r})$  at the Sm-C bonding critical points of complex **2c** and  $(Cp^*)_2$ Sm

| Complex | ρ(BCP)              | <i>V</i> ( <b>r</b> ) | G( <b>r</b> )       | <i>V</i> (r) / <i>G</i> (r) |
|---------|---------------------|-----------------------|---------------------|-----------------------------|
| 2c      | 0.0200 <sup>ª</sup> | -0.0149 <sup>ª</sup>  | 0.0158 <sup>ª</sup> | 0.94 <sup>ª</sup>           |
|         | 0.0187 <sup>b</sup> | -0.0136 <sup>b</sup>  | 0.0146 <sup>b</sup> | 0.94 <sup>b</sup>           |
| Cp*₂Sm  | 0.0325              | -0.0279               | 0.0268              | 1.04                        |
|         |                     |                       |                     |                             |

a - Ring A; b - ring B.



Figure 2S.  $^{1}$ H NMR spectrum of compound 2b (400 MHz, 333 K, toluene-d<sub>8</sub>).





Figure 4S.  $^{13}$ C NMR spectra of compound 3 (100.6 MHz, 297 K, toluene-d<sub>8</sub>).



Figure 5S. ESR spectrum of polycrystalline sample of compound 3 at 120 K.



**Figure 6S**. Plot of  $\mu_{\text{eff}}$  vs. T for a crystalline sample of **3** (300–2 K).



Figure 7S. The optimized geometries of complex 2c (left) and (Cp\*)<sub>2</sub>Sm (right). Hydrogen atoms are omitted.



**Figure 8S**. HOMO (a) and HOMO-1 (b) isosurfaces (isovalue  $\pm 0.01$ ) in complex **2c** and the contour map of the HOMO positive part (0.01-0.02, step 0.002) in the SmCC plane showing the Sm-(ring A) orbital overlap (c).