# Supporting Information

# Tuning Rh(II)-Catalysed Cyclopropanation with Tethered Thioether Ligands

Derek Cressy, Cristian Zavala, Anthony Abshire, William Sheffield, and Ampofo Darko\*

|                         | Table of Contents |      |
|-------------------------|-------------------|------|
| General Methods         | S                 | 53   |
| Experimental Procedures | S                 | 54   |
| Cyclic Voltammetry      | S                 | 57   |
| Computational Studies   | S                 | 511  |
| Crystallographic Data   | S                 | 520  |
| NMR spectra             | S                 | 536  |
| References              | S                 | \$52 |

### **General Methods**

Unless otherwise noted, all reagents were purchased and used as received from the manufacturer without further purification. Ligand **1a** and **1d** were synthesized via established literature procedures.<sup>1, 2</sup> Methyl phenyl diazoacetate was prepared from benzylic acid according to established procedures.<sup>3</sup> Hexanes, tetrahydrofuran (THF), diethyl ether,  $CH_2Cl_2$ , and acetonitrile (ACN) were dried with columns packed with alumina using an Inert® PureSolv Micro Solvent Purification System and stored over molecular sieves. Reactions were monitored using thin layer chromatography (TLC) on Sorbent Technologies Silica XG TLC Plates. Column chromatography was performed using 60 Å, 40-63 µm silica from Sorbent Technologies. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Varian Mercury Vx 300 MHz, Varian VNMRS 500 MHz, or Varian VNMRS 600 MHz spectrometers. All NMR chemical shifts are reported in ppm on the  $\delta$  scale. Signals were referenced by residual solvent signal for <sup>1</sup>H NMR (CHCl<sub>3</sub> = 7.26 ppm, acetone = 2.05 ppm, acetonitrile = 1.94 ppm) and <sup>13</sup>C NMR (CHCl<sub>3</sub> = 77.16 ppm, acetone = 206.26 ppm, acetonitrile = 1.32 ppm). HPLC analysis was performed on a Shimadzu LC-2030 Prominence-I instrument using a C<sub>18</sub> column. The mass spectra for all compounds, unless otherwise specified, were obtained using an AccuTOF Mass spectrometer equipped with a DART ionization apparatus. UV-Visible data was obtained in a 10mm quartz cell using a Cary 5000 spectrophotometer.

### **Experimental Procedures**

Ligand Synthesis



## (S)-4-(2-(*tert*-butylthio)ethyl)oxazolidine-2-one (1b)

To a flame dried 5 mL flask equipped with a stir bar was (S)-2-(2-oxooxazolidin-4-yl)ethyl 4methylbenzenesulfonate<sup>4</sup> (0.43 g, 1.5 mmol) followed by 2-methyl-2-propanethiol (1.5 mL, 13 mmol). The reagents were then dissolved in 6 mL acetone and refluxed at 45 °C for 24 hours. The reaction was allowed to cool to room temperature, then concentrated *in vacuo*. The resulting mixture was dissolved in 10 mL DI water and extracted twice with 5 mL dichloromethane. The combined organic layers were then washed with 5 mL brine solution, followed by 5 mL saturated sodium bicarbonate solution. The organics were separated and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. The crude mixture was then purified by column chromatography (25% EtOAc/Hexanes to 50% EtOAc/Hexanes) to afford **1b** as a pale-yellow oil (0.1181 g, 0.58 mmol, 39% yield). <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  5.81 (s, 1H), 4.56 – 4.47 (m, 1H), 4.07 – 3.96 (m, 2H), 2.63 – 2.54 (m, 2H), 1.93 – 1.81 (m, 2H), 1.32 (s, 9H). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  159.46, 70.24, 52.29, 42.69, 35.05, 30.97, 24.62. Calculated *m/z*: [M+H]<sup>+</sup> = 204.1014, found m/z: [M+H]<sup>+</sup> = 204.1069

## (S)-4-(2-(phenylthiol)oxazolidin-2-one (1c)

To a flame dried 5 mL flask equipped with a stir bar was added (S)-2-(2-oxooxazolidin-4-yl)ethyl 4methylbenzenesulfonate<sup>4</sup> (0.10 g, 0.36 mmol) followed by thiophenol (0.5 mL, 0.54 mmol). The reagents were then dissolved in 1 mL acetone and refluxed for 4 hours. The reaction was allowed to cool to room temperature, then concentrated *in vacuo*. The resulting mixture was dissolved in 2 mL DI water and extracted twice with 2 mL dichloromethane. The organics were combined and washed with 1 mL brine solution, followed by 1 mL saturated sodium bicarbonate solution. The organics were separated, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. The crude mixture was then purified by column chromatography (2.5% MeOH/DCM) to afford **1c** as a yellow oil (68 mg, 0.29 mmol, 84% yield). <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  7.38 – 7.21 (m, 4H), 5.73 – 5.65 (m, 1H), 4.55 – 4.47 (m, 1H), 4.09 – 3.99 (m, 2H), 2.97 (td, *J* = 7.0, 2.5 Hz, 2H), 1.99 – 1.83 (m, 2H). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$ 159.18, 134.88, 129.88, 129.20, 126.79, 51.63, 34.33, 30.21. Calculated *m/z*: [M+H]<sup>+</sup> = 224.0701, found m/z: [M+H]<sup>+</sup> = 224.0691

#### General Microwave Conditions

All microwave reactions were conducted in sealed reaction vials with a Biotage Initiator+ equipped with an IR sensor for determination of reaction temperature. Power input was adjusted by the instrument achieve and maintain the desired reaction temperature. Reaction times are presented as hold times, not total reaction time. Synthesis of Rh<sub>2</sub>(OAc)<sub>3</sub>(MeTOX) (**2**), Rh<sub>2</sub>(OAc)<sub>2</sub>(MeTOX)<sub>2</sub> (**3a/b**), and Rh<sub>2</sub>(OAc)<sub>3</sub>(OX) were confirmed by comparison of NMR spectra from our previous work.<sup>5, 6</sup> General Procedure for Microwave Reactions

A 2-5 mL microwave vial equipped with a magnetic stir bar was charged with dirhodium acetate (15 mg, 34 mmol) and the desired ligand (34 mmol). The edges of the flask were rinsed with 4 mL 1,2dichloroethane (DCE). The vial was then capped and heated at 190°C for 10 minutes. The mixture was allowed to cool to RT, transferred to a round-bottom flask using DCM, and concentrated *in vacuo*. The crude mixture was then purified by column chromatography using a 1:1 toluene/MeCN mobile phase. Bis substituted products eluted first as a mixture of *cis* and *trans* isomers. The bis fractions were then recrystallised in MeCN to remove excess oxazolidinone starting material. Mono products eluted next with no further purification needed. Dirhodium(II) acetate eluted last.. The product distribution for the ligand exchange reaction with ligand **1a** was quantified via HPLC using 75% 1:1 MeCN:MeOH with 0.1% TFA/25% water with 0.1%TFA on a C<sub>18</sub> column. Calibration curves were generated for **2a**, **3a/b**, and Rh<sub>2</sub>(OAc)<sub>4</sub>. The yields for complexes **4-9** were determined by isolated material.

#### $Rh_2(OAc)_3(^tBuTOX)$ (4)

R<sub>f</sub>: 0.46. <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  4.45 – 4.39 (m, 1H), 3.76 – 3.65 (m, 1H), 3.11 (ddd, J = 12.7, 5.4, 2.7 Hz, 1H), 2.97 (td, J = 12.4, 3.0 Hz, 1H), 2.11 (dddd, J = 14.7, 5.4, 3.0, 1.3 Hz, 1H), 1.99 (s, 3H), 1.87 (s, 3H), 1.84 (s, 3H), 1.84 – 1.76 (m, 1H), 1.66 (s, 10H). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  190.82, 190.79, 189.00, 167.23, 70.04, 58.95, 49.59, 31.96, 29.15, 29.03, 24.07, 23.90, 23.34. Calculated *m/z*: [M+H]<sup>+</sup> = 585.9489 , found m/z: [M+H]<sup>+</sup> 585.9444. Anal. Calcd for C<sub>15</sub>H<sub>25</sub>NO<sub>8</sub>Rh<sub>2</sub>S: C, 30.79; H, 4.31; N, 2.39; S, 5.48. Found: C, 32.80; H, 4.79; N, 2.42; S, 5.18.

