Supporting Information

In-situ intercalation and exploitation of Co₃O₄ nanoparticles grown on carbon nitride nanosheets for highly efficient degradation of methylene blue

Yan Li,^a Lei Wang,^{a*} Yuting Xiao,^b Guohui Tian,^a Chungui Tian,^a Honggang Fu^{a*}
^a Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
E-mail: wanglei0525@hlju.edu.cn, fuhg@vip.sina.com, fuhg@hlju.edu.cn
^b Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.E-mail: yutingxiao9@sina.com

Table S1. The denoted name and synthesized samples for various samples.

Samples	concentration of Co(NO ₃) ₂		
$1-Co_3O_4/S-C_3N_4$	6 mM		
Co_3O_4/S - C_3N_4	23mM		
$4-Co_{3}O_{4}/S-C_{3}N_{4}$	46 mM		

Fig. S1 SEM image of C_3N_4 precursor.

Fig. S2 SEM images of (a, b) 1-Co₃O₄/S-C₃N₄, (c, d) 4-Co₃O₄/S-C₃N₄.

Fig. S3 TG curves of bulk C_3N_4 and $Co_3O_4/S-C_3N_4$ samples tested in air ambient with a heating rate of 10 °C min⁻¹.

Fig. S4 FT-IR spectra of various samples.

Fig. S5 Wide XPS spectrum of the bulk C₃N₄ and Co₃O₄/S-C₃N₄ samples.

Fig. S6 XPS spectra of O 1s for Co_3O_4/S - C_3N_4 sample.

Fig. S7 Methylene blue degradation efficiency diagram of sample 1-Co $_3O_4/S$ -C $_3N_4$ and 4-Co $_3O_4/S$ -C $_3N_4$

Catalyst	Catalyst usage (mg)	Methylene blue concentration (mg L ⁻¹)	Reaction time (min)	Degradation rate (%)	References
α -ZnTcPc/g-C ₃ N ₄	50	10	50	94.49	S 1
N-ZnO/g-C ₃ N ₄	100	20	90	95	S2
g-	30	10	40	99	S3
C ₃ N ₄ /Ag ₃ PO ₄ /NCDs					
g-C ₃ N ₄ /TiO ₂ /Ag	6	7.5	60	100	S4
$WO_3/g-C_3N_4$	50	50	90	95	S5
TiO ₂ /Na-g-C ₃ N ₄	100	20	120	100	S6
$Ag_2O/g-C_3N_4$	100	10	30	100	S7
TiO _{2-x} /Ag/g-C ₃ N ₄	25	10	180	99	S 8
g-C ₃ N ₄ -RGO-TiO ₂	50	30	180	92	S 9
g-C ₃ N ₄ /Ag ₂ CrO ₄	10	10	120	99.1	S10
Ag-Fe3O4/g-C3N4	25	10	120	99	S11
$Zn_{0.25}Cd_{0.75}S/g\text{-}C_{3}N_{4}$	10	10	120	92.25	S12
g-C ₃ N ₄ /Fe@ZnO	100	10	90	95	S13
g-C ₃ N ₄ /MoS ₂ /Bi ₂ O ₃	50	20	90	98.5	S14
CoFe ₂ O ₄ /g-C ₃ N ₄	20	10	180	97.3	S15
ZnFe ₂ O ₄ /g-C ₃ N ₄	30	10	120	98	S16
CaFe ₂ O ₄ 30%/g-C ₃ N ₄	100	10	120	90	S17
PANI/C ₃ N ₄	25	11	120	~ 80	S18
C0 ₃ O ₄ /S-C ₃ N ₄	10	10	30	99.5	This work

Table S2. Comparison the photocatalytic degration rate of $Co_3O_4/S-C_3N_4$ with the reported C_3N_4 -based heterojunctions.

Fig. S8 Degradation ratios for 10 photocatalytic cyclic tests of Co₃O₄/S-C₃N₄ sample.

Fig. S9 Time-resolved PL decay spectra of Co₃O₄/B-C₃N₄ and Co₃O₄/S-C₃N₄ samples.

Fig. S10 EIS Nyquist plots of bulk C_3N_4 , $Co_3O_4/B-C_3N_4$ and $Co_3O_4/S-C_3N_4$ electrodes with visible light irradiation.

Fig. S11 (a) UV-vis absorption spectra of Co_3O_4 NPs, (b) Optical bandgap diagrams of Co_3O_4 NPs.

Fig. S12 (a) Total ion flow diagram, (b-h) the mass spectrum of the sample Co_3O_4/S - C_3N_4 obtained by the LC-MS during the photocatalytic degradation of methylene blue after 20 min photodegradation.