#### Rh<sub>2</sub>(OAc)<sub>2</sub>(<sup>t</sup>BuTOX)<sub>2</sub> (5a/b)

R<sub>f</sub>: 0.93. <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  4.31 – 4.25 (m, 1H), 3.74 – 3.54 (m, 2H), 3.19 (m, *J* = 13.1, 5.7, 2.5 Hz, 1H), 2.97 (m, *J* = 12.2, 9.1, 2.8 Hz, 1H), 1.99 (m, *J* = 17.5, 5.6, 2.8, 1.3 Hz, 1H), 1.90 (s, 2H), 1.85 (s, 1H), 1.81 – 1.72 (m, 1H), 1.65 (s, 10H). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  189.25, 69.62, 59.84, 59.74, 48.19, 48.01, 32.70, 32.64, 29.84, 29.78, 29.75, 28.95, 23.94, 23.71. Calculated *m/z*: [M+H]<sup>+</sup> = 729.0257, found m/z: [M+H]<sup>+</sup> = 729.0233. Anal. Calcd for C<sub>22</sub>H<sub>38</sub>N<sub>2</sub>O<sub>8</sub>Rh<sub>2</sub>S<sub>2</sub>: C, 36.27; H, 5.27; N, 3.85; S, 8.81. Found: C, 39.08; H, 5.88; N, 3.62; S, 8.04.

## $Rh_2(OAc)_3(PhTOX)$ (6)

R<sub>f</sub>: 0.46. <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  7.93 – 7.89 (m, 2H), 7.44 – 7.40 (m, 3H), 4.45 – 4.38 (m, 1H), 3.83 – 3.73 (m, 2H), 3.55 (ddd, *J* = 13.1, 5.8, 2.3 Hz, 1H), 3.37 (ddd, *J* = 13.1, 11.8, 2.5 Hz, 1H), 2.18 (dddd, *J* = 14.8, 6.0, 2.6, 1.4 Hz, 1H), 2.02 (dddd, *J* = 14.6, 12.1, 9.9, 2.4 Hz, 1H), 1.96 (s, 3H), 1.88 (s, 3H), 1.81 (s, 3H). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  191.27, 190.97, 189.55, 167.73, 133.00, 131.05, 129.04, 128.54, 69.89, 59.09, 37.26, 31.16, 23.94, 23.91, 23.35 Calculated *m/z*: [M+H]<sup>+</sup> = 605.9176 , found m/z: [M+H]<sup>+</sup> 605.9180. Anal. Calcd for C<sub>17</sub>H<sub>21</sub>NO<sub>8</sub>Rh<sub>2</sub>S: C, 33.74; H, 3.50; N,2.32; S, 5.30. Found: C, 37.79; H, 4.40; N, 2.51.

## Rh<sub>2</sub>(OAc)<sub>2</sub>(PhTOX)<sub>2</sub> (7a/b)

R<sub>f</sub>: 0.85. <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  7.95 – 7.84 (m, 2H), 7.42 – 7.29 (m, 3H), 4.41 – 4.07 (m, 2H), 3.77 – 3.61 (m, 3H), 3.43 – 3.30 (m, 1H), 2.12 – 1.93 (m, 3H), 1.89 (s, 1H), 1.86 (s, 1H). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  189.65, 168.30, 131.41, 131.06, 128.91, 127.86, 69.39, 59.67, 37.09, 31.53, 23.64 Calculated *m/z*: [M+H]<sup>+</sup> = 768.9632, found m/z: [M+H]<sup>+</sup> = Anal. Calcd for C<sub>26</sub>H<sub>30</sub>N<sub>2</sub>O<sub>8</sub>Rh<sub>2</sub>S<sub>2</sub>: C, 40.64; H, 3.94; N, 3.65; S, 8.35. Found: C, 41.49; H, 4.24; N, 3.45; S, 7.73.

## Rh<sub>2</sub>(OAc)<sub>3</sub>(SerMeTOX) (8)

R<sub>f</sub>: 0.63. <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  4.69 (t, J = 8.0 Hz, 1H), 4.11 (m, J = 11.4, 10.2, 7.8, 3.5 Hz, 1H), 3.98 (dd, J = 10.4, 8.2 Hz, 1H), 2.86 (dd, J = 12.2, 3.5 Hz, 1H), 2.55 (s, 3H), 2.26 (t, J = 12.0 Hz, 1H), 2.03 (s, 3H), 1.84 (d, J = 5.4 Hz, 6H). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  192.49, 192.22, 191.04, 72.96, 59.70, 41.16, 24.27, 24.18, 23.77, 16.27. Calculated *m*/*z*: [M+H]<sup>+</sup> = 529.8863, found m/*z*: [M+H]<sup>+</sup> = 529.3375. Anal. Calcd for C<sub>11</sub>H<sub>17</sub>NO<sub>8</sub>Rh<sub>2</sub>S: C, 24.97; H, 3.25; N, 2.65; S, 6.06. Found: C, 29.71; H, 4.26; N, 2.74.

## Rh<sub>2</sub>(OAc)<sub>2</sub>(SerMeTOX)<sub>2</sub> (9a/b)

R<sub>f</sub>: 0.95. <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  4.71 – 4.59 (m, 1H), 4.00 – 3.89 (m, 1H), 2.84 (m, J = 12.2, 5.8, 3.4 Hz, 1H), 2.59 (d, J = 9.2 Hz, 1H), 2.52 (d, J = 5.8 Hz, 2H), 2.31 – 2.18 (m, 1H), 1.97 – 1.90 (m, 3H).<sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  190.32, 167.65, 72.29, 59.69, 23.72, 15.76. Calculated m/z: [M+H]<sup>+</sup> = 616.9006, found m/z: [M+H]<sup>+</sup> = 616.8975. Anal. Calcd for C<sub>14</sub>H<sub>22</sub>N<sub>2</sub>O<sub>8</sub>Rh<sub>2</sub>S<sub>2</sub>: C, 27.29; H, 3.61; N, 4.45; S, 10.41. Found: C, 28.92; H, 3.91; N, 4.33; S, 9.95.

## General Procedure for the Cyclopropanation of Styrene

Under an atmosphere of N<sub>2</sub>, a 25 mL Schlenk flask equipped with a magnetic stir bar was flame dried and charged with styrene (0.19 mL, 1.7 mmol, 1.0 equiv.), catalyst (2 mol%), and DCE (0.5 mL). The solution was then brought to the desired temperature, followed by slow addition of ethyl diazoacetate (1.7 mL, 0.17 mmol, 1.0 equiv.) by syringe pump (1 mL/hr). Once addition was complete, 16.54  $\mu$ L of mesitylene standard was added to the reaction mixture and stirred. The solution was then eluted through a Nylon66 0.2  $\mu$ m syringe filter into a 2 mL glass GC vial. Yields and diastereoselectivity were determined

by gas chromatography using a multiple point internal standard of the cyclopropyl product and mesitylene as the internal standard.<sup>7</sup>

## General Procedure for the Cyclopropanation of Olefin Substrates with Rh<sub>2</sub>(OAc)<sub>3</sub>(PhTOX) (6)

Under an atmosphere of  $N_2$ , a 25 mL Schlenk flask equipped with a magnetic stir bar was flame dried and charged with olefin (1.0 or 5.0 equiv. with respect to ethyl diazoacetate), **3a** (2 mol%), and DCE (0.5 mL). The solution was then heated to 80°C, followed by slow addition of ethyl diazoacetate (1.7 mL, 0.17 mmol, 1.0 equiv.) by syringe pump (1 mL/hr). After addition was complete, the reaction solution was filtered through 1.5-inch silica plug and eluted with 4 mL of DCM. The eluent was then concentrated *in vacuo* with a rotary evaporator. 10  $\mu$ L of mesitylene was then added as an internal standard for <sup>1</sup>H NMR determination of cyclopropane product yield and diastereoselectivity.

## Cyclopropanation of Olefin Substrates: <sup>1</sup>H NMR Yield Calculations

Yield and diastereoselectivity for each cyclopropanation reaction was calculated by <sup>1</sup>H NMR using mesitylene as an internal standard. Normalised integration of the methyl protons of mesitylene (2.26 ppm) was compared to the integration of the diastereotopic protons of the methylene unit of the cyclopropane for the *cis* (2.06 ppm) and *trans* (1.90 ppm) isomers to give the total yield of the cyclopropane product.

#### Cyclic Voltammetry

Both DCM and MeCN were freeze-pumped-thawed before introduction into a glovebox under an inert  $N_2$  atmosphere. The electrolyte solution used was 0.1 M [ $nBu_4N$ ] [PF<sub>6</sub>] in the respective solvent. Electrochemical grade [ $nBu_4N$ ] [PF<sub>6</sub>] was purchased from Sigma-Aldrich and used as received. Cyclic voltammetry measurements were made inside a dry glovebox using a BASi Epsilon electrochemical analyzer with a platinum working electrode, platinum wire counter electrode, and a silver wire reference electrode.

As stated in the manuscript, solvents effects were observed when electrochemical experiments were conducted in MeCN (Figure S1). The  $E_{1/2}$  potentials are affected since MeCN is able to coordinate to open axial sites, especially when the tethered thioether is a weak coordinating group.  $Rh_2(OAc)_3(OX)$ ,  $Rh_2(OAc)_3(PhTOX)$  (6), and  $Rh_2(OAc)_3('BuTOX)$  (4) shift to lower potentials in MeCN compared to DCM, while  $Rh_2(OAc)_3(SerMeTOX)$  (8) shifts to slightly higher potentials in MeCN. The order by increasing  $E_{1/2}$  remains the same when comparing tethered complexes for both solvents (6 < 4 < 8), but  $Rh_2(OAc)_3(OX)$  has the lowest  $E_{1/2}$  in DCM and the highest  $E_{1/2}$  in MeCN. In addition to perturbing the position of the  $E_{1/2}$  potentials, CVs in MeCN displayed further oxidation events or loss of reversibility in some complexes.  $Rh_2(OAc)_3(PhTOX)$  (6) demonstrated further oxidation events after the  $Rh_2^{4+/5+}$  wave, but does not prevent the reformation of the neutral Rh complex (Figure S1, brown trace). It is plausible that these further oxidation events are centered on the ligand, possibly from oxidation of the sulphur. When scanned at lower scan rates (100 mV/s) two peaks can be observed at the higher oxidation regions,

while only one peak is observed at higher scan rates (500 mV/s, Figure S2). The Rh<sub>2</sub><sup>4+/5+</sup> wave in Rh<sub>2</sub>(OAc)<sub>3</sub>(<sup>*t*</sup>BuTOX) (4) appears quasi-reversible in MeCN (Figure S1, green trace) and loses reversibility with further scans (Figure S3). This loss of reversibility is not observed in DCM (Figure S4).



Figure S1. CV traces of the novel Rh<sup>II</sup> complexes in MeCN







Figure S3. CV traces showing diminished reversibility of the Rh oxidation over multiple scans for complex 4 in MeCN.



**Figure S4**. CV traces showing diminished reversibility of the Rh oxidation over multiple scans for complex **4** in DCM.

## **Computational studies**

All geometry optimisations were completed on Gaussian  $09^8$  and implemented the density functional theory M06-2X<sup>9</sup> functional with the def2-TZVPP<sup>10</sup> basis set. An ultrafine integration grid was utilised as well as tight convergence criteria. Frequency calculations were performed to verify the stationary points on the potential energy surface were in fact ground state minima. Negative frequencies were calculated for Rh<sub>2</sub>(OAc)<sub>3</sub>(Ox) at -20.1475 cm<sup>-1</sup>, Rh<sub>2</sub>(OAc)<sub>3</sub>(PhTOX) at -4.6272 cm<sup>-1</sup>, Rh<sub>2</sub>(OAc)<sub>4</sub>C(H)(CO<sub>2</sub>Et) at -19.8149 cm<sup>-1</sup>, Rh<sub>2</sub>(OAc)<sub>3</sub>(OX)C(H)(CO<sub>2</sub>Et) at -10.6252 cm<sup>-1</sup>, and Rh<sub>2</sub>(OAc)<sub>3</sub>(MeTOX)C(H)(CO<sub>2</sub>Et) at -3.5171 cm<sup>-1</sup> but is still believed to be the ground state structure. Orbital visualisations were completed with ChemCraft.<sup>11</sup>



Figure S5. Calculated molecular orbitals of Rh<sub>2</sub>(OAc)<sub>3</sub>(OX) at the MO6-2X/def2-TZVPP level of theory.

|--|

| 1012( | (0110))(011) ut 111 |              | II level of theo. |
|-------|---------------------|--------------|-------------------|
| 45    | -0.016540000        | 0.010927000  | -1.085971000      |
| 45    | -0.461287000        | 0.008315000  | 1.221577000       |
| 8     | -0.178051000        | 2.054805000  | -1.059935000      |
| 8     | -0.581628000        | 2.050158000  | 1.143115000       |
| 8     | 0.115171000         | -2.036900000 | -1.017678000      |
| 8     | -0.317547000        | -2.037103000 | 1.179889000       |
| 8     | -2.063913000        | -0.128340000 | -1.417267000      |
| 8     | -2.449473000        | -0.121272000 | 0.783541000       |
| 8     | 1.548456000         | 0.135808000  | 1.658400000       |
| 8     | 3.631169000         | 0.067521000  | 0.851913000       |
| 7     | 1.945972000         | 0.140641000  | -0.605575000      |
| 6     | -0.411801000        | 2.630517000  | 0.037264000       |

| 6 | -0.066790000 | -2.615069000 | 0.088843000  |
|---|--------------|--------------|--------------|
| 6 | -0.470341000 | 4.132644000  | 0.037102000  |
| 6 | 0.003832000  | -4.116727000 | 0.114843000  |
| 6 | -2.827920000 | -0.165159000 | -0.420789000 |
| 6 | -4.305137000 | -0.299217000 | -0.666722000 |
| 6 | 2.300040000  | 0.120479000  | 0.656534000  |
| 6 | 4.256077000  | 0.199229000  | -0.430500000 |
| 6 | 3.121333000  | -0.052125000 | -1.436997000 |
| 1 | 0.492541000  | 4.507973000  | 0.384835000  |
| 1 | -1.234223000 | 4.473030000  | 0.730807000  |
| 1 | -0.655647000 | 4.505478000  | -0.965225000 |
| 1 | 0.629869000  | -4.434737000 | 0.945439000  |
| 1 | 0.384838000  | -4.498843000 | -0.826403000 |
| 1 | -0.999322000 | -4.505008000 | 0.289008000  |
| 1 | -4.564779000 | -1.356014000 | -0.597035000 |
| 1 | -4.555732000 | 0.058286000  | -1.660564000 |
| 1 | -4.860975000 | 0.237281000  | 0.097030000  |
| 1 | 5.067030000  | -0.520629000 | -0.492536000 |
| 1 | 4.655284000  | 1.210042000  | -0.511842000 |
| 1 | 3.143422000  | -1.066342000 | -1.844520000 |
| 1 | 3.148861000  | 0.654227000  | -2.265510000 |

Rh<sub>2</sub>(OAc)<sub>3</sub>PhTOX



Figure S6. Calculated molecular orbitals of  $Rh_2(OAc)_3(PhTOX)$  (6) at the MO6-2X/def2-TZVPP level of theory.

| Rh <sub>2</sub> ( | OAc) <sub>3</sub> (PhTOX) | (6) at M06-2x/de | f2-TZVPP level of theory |
|-------------------|---------------------------|------------------|--------------------------|
| 45                | 0.096236000               | 0.000964000      | -0.284224000             |
| 45                | 2.175964000               | -0.839876000     | 0.532697000              |
| 16                | -2.036302000              | 0.932053000      | -1.312345000             |
| 8                 | 2.738273000               | 1.069085000      | 1.138261000              |
| 8                 | 2.099617000               | 3.197541000      | 1.410073000              |
| 8                 | -0.302514000              | -1.934458000     | -0.988050000             |
| 8                 | 1.599190000               | -2.704696000     | -0.098792000             |
| 8                 | 1.051920000               | 0.437341000      | -2.056343000             |
| 8                 | 2.972277000               | -0.462960000     | -1.330312000             |
| 8                 | 1.232679000               | -1.158761000     | 2.341569000              |
| 8                 | -0.746679000              | -0.485699000     | 1.529849000              |
| 7                 | 0.663519000               | 1.787374000      | 0.456355000              |
| 6                 | 1.856289000               | 1.935113000      | 0.988501000              |
| 6                 | 1.023966000               | 4.007029000      | 0.933420000              |
| 6                 | -0.098775000              | 3.009466000      | 0.614070000              |
| 6                 | -0 916134000              | 3 393328000      | -0.612146000             |
| 6                 | -2.240606000              | 2.645060000      | -0.725885000             |
| 6                 | -3 472416000              | 0.153181000      | -0.613331000             |
| 6                 | 0 525182000               | -2.851513000     | -0 734381000             |
| 6                 | 0.210296000               | -4 227194000     | -1 258382000             |
| 6                 | 2 263259000               | 0 104341000      | -2 197485000             |
| 6                 | 2 912608000               | 0.443997000      | -3 512335000             |
| 6                 | 0.003186000               | -0.931356000     | 2 446739000              |
| 6                 | -0.638911000              | -1 182642000     | 3 784975000              |
| 6                 | -4 692593000              | 0.820582000      | -0 559881000             |
| 6                 | -5 809927000              | 0.174080000      | -0.052877000             |
| 6                 | -5 718403000              | -1 139185000     | 0.385296000              |
| 6                 | -4 501909000              | -1 803319000     | 0.315655000              |
| 6                 | -3 374078000              | -1 163688000     | -0 177544000             |
| 1                 | 1 353545000               | 4 528088000      | 0.030484000              |
| 1                 | 0.764053000               | 4 731073000      | 1 700811000              |
| 1                 | -0 779397000              | 2 912694000      | 1 470167000              |
| 1                 | -0 305534000              | 3 253485000      | -1 507825000             |
| 1                 | -1 155761000              | 4 458264000      | -0 546185000             |
| 1                 | -2 896765000              | 3 149404000      | -1 432609000             |
| 1                 | -2 738489000              | 2 602442000      | 0 242744000              |
| 1                 | 0.505007000               | -4 264467000     | -2 307521000             |
| 1                 | -0.859212000              | -4 412939000     | -1 203420000             |
| 1                 | 0.767848000               | -4 979262000     | -0 709107000             |
| 1                 | 3 304393000               | 1 459419000      | -3 443106000             |
| 1                 | 2 180077000               | 0.411850000      | -4 313673000             |
| 1                 | 3 739607000               | -0 231995000     | -3 707302000             |
| 1                 | -0 115599000              | -1 977692000     | 4 307775000              |
| 1                 | -1 691885000              | -1 418211000     | 3 659987000              |
| 1                 | -0.556068000              | -0 269851000     | 4 376061000              |
| 1                 | -4 780915000              | 1 836841000      | -0.918642000             |
| 1                 | -4 422953000              | -2.826752000     | 0 656917000              |
| 1                 | -2 422633000              | -1 675060000     | -0 218939000             |
| 1                 | -6 754892000              | 0.698531000      | -0.009082000             |
| 1                 | -6.591543000              | -1.642159000     | 0.777758000              |
|                   |                           |                  |                          |