Fig. S13 Propose a way to degrade MB by Co₃O₄/S-C₃N₄ photocatalysis

The molecular ion peak at m/z=284 is attributed to MB (**Fig. S12b**). The first step decomposition of MB molecules should be done followed the two means: On the one hand, it could be directly broken the -N-CH₃ bond to produce an intermediate with a m/z=270 (**Fig. S12c**). On the other hand, the S atoms of the C-S⁺=C group in MB molecules could be oxidized by •OH radicals,^{19,20} at the same time, the active species •OH and \cdot O₂⁻ attack the benzene ring in the methylene blue ion, resulting in

the intermediate with m/z=318 was formed (Fig. S12d). The low bond energy of N-CH₃ is easy to be attacked by the active molecule •OH and form an intermediate with m/z=274 (Fig. S12e). Under the attack of •OH, an intermediate with m/z=114 is formed after the substitution reaction (m/z=246) and addition reaction (m/z=220). After a series of oxidation processes, methylene blue was degraded to form CO₂, H₂O and other small molecules.

References:

[S1] Y. He, Z. Huang, Z. Ma, B. Yao, H. Liu, L. Hu, Q. Zhao, Q. Yang, D. Liu and D. Du, *Appl. Surf. Sci.*, 2019, **498**, 143834.

[S2] Y. Liu, H. Liu, H. Zhou, T. Li and L. Zhang, Appl. Surf. Sci., 2019, 466, 133-140.

[S3] X. Miao, X. Yue, Z. Ji, X. Shen, H. Zhou, M. Liu, K. Xu, J. Zhu, G. Zhu, L. Kong and S. A. Shan, *Appl. Catal.*, *B*, 2018, 227, 459-469.

- [S4] D. Yan, X. Wu, J. Pei, C. Wu, X. Wang and H. Zhao, *Ceram. Int.*, 2020, 46, 696-702.
- [S5] X. Liu, A. Jin, Y. Jia, T. Xia, C. Deng, M. Zhu, C. Chen and X. Chen, *Appl. Surf. Sci.*, 2017, 405, 359-371.
- [S6] H. Liu, D. Yu, T. Sun, H. Du, W. Jiang, Y. Muhammad and L. Huang, *Appl. Surf. Sci.*, 2019, **473**, 855-863.
- [S7] S. L, D. Zhang, X. Pu, X. Y, R. Han, J. Yin and X. Ren, Sep. Purif. Technol., 2019, 210, 786-797.
- [S8] Y. Cao, Z. Xing, Z. Li, X. Wu, M. Hu, X. Yan, Q. Zhu, S. Yang and W. Zhou, J. Hazard. Mater., 2018, 343, 181-190.
- [S9] F. Wu, X. Li, W. Liu and S. Zhang, Appl. Surf. Sci., 2017, 405, 60-70.
- [S10] Y. Shang, X. Chen, W. Liu, P. Tan, H. Chen, L. Wu, C. Ma, X. Xiong and J. Pan, *Appl. Catal.*, *B*, 2017, **204**, 78-88.
- [S11] B. Pant, M. Park, J. H. Lee, H.-Y. Kim and S.-J. Park, *J. Colloid Interface Sci.*, 2017, **496**, 343-352.
- [S12] X. Li, L. Dong, L. Shan, X. Jin and Y. Guo, *Canadian Journal of Chemistry*, 2020, 98, 441-444.
- [S13] M. A. Qamer, S. Shahid and M. Javed, Ceram. Int., 2020, 46, 22171-22180.

[S14] V. Shanmugam, K. S. Jeyaperumal, P. Mariappan and A. L. Muppudathi, *New Journal of Chemistry*, 2020, **40**, 13182-13194.

- [S15] S. Huang, Y. Xu, M. Xie, H. Xu, M. He, J. Xia, L. Huang and H. Li, *Colloids Surf.*, *A*, 2015, **478**, 71-80.
- [S16] Y. Wu, Y. Wang, A. Di, X. Yang and G. Chen, *Catal. Lett.*, 2018, **148**, 2179-2189.

[S17] S. Vadivel, D. Maruthamani, A. Habibi-Yangjeh, B. Paul, S. S. Dhar and K. Selvam, *J. Colloid Interface Sci.*, 2016, **480**, 126-136.

[S18] W. Jiang, W. Luo, R. Zong, W. Yao, Z. Li and Y. Zhu, Small, 2016, 12, 4370-4378.

[S19] C. H. Nguyen, C. C. Fu and R. S. Juang, J. Clean. Prod., 2018, 202, 413-427.

[S20] M. Moztahida and D. S. Lee, J. Hazard. Mater., 2020, 400, 123314.