Figure S7. Calculated molecular orbitals of  $Rh_2(OAc)_3(OX)C(H)(CO_2Et)$  (17) at the MO6-2X/def2-TZVPP level of theory.

Rh<sub>2</sub>(OAc)<sub>3</sub>(OX)C(H)(CO<sub>2</sub>Et) (17) at M06-2X/def2-TZVPP level of theory

| 45 | -0.036316000 | -0.834992000 | -0.082787000 |
|----|--------------|--------------|--------------|
| 45 | 1.636119000  | 0.971797000  | 0.149102000  |
| 8  | -3.382567000 | -1.583402000 | 0.677922000  |
| 8  | -3.137060000 | -2.202011000 | -1.483275000 |
| 8  | -2.140747000 | 2.691254000  | -0.326857000 |
| 8  | -1.522545000 | 0.551671000  | -0.374706000 |
| 8  | 1.454652000  | -2.183427000 | 0.207644000  |
| 8  | 3.033234000  | -0.596523000 | 0.389756000  |
| 8  | -0.270021000 | -0.659930000 | 1.947559000  |
| 8  | 1.271135000  | 0.955550000  | 2.194675000  |
| 8  | 0.382981000  | -0.799350000 | -2.073566000 |
| 8  | 1.891526000  | 0.855961000  | -1.909676000 |
| 7  | 0.036721000  | 2.235044000  | -0.105816000 |
| 6  | -4.817566000 | 0.203598000  | -0.123981000 |
| 6  | -4.756854000 | -1.192435000 | 0.452273000  |
| 6  | -2.717389000 | -2.001300000 | -0.374394000 |
| 6  | -1.270615000 | -2.218174000 | -0.156862000 |
| 6  | -0.048962000 | 3.675489000  | 0.075257000  |
| 6  | -1.498877000 | 3.972999000  | -0.341199000 |
|    |              |              |              |

| 6 | -1.163314000 | 1.760733000  | -0.271060000 |
|---|--------------|--------------|--------------|
| 6 | 3.676501000  | -2.875371000 | 0.545215000  |
| 6 | 2.656285000  | -1.781411000 | 0.369650000  |
| 6 | 0.136083000  | 0.148849000  | 4.114670000  |
| 6 | 1.414659000  | -0.056187000 | -4.047585000 |
| 6 | 0.414056000  | 0.163929000  | 2.634629000  |
| 6 | 1.228505000  | 0.021245000  | -2.555995000 |
| 1 | -4.333616000 | 0.237756000  | -1.097916000 |
| 1 | -5.859827000 | 0.502717000  | -0.236074000 |
| 1 | -4.311734000 | 0.910813000  | 0.530303000  |
| 1 | -5.221338000 | -1.924099000 | -0.206668000 |
| 1 | -5.213302000 | -1.249974000 | 1.436645000  |
| 1 | -0.946676000 | -3.258148000 | -0.077332000 |
| 1 | 0.672860000  | 4.195845000  | -0.552258000 |
| 1 | 0.149498000  | 3.938698000  | 1.117003000  |
| 1 | -1.561600000 | 4.372178000  | -1.353369000 |
| 1 | -2.029007000 | 4.629742000  | 0.342934000  |
| 1 | 3.687941000  | -3.495596000 | -0.349872000 |
| 1 | 4.658985000  | -2.449268000 | 0.718141000  |
| 1 | 3.383906000  | -3.508800000 | 1.380728000  |
| 1 | 0.375016000  | -0.837703000 | 4.508887000  |
| 1 | 0.728451000  | 0.905995000  | 4.617530000  |
| 1 | -0.925751000 | 0.320984000  | 4.280978000  |
| 1 | 2.162514000  | 0.659978000  | -4.371315000 |
| 1 | 1.714577000  | -1.067106000 | -4.317834000 |
| 1 | 0.461157000  | 0.144292000  | -4.533487000 |

Rh<sub>2</sub>(OAc)<sub>3</sub>(PhTOX)C(H)(CO<sub>2</sub>Et) (**18**)



Figure S8. Calculated molecular orbitals of  $Rh_2(OAc)_3(PhTOX)C(H)(CO_2Et)$  (18) at the MO6-2X/def2-TZVPP level of theory.

Rh<sub>2</sub>(OAc)<sub>3</sub>(PhTOX)C(H)(CO<sub>2</sub>Et) (18) at M06-2x/def2-TZVPP level of theory

| 45 | 0.672712000  | -0.008420000 | 0.399110000  |
|----|--------------|--------------|--------------|
| 45 | -1.489370000 | -0.947899000 | -0.287879000 |
| 16 | 3.022220000  | 1.218597000  | 1.179596000  |
| 8  | -4.705153000 | 0.117309000  | 0.131508000  |
| 8  | -5.088479000 | -1.161791000 | -1.684773000 |
| 8  | -2.098265000 | 0.923224000  | -0.926237000 |
| 8  | -1.512536000 | 3.015952000  | -1.441473000 |
| 8  | 1.090665000  | -1.934478000 | 1.171840000  |
| 8  | -0.835547000 | -2.761659000 | 0.376748000  |
| 8  | -0.182040000 | 0.535844000  | 2.209283000  |
| 8  | -2.087008000 | -0.496724000 | 1.632973000  |
| 8  | -0.647803000 | -1.301266000 | -2.111664000 |
| 8  | 1.386274000  | -0.619536000 | -1.457651000 |
| 7  | 0.008379000  | 1.724479000  | -0.440099000 |
| 6  | -5.709412000 | 2.187012000  | 0.695188000  |
| 6  | -5.734189000 | 1.036103000  | -0.278980000 |
| 6  | -4.458047000 | -0.875303000 | -0.696832000 |
| 6  | -3.249043000 | -1.669244000 | -0.434063000 |
| 6  | -1.207807000 | 1.810071000  | -0.909388000 |

| 6 | -0.417283000 | 3.880975000  | -1.132142000 |
|---|--------------|--------------|--------------|
| 6 | 0.739878000  | 2.930198000  | -0.796202000 |
| 6 | 1.657171000  | 3.474884000  | 0.293753000  |
| 6 | 3.042768000  | 2.832057000  | 0.340007000  |
| 6 | 4.384588000  | 0.385080000  | 0.417131000  |
| 6 | 0.278662000  | -2.863293000 | 0.978000000  |
| 6 | 0.614916000  | -4.237642000 | 1.494747000  |
| 6 | -1.352962000 | 0.161324000  | 2.430344000  |
| 6 | -1.980690000 | 0.503604000  | 3.755589000  |
| 6 | 0.589534000  | -1.097994000 | -2.296727000 |
| 6 | 1.117792000  | -1.467590000 | -3.656946000 |
| 6 | 5.547328000  | 1.051604000  | 0.041337000  |
| 6 | 6.599530000  | 0.342964000  | -0.520630000 |
| 6 | 6.506256000  | -1.030653000 | -0.692139000 |
| 6 | 5.349242000  | -1.693344000 | -0.304656000 |
| 6 | 4.284530000  | -0.992758000 | 0.241060000  |
| 1 | -4.735316000 | 2.673374000  | 0.673628000  |
| 1 | -6.471537000 | 2.916685000  | 0.424516000  |
| 1 | -5.905917000 | 1.838979000  | 1.708301000  |
| 1 | -5.515650000 | 1.356875000  | -1.296794000 |
| 1 | -6.690646000 | 0.513343000  | -0.281739000 |
| 1 | -3.438689000 | -2.683713000 | -0.078352000 |
| 1 | -0.688493000 | 4.488714000  | -0.264569000 |
| 1 | -0.227585000 | 4.524231000  | -1.987111000 |
| 1 | 1.343186000  | 2.733024000  | -1.691592000 |
| 1 | 1.151917000  | 3.391398000  | 1.259561000  |
| 1 | 1.805876000  | 4.541662000  | 0.102568000  |
| 1 | 3.736600000  | 3.482625000  | 0.869654000  |
| 1 | 3.420969000  | 2.675110000  | -0.670486000 |
| 1 | -0.110194000 | -4.511360000 | 2.260134000  |
| 1 | 1.616262000  | -4.251932000 | 1.912275000  |
| 1 | 0.526192000  | -4.959148000 | 0.684926000  |
| 1 | -2.880681000 | 1.090350000  | 3.577805000  |
| 1 | -1.282428000 | 1.056573000  | 4.375018000  |
| 1 | -2.281187000 | -0.416226000 | 4.254392000  |
| 1 | 0.879763000  | -2.509563000 | -3.862205000 |
| 1 | 2.189540000  | -1.304601000 | -3.704008000 |
| 1 | 0.610694000  | -0.862162000 | -4.406941000 |
| 1 | 5.640418000  | 2.118413000  | 0.193664000  |
| 1 | 5.265988000  | -2.763285000 | -0.441122000 |
| 1 | 3.370793000  | -1.504241000 | 0.516665000  |
| 1 | 7.498405000  | 0.867966000  | -0.815274000 |
| 1 | 7.329722000  | -1.580986000 | -1.126284000 |

Rh<sub>2</sub>(OAc)<sub>3</sub>(MeTOX)C(H)(CO<sub>2</sub>Et)



Figure S9. Calculated molecular orbitals of  $Rh_2(OAc)_3(MeTOX)C(H)(CO_2Et)$  at the MO6-2X/def2-TZVPP level of theory.

| Rh <sub>2</sub> (OAc) <sub>3</sub> (MeTOX | $C(H)(CO_2Et)$ a | t M06- $2x/def2$ -TZVPP | level of theory |
|-------------------------------------------|------------------|-------------------------|-----------------|
| =                                         |                  |                         |                 |

| 45 | 1.313385000  | -0.320864000 | 0.013653000  |
|----|--------------|--------------|--------------|
| 45 | -1.080616000 | -0.830147000 | 0.201109000  |
| 16 | 3.978540000  | 0.342861000  | -0.135018000 |
| 8  | -1.475160000 | 1.159081000  | 0.618566000  |
| 8  | -0.659574000 | 3.205033000  | 0.997048000  |
| 8  | 1.561822000  | -2.344284000 | -0.534775000 |
| 8  | -0.618796000 | -2.770543000 | -0.226447000 |
| 8  | 1.444353000  | -0.843651000 | 2.022879000  |
| 8  | -0.766761000 | -1.180612000 | 2.181080000  |
| 8  | -1.132977000 | -0.427739000 | -1.825911000 |
| 8  | 1.021467000  | 0.168820000  | -1.987217000 |
| 8  | -4.923890000 | -0.400300000 | 0.625378000  |
| 8  | -3.882320000 | 0.699697000  | -1.049325000 |
| 7  | 0.790499000  | 1.572562000  | 0.536567000  |
| 6  | -0.462567000 | 1.898825000  | 0.700893000  |
| 6  | 0.602159000  | 3.854638000  | 0.821956000  |
| 6  | 1.634074000  | 2.715809000  | 0.842711000  |
|    |              |              |              |

| 6 | 2.780008000  | 2.930722000  | -0.141986000 |
|---|--------------|--------------|--------------|
| 6 | 4.043581000  | 2.129996000  | 0.163457000  |
| 6 | 4.121002000  | 0.325930000  | -1.930472000 |
| 6 | 0.573307000  | -3.105681000 | -0.514079000 |
| 6 | 0.772108000  | -4.559246000 | -0.856402000 |
| 6 | 0.406835000  | -1.136377000 | 2.658300000  |
| 6 | 0.529818000  | -1.470280000 | 4.120895000  |
| 6 | -0.124704000 | -0.005177000 | -2.460590000 |
| 6 | -0.353356000 | 0.300488000  | -3.917703000 |
| 6 | -2.929525000 | -1.245373000 | -0.065966000 |
| 6 | -4.017472000 | -0.263723000 | -0.161238000 |
| 6 | -4.846157000 | 1.769382000  | -0.976826000 |
| 6 | -4.470893000 | 2.744574000  | 0.116732000  |
| 1 | 0.733105000  | 4.583585000  | 1.617127000  |
| 1 | 0.598578000  | 4.361990000  | -0.146442000 |
| 1 | 2.053050000  | 2.597378000  | 1.850061000  |
| 1 | 3.055875000  | 3.989903000  | -0.113681000 |
| 1 | 2.415949000  | 2.721324000  | -1.151275000 |
| 1 | 4.303395000  | 2.234883000  | 1.217630000  |
| 1 | 4.885167000  | 2.514198000  | -0.414090000 |
| 1 | 4.012685000  | -0.712220000 | -2.237405000 |
| 1 | 5.096904000  | 0.700473000  | -2.233647000 |
| 1 | 3.318368000  | 0.899034000  | -2.387385000 |
| 1 | 1.819017000  | -4.762139000 | -1.055724000 |
| 1 | 0.167738000  | -4.804618000 | -1.728398000 |
| 1 | 0.418139000  | -5.171571000 | -0.028894000 |
| 1 | -0.098909000 | -0.790767000 | 4.693776000  |
| 1 | 1.563228000  | -1.393628000 | 4.442218000  |
| 1 | 0.156584000  | -2.479658000 | 4.285772000  |
| 1 | 0.545179000  | 0.708855000  | -4.368749000 |
| 1 | -1.180860000 | 1.001524000  | -4.008951000 |
| 1 | -0.642263000 | -0.617305000 | -4.427793000 |
| 1 | -5.834402000 | 1.342094000  | -0.814304000 |
| 1 | -4.809547000 | 2.229199000  | -1.961152000 |
| 1 | -4.508611000 | 2.257652000  | 1.089341000  |
| 1 | -5.171429000 | 3.579903000  | 0.116736000  |
| 1 | -3.462065000 | 3.122505000  | -0.038210000 |
| 1 | -3.194203000 | -2.241842000 | -0.424833000 |

# Crystallographic Data



Figure S10. Asymmetric unit of Rh<sub>2</sub>(OAc)<sub>3</sub>PhTOX·CH<sub>3</sub>CN (6·CH<sub>3</sub>CN) with ellipsoids shown at 50%

probability level and protons omitted for clarity

-

| Table S1. Selected bond lengths | Å) and bond angles | (°) for Rh <sub>2</sub> (OAc) <sub>3</sub> PhTC | $X \cdot CH_3CN (6 \cdot CH_3CN)$ |
|---------------------------------|--------------------|-------------------------------------------------|-----------------------------------|
|---------------------------------|--------------------|-------------------------------------------------|-----------------------------------|

| - |                  |            |
|---|------------------|------------|
|   | Rh(1)–Rh(2)      | 2.4246(5)  |
|   | Rh(3)-Rh(4)      | 2.4200(5)  |
|   | Rh(5)-Rh(6)      | 2.4182(4)  |
|   | Rh(7)–Rh(8)      | 2.4243(4)  |
|   | Rh(1)-S(1)       | 2.4730(12) |
|   | Rh(3)–S(2)       | 2.5102(11) |
|   | Rh(5)–S(3)       | 2.5195(11) |
|   | Rh(7)-S(4)       | 2.5004(12) |
|   | Rh(2)–N(2)       | 2.244(4)   |
|   | Rh(4)–N(4)       | 2.232(3)   |
|   | Rh(6)–N(6)       | 2.233(3)   |
|   | Rh(8)–N(8)       | 2.234(4)   |
|   |                  |            |
|   |                  |            |
|   | Rh(2)-Rh(1)-S(1) | 176.08(3)  |
|   | Rh(4)-Rh(3)-S(2) | 175.12(3)  |
|   | Rh(6)-Rh(5)-S(3) | 174.60(3)  |
|   | Rh(8)-Rh(7)-S(4) | 176.20(3)  |
|   | Rh(1)-Rh(2)-N(2) | 171.00(10) |
|   | Rh(3)–Rh(4)–N(4) | 174.99(9)  |
| _ | Rh(5)–Rh(6)–N(6) | 175.00(9)  |
|   |                  |            |

| Rh(7)–Rh(8)–N(8)        | 171.90(10) |  |
|-------------------------|------------|--|
| N(1)-Rh(1)-Rh(2)-O(2)   | 6.68(12)   |  |
| N(3)-Rh(3)-Rh(4)-O(10)  | 2.22(12)   |  |
| N(5)-Rh(5)-Rh(6)-O(18)  | 1.19(12)   |  |
| N(7)-Rh(7)-Rh(8)-O(26)  | 6.85(12)   |  |
| O(5)-Rh(1)-Rh(2)-O(6)   | 4.21(3)    |  |
| O(13)-Rh(3)-Rh(4)-O(14) | 1.90(11)   |  |
| O(21)-Rh(5)-Rh(6)-O(22) | 0.82(12)   |  |
| O(29)-Rh(7)-Rh(8)-O(30) | 4.86(12)   |  |
| O(7)-Rh(1)-Rh(2)-O(8)   | 3.88(12)   |  |
| O(15)-Rh(3)-Rh(4)-O(16) | 0.54(12)   |  |
| O(23)-Rh(5)-Rh(6)-O(24) | 0.91(12)   |  |
| O(31)-Rh(7)-Rh(8)-O(32) | 4.27(12)   |  |
| O(3)-Rh(1)-Rh(2)-O(4)   | 4.42(12)   |  |
| O(11)-Rh(3)-Rh(4)-O(12) | 1.69(12)   |  |
| O(19)-Rh(5)-Rh(6)-O(20) | 0.76(12)   |  |
| O(27)-Rh(7)-Rh(8)-O(28) | 4.86(12)   |  |

|                                        | -( );                                                  |
|----------------------------------------|--------------------------------------------------------|
| Identification code                    | MonoAspPhTOX                                           |
| Empirical formula                      | $C_{19}H_{24}N_2O_8Rh_2S$                              |
| Formula weight                         | 646.29                                                 |
| Temperature/K                          | 100.0                                                  |
| Crystal system                         | monoclinic                                             |
| Space group                            | P2 <sub>1</sub>                                        |
| a/Å                                    | 10.9230(9)                                             |
| b/Å                                    | 28.185(3)                                              |
| c/Å                                    | 14.6929(13)                                            |
| α/°                                    | 90                                                     |
| β/°                                    | 90.176(2)                                              |
| γ/°                                    | 90                                                     |
| Volume/Å <sup>3</sup>                  | 4523.3(7)                                              |
| Ζ                                      | 8                                                      |
| $\rho_{calc}g/cm^3$                    | 1.8979                                                 |
| $\mu/\text{mm}^{-1}$                   | 1.600                                                  |
| F(000)                                 | 2560.3                                                 |
| Crystal size/mm <sup>3</sup>           | 0.222 	imes 0.131 	imes 0.079                          |
| Radiation                              | Mo Ka ( $\lambda = 0.71073$ )                          |
| 2 $\Theta$ range for data collection/° | 4.64 to 55.04                                          |
| Index ranges                           | $-14 \le h \le 14, -36 \le k \le 36, -19 \le l \le 19$ |
| Reflections collected                  | 119747                                                 |
| Independent reflections                | 20769 [ $R_{int} = 0.0506$ , $R_{sigma} = 0.0308$ ]    |
| Data/restraints/parameters             | 20769/1/1169                                           |
| Goodness-of-fit on F <sup>2</sup>      | 1.061                                                  |

| Table S2. Crysta | l data and structur | e refinement for <b>R</b> | h <sub>2</sub> (OAc) | PhTOX · | CH <sub>3</sub> CN. |
|------------------|---------------------|---------------------------|----------------------|---------|---------------------|

| 0.0  |
|------|
| )660 |
|      |
|      |
|      |

Table S3. Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for MonoAspPhTOX. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom       | x           | у          | Z.         | U(eq)    |
|------------|-------------|------------|------------|----------|
| Rh5        | 6783.4(3)   | 3772.05(7) | 2456.3(2)  | 15.76(7) |
| Rh2        | 1756.6(3)   | 5888.67(7) | 10512.8(2) | 16.17(6) |
| Rh3        | 1796.9(3)   | 6227.28(7) | 5061.3(2)  | 14.49(6) |
| Rh4        | 3709.3(3)   | 5902.21(7) | 5624.5(2)  | 15.31(6) |
| Rh1        | 3538.0(3)   | 6323.40(7) | 10007.4(2) | 16.74(7) |
| Rh7        | 8599.2(3)   | 3649.33(7) | -2497.2(2) | 15.75(7) |
| Rh8        | 6797.2(3)   | 4070.08(7) | -3017.8(2) | 16.20(7) |
| Rh6        | 8696.2(3)   | 4098.97(7) | 1906.0(2)  | 15.93(6) |
| S3         | 4902.0(10)  | 3411.7(3)  | 3163.6(7)  | 21.0(2)  |
| S2         | -86.8(10)   | 6584.3(3)  | 4357.9(7)  | 19.7(2)  |
| S4         | 10372.3(10) | 3185.8(4)  | -1886.6(8) | 25.2(2)  |
| <b>S</b> 1 | 5264.1(10)  | 6804.9(4)  | 9434.1(8)  | 26.4(2)  |
| O20        | 8878(3)     | 3511.4(10) | 1119(2)    | 19.0(6)  |
| O28        | 6426(3)     | 3495.1(10) | -3808(2)   | 19.4(6)  |
| O18        | 8492(3)     | 4688.3(10) | 2714(2)    | 21.6(7)  |
| O5         | 2464(3)     | 6626.6(11) | 9028(2)    | 22.4(7)  |
| O10        | 3511(3)     | 5311.5(10) | 4812(2)    | 21.5(6)  |
| O14        | 2704(3)     | 5580.7(10) | 6619(2)    | 19.6(6)  |
| O15        | 2791(3)     | 6536.0(11) | 4039(2)    | 21.8(7)  |
| O12        | 3885(3)     | 6489.6(10) | 6408(2)    | 18.7(6)  |
| O27        | 8174(3)     | 3121.0(10) | -3428(2)   | 18.8(6)  |
| O16        | 4571(3)     | 6236.8(11) | 4577(2)    | 20.7(6)  |
| O19        | 7120(3)     | 3188.9(10) | 1624(2)    | 20.0(6)  |
| O13        | 923(3)      | 5903.0(10) | 6121.8(19) | 18.2(6)  |
| O22        | 7699(3)     | 4415.6(10) | 898(2)     | 20.8(6)  |
| O11        | 2141(3)     | 6817.2(10) | 5875(2)    | 18.4(6)  |
| O2         | 2273(3)     | 5311.3(10) | 9737(2)    | 22.9(7)  |
| O3         | 3079(3)     | 6851.4(10) | 10934(2)   | 19.7(6)  |
| 07         | 4495(3)     | 5994.9(10) | 11023(2)   | 19.6(6)  |
| O23        | 7763(3)     | 3451.1(10) | 3472(2)    | 22.8(7)  |
| O31        | 9551(3)     | 3989.4(10) | -3501(2)   | 19.7(6)  |
| O4         | 1354(3)     | 6456.6(10) | 11304(2)   | 19.6(6)  |
| 09         | 2314(3)     | 4919.8(10) | 3828(2)    | 23.6(7)  |
| O26        | 7266(3)     | 4652.1(10) | -2248(2)   | 23.9(7)  |
| 017        | 7304(3)     | 5075.3(11) | 3707(2)    | 24.8(7)  |
| O24        | 9542(3)     | 3767.9(11) | 2964(2)    | 21.8(6)  |

| O32 | 7835(3)  | 4339.8(10) | -4046(2)   | 21.2(6)  |
|-----|----------|------------|------------|----------|
| O6  | 834(3)   | 6182.0(10) | 9434(2)    | 21.4(6)  |
| O25 | 8466(3)  | 4933.1(11) | -1132(2)   | 27.7(7)  |
| 08  | 2801(3)  | 5626.1(10) | 11552(2)   | 19.9(6)  |
| 01  | 3488(3)  | 5047.6(11) | 8622(2)    | 26.5(7)  |
| O30 | 5875(3)  | 3768.9(10) | -1954(2)   | 21.3(6)  |
| O29 | 7519(3)  | 3331.9(11) | -1545(2)   | 22.4(7)  |
| O21 | 5915(3)  | 4102.6(11) | 1398.6(19) | 20.6(6)  |
| N7  | 8845(3)  | 4200.4(12) | -1658(2)   | 20.3(8)  |
| N1  | 3833(3)  | 5778.9(13) | 9168(2)    | 21.1(8)  |
| C39 | 7512(4)  | 4689.3(15) | 3172(3)    | 20.4(9)  |
| N3  | 1657(3)  | 5627.1(12) | 4338(2)    | 17.6(7)  |
| C33 | 1560(4)  | 5645.8(15) | 6660(3)    | 18.2(8)  |
| N5  | 6656(3)  | 4367.8(12) | 3196(2)    | 19.2(8)  |
| C20 | 2526(4)  | 5308.0(15) | 4359(3)    | 20.1(9)  |
| C58 | 8161(4)  | 4575.1(15) | -1714(3)   | 21.5(9)  |
| C50 | 8067(4)  | 3188.7(14) | 1143(3)    | 17.6(8)  |
| N2  | -62(4)   | 5588.5(13) | 10925(3)   | 23.4(8)  |
| C54 | 8911(4)  | 3513.8(15) | 3505(3)    | 21.9(9)  |
| C13 | 1791(5)  | 7177.7(16) | 12069(3)   | 29.1(11) |
| N6  | 10533(3) | 4339.2(13) | 1427(2)    | 21.5(8)  |
| C35 | 3945(5)  | 6482.1(15) | 4026(3)    | 23.3(10) |
| N8  | 4984(4)  | 4372.4(13) | -3419(3)   | 25.5(8)  |
| C31 | 3094(4)  | 6822.6(14) | 6370(3)    | 16.2(8)  |
| C11 | 7668(5)  | 6697.1(17) | 10086(3)   | 28.2(11) |
| N4  | 5549(3)  | 5661.2(12) | 6101(2)    | 19.1(7)  |
| C12 | 2102(4)  | 6801.1(14) | 11381(3)   | 18.4(8)  |
| C16 | 3925(4)  | 5729.0(15) | 11578(3)   | 19.4(9)  |
| C32 | 3314(4)  | 7248.6(15) | 6970(3)    | 23.6(9)  |
| C69 | 7173(4)  | 3156.4(14) | -3871(3)   | 18.6(8)  |
| C14 | 1352(4)  | 6484.4(15) | 8933(3)    | 22.0(9)  |
| C70 | 6874(4)  | 2778.1(16) | -4546(3)   | 25.6(10) |
| C51 | 8275(4)  | 2769.9(15) | 508(3)     | 24.0(9)  |
| C52 | 6547(4)  | 4349.2(15) | 852(3)     | 19.3(9)  |
| C67 | 13591(5) | 3227.0(16) | -3273(4)   | 29.1(11) |
| C34 | 871(4)   | 5388.2(17) | 7401(3)    | 24.9(10) |
| C71 | 6410(4)  | 3460.4(16) | -1467(3)   | 23.2(9)  |
| C57 | 12875(4) | 4405.8(18) | 1170(4)    | 32.5(12) |
| C23 | 11(5)    | 5807.1(16) | 3196(3)    | 26.6(10) |
| C1  | 3166(4)  | 5392.5(15) | 9222(3)    | 22.4(9)  |
| C61 | 10941(4) | 4064.9(18) | -1052(3)   | 27.1(10) |
| C56 | 11556(4) | 4370.3(14) | 1315(3)    | 19.4(9)  |
| C73 | 8977(4)  | 4245.7(15) | -4056(3)   | 19.3(9)  |
| C4  | 5896(4)  | 5954.1(18) | 8542(3)    | 27.8(10) |
| C22 | 622(4)   | 5444.8(15) | 3808(3)    | 19.3(8)  |

| C21 | 1227(4)  | 5035.0(15) | 3294(3)  | 22.2(9)  |
|-----|----------|------------|----------|----------|
| C9  | 8236(5)  | 6958.2(16) | 11585(3) | 29.6(11) |
| C30 | -778(4)  | 6985.3(16) | 5950(3)  | 25.1(10) |
| C25 | -1188(4) | 6750.8(15) | 5179(3)  | 21.3(9)  |
| C43 | 4127(4)  | 3858.2(16) | 3854(3)  | 26.0(10) |
| C74 | 9701(5)  | 4469.3(17) | -4804(3) | 30.6(11) |
| C2  | 4595(4)  | 5220.3(18) | 8166(3)  | 30.0(11) |
| C17 | 4655(4)  | 5509.9(17) | 12330(3) | 28.6(10) |
| C10 | 8548(4)  | 6767.1(17) | 10756(4) | 30.5(11) |
| C47 | 2050(4)  | 2956.6(16) | 1071(4)  | 27.8(10) |
| C53 | 5875(4)  | 4597.2(17) | 96(3)    | 28.1(10) |
| C45 | 4155(4)  | 3046.4(15) | 1557(3)  | 22.2(9)  |
| C42 | 5031(5)  | 4180.0(16) | 4348(3)  | 27.5(10) |
| C49 | 2519(4)  | 3326.3(17) | 2501(3)  | 27.8(10) |
| C60 | 9668(4)  | 4242.9(16) | -871(3)  | 25.0(10) |
| C44 | 3744(4)  | 3257.3(15) | 2350(3)  | 22.4(9)  |
| C63 | 11525(4) | 3152.8(15) | -2724(3) | 21.8(9)  |
| C41 | 5622(4)  | 4547.2(16) | 3731(3)  | 22.4(9)  |
| C46 | 3288(5)  | 2897.7(16) | 917(3)   | 26.0(10) |
| C6  | 6450(4)  | 6819.1(16) | 10262(3) | 23.6(10) |
| C66 | 13270(5) | 3008.9(16) | -4082(3) | 29.3(10) |
| C40 | 6224(4)  | 4954.6(16) | 4249(3)  | 26.8(10) |
| C26 | -2449(4) | 6682.9(16) | 5066(3)  | 25.7(10) |
| C18 | -1080(4) | 5591.8(15) | 11046(3) | 23.8(10) |
| C76 | 2645(5)  | 4414.6(19) | -3702(4) | 40.1(14) |
| C72 | 5660(5)  | 3226.6(18) | -731(3)  | 31.6(11) |
| C55 | 9595(5)  | 3259.9(18) | 4261(3)  | 32.6(12) |
| C68 | 12732(4) | 3302.1(16) | -2606(3) | 25.2(10) |
| C59 | 9574(5)  | 4769.3(17) | -668(3)  | 29.4(11) |
| C8  | 7018(5)  | 7076.8(17) | 11762(4) | 30.3(11) |
| C37 | 6577(4)  | 5621.0(15) | 6213(3)  | 21.8(9)  |
| C48 | 1679(5)  | 3174.8(17) | 1848(4)  | 30.5(11) |
| C62 | 11038(4) | 3531.5(18) | -956(3)  | 31.8(11) |
| C65 | 12065(5) | 2863.3(17) | -4208(4) | 30.5(11) |
| C75 | 3957(4)  | 4388.4(16) | -3517(3) | 24.6(10) |
| C28 | -2845(5) | 7104.1(17) | 6462(4)  | 28.8(10) |
| C15 | 621(5)   | 6701.8(18) | 8175(3)  | 31.1(11) |
| C7  | 6136(5)  | 7007.2(16) | 11101(3) | 27.2(10) |
| C24 | -875(4)  | 6131.5(16) | 3690(3)  | 26.2(10) |
| C64 | 11194(4) | 2937.9(17) | -3532(4) | 28.6(11) |
| C38 | 7874(5)  | 5569.9(19) | 6355(4)  | 36.1(12) |
| C3  | 4627(4)  | 5750.7(17) | 8372(3)  | 25.9(10) |
| C29 | -1595(5) | 7163.4(17) | 6584(3)  | 29.2(11) |
| C36 | 4612(5)  | 6727.3(18) | 3270(3)  | 30.6(11) |
| C27 | -3268(5) | 6858.6(17) | 5701(4)  | 33.1(12) |

| C19 | -2375(5) | 5583.4(18) | 11238(4) | 38.9(13) |
|-----|----------|------------|----------|----------|
| C5  | 5915(5)  | 6490.4(19) | 8468(3)  | 36.8(13) |

Table S4. Anisotropic Displacement Parameters  $(Å^2 \times 10^3)$  for MonoAspPhTOX. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| · · · · · · · · · · · · | · · · · · · · · |           |                 | - 11 1          |                 |                 |
|-------------------------|-----------------|-----------|-----------------|-----------------|-----------------|-----------------|
| Atom                    | U <sub>11</sub> | $U_{22}$  | U <sub>33</sub> | U <sub>12</sub> | U <sub>13</sub> | U <sub>23</sub> |
| Rh5                     | 14.40(15)       | 19.43(15) | 13.46(15)       | 2.98(12)        | 1.50(12)        | 0.83(12)        |
| Rh2                     | 14.91(15)       | 17.67(15) | 15.93(15)       | -0.10(13)       | -0.16(12)       | -1.24(13)       |
| Rh3                     | 13.96(15)       | 17.21(15) | 12.30(14)       | -1.62(12)       | -1.09(11)       | -0.11(11)       |
| Rh4                     | 12.27(14)       | 19.52(15) | 14.15(14)       | -0.94(13)       | 0.08(11)        | -1.27(12)       |
| Rh1                     | 15.20(15)       | 19.84(16) | 15.18(15)       | 0.36(12)        | -0.70(12)       | 2.31(12)        |
| Rh7                     | 14.45(15)       | 18.70(15) | 14.09(15)       | -0.37(12)       | 0.07(12)        | 1.38(12)        |
| Rh8                     | 15.12(15)       | 17.56(15) | 15.93(15)       | 0.82(13)        | -0.06(12)       | -1.14(12)       |
| Rh6                     | 13.03(14)       | 20.66(16) | 14.09(14)       | 1.30(13)        | 0.12(11)        | -1.40(12)       |
| S3                      | 19.4(5)         | 22.9(5)   | 20.7(5)         | 4.1(4)          | 5.2(4)          | 4.6(4)          |
| S2                      | 18.7(5)         | 21.3(5)   | 18.9(5)         | -0.6(4)         | -2.9(4)         | 2.2(4)          |
| S4                      | 18.3(5)         | 30.0(6)   | 27.4(6)         | 2.3(5)          | -0.3(4)         | 9.6(5)          |
| S1                      | 19.1(5)         | 34.1(6)   | 26.0(6)         | -4.2(5)         | -3.5(4)         | 11.0(5)         |
| O20                     | 13.5(14)        | 26.6(16)  | 16.8(14)        | -0.1(12)        | 2.6(11)         | -2.5(12)        |
| O28                     | 16.0(15)        | 22.0(15)  | 20.3(15)        | 1.4(12)         | 1.0(12)         | -1.9(12)        |
| O18                     | 18.0(15)        | 26.2(16)  | 20.7(15)        | 2.7(13)         | 0.1(12)         | -7.7(13)        |
| 05                      | 19.1(16)        | 25.8(16)  | 22.4(16)        | 3.9(13)         | -3.9(13)        | 4.4(13)         |
| O10                     | 16.5(15)        | 25.2(16)  | 22.9(16)        | 0.0(12)         | 0.1(12)         | -6.3(13)        |
| 014                     | 13.7(15)        | 24.7(16)  | 20.5(15)        | 0.7(12)         | -1.4(12)        | 3.5(12)         |
| 015                     | 21.0(16)        | 30.6(17)  | 13.8(14)        | -3.7(13)        | 0.9(12)         | 2.7(12)         |
| 012                     | 17.6(15)        | 23.2(16)  | 15.4(14)        | -0.5(12)        | -2.4(12)        | -3.3(12)        |
| O27                     | 17.0(15)        | 18.9(15)  | 20.4(15)        | 0.7(12)         | 0.4(12)         | -0.2(12)        |
| 016                     | 14.8(14)        | 30.3(17)  | 17.0(14)        | -3.6(13)        | 3.7(11)         | -0.1(13)        |
| 019                     | 18.2(15)        | 20.3(15)  | 21.4(15)        | -0.6(12)        | 4.5(12)         | -1.6(12)        |
| 013                     | 16.4(14)        | 23.1(14)  | 15.0(13)        | -0.9(13)        | 1.0(11)         | 3.6(12)         |
| O22                     | 17.0(15)        | 27.4(16)  | 18.0(15)        | 3.1(13)         | 1.3(12)         | 3.2(13)         |
| 011                     | 17.5(15)        | 19.5(15)  | 18.2(14)        | -2.3(12)        | -2.9(12)        | -1.3(12)        |
| O2                      | 26.8(18)        | 19.6(16)  | 22.2(16)        | 0.8(13)         | -1.7(13)        | -3.9(13)        |
| 03                      | 16.3(15)        | 21.3(15)  | 21.4(15)        | 1.5(12)         | -2.3(12)        | -4.0(12)        |
| 07                      | 13.1(14)        | 26.0(16)  | 19.7(15)        | 0.8(12)         | -0.3(11)        | 5.4(12)         |
| O23                     | 23.6(16)        | 29.7(17)  | 15.2(14)        | 7.3(13)         | 3.2(12)         | 5.7(12)         |
| 031                     | 15.5(14)        | 24.3(16)  | 19.4(15)        | -0.3(12)        | 1.4(12)         | 3.9(12)         |
| 04                      | 15.7(14)        | 21.2(15)  | 21.8(15)        | -0.3(12)        | -1.7(12)        | -4.2(12)        |
| 09                      | 19.8(16)        | 25.8(16)  | 25.1(16)        | -0.6(13)        | -0.6(13)        | -8.8(13)        |
| O26                     | 25.0(17)        | 21.9(16)  | 25.0(17)        | 1.0(13)         | 1.0(13)         | -4.8(13)        |
| 017                     | 21.8(17)        | 26.1(17)  | 26.4(17)        | 5.4(13)         | -0.2(13)        | -11.4(13)       |
| O24                     | 18.8(15)        | 31.3(17)  | 15.2(14)        | 5.7(13)         | -1.0(12)        | 2.3(13)         |
| O32                     | 22.1(16)        | 23.1(16)  | 18.4(15)        | -0.1(13)        | 0.8(12)         | 3.5(12)         |
| 06                      | 16.6(14)        | 26.9(16)  | 20.8(15)        | 3.6(13)         | -5.2(12)        | -0.5(13)        |

| O25 | 26.2(17) | 31.6(18) | 25.4(17) | -10.2(14) | 1.3(14)  | -11.4(14) |
|-----|----------|----------|----------|-----------|----------|-----------|
| 08  | 18.2(15) | 22.2(16) | 19.2(15) | 0.8(12)   | 1.5(12)  | 3.4(12)   |
| O1  | 27.4(18) | 29.5(17) | 22.6(16) | 7.2(14)   | 0.4(14)  | -7.4(13)  |
| O30 | 17.8(15) | 28.4(16) | 17.6(14) | -0.8(13)  | 3.3(12)  | -0.6(13)  |
| O29 | 18.2(16) | 27.4(17) | 21.6(16) | -4.8(13)  | 0.9(12)  | 4.4(13)   |
| O21 | 15.4(14) | 31.4(16) | 15.1(14) | 4.6(13)   | -0.2(11) | 3.6(13)   |
| N7  | 19.8(18) | 25(2)    | 15.6(17) | -3.6(15)  | -4.7(14) | -0.8(14)  |
| N1  | 17.8(18) | 29(2)    | 16.3(17) | 2.8(15)   | 2.9(14)  | -1.2(15)  |
| C39 | 17(2)    | 23(2)    | 21(2)    | 4.8(17)   | -3.1(17) | -2.1(17)  |
| N3  | 15.5(17) | 21.8(18) | 15.5(17) | -3.5(14)  | -1.8(14) | -3.8(14)  |
| C33 | 17(2)    | 25(2)    | 12.5(19) | -2.8(17)  | 0.6(16)  | 0.1(16)   |
| N5  | 18.5(18) | 22.7(19) | 16.4(17) | 3.9(15)   | 1.6(14)  | -3.0(14)  |
| C20 | 22(2)    | 20(2)    | 19(2)    | -4.2(17)  | 3.0(17)  | -2.8(16)  |
| C58 | 25(2)    | 24(2)    | 15(2)    | -7.7(18)  | 6.5(17)  | -3.9(16)  |
| C50 | 20(2)    | 18(2)    | 15.1(19) | 3.2(16)   | -2.6(16) | 0.6(15)   |
| N2  | 23(2)    | 23.7(19) | 23.0(19) | -4.1(16)  | 2.3(16)  | -2.9(15)  |
| C54 | 25(2)    | 26(2)    | 14(2)    | 11.2(18)  | 0.0(17)  | -2.4(17)  |
| C13 | 26(3)    | 27(2)    | 34(3)    | 2.9(19)   | -2(2)    | -10(2)    |
| N6  | 20.0(19) | 26(2)    | 18.0(18) | 3.3(15)   | -2.0(15) | -7.5(15)  |
| C35 | 32(3)    | 22(2)    | 16(2)    | -8.7(19)  | 4.0(19)  | -4.0(17)  |
| N8  | 23(2)    | 24(2)    | 30(2)    | 6.5(16)   | -1.4(16) | -2.9(16)  |
| C31 | 13.4(19) | 20(2)    | 15.4(19) | -2.9(16)  | 1.1(15)  | 0.7(15)   |
| C11 | 30(3)    | 26(3)    | 29(3)    | -1(2)     | 2(2)     | -1.8(19)  |
| N4  | 17.1(18) | 21.1(18) | 19.1(17) | 2.5(14)   | -0.5(14) | -3.2(14)  |
| C12 | 18(2)    | 19(2)    | 19(2)    | 6.7(16)   | -3.0(16) | 3.1(16)   |
| C16 | 24(2)    | 21(2)    | 13.9(19) | 1.8(17)   | -0.7(17) | 0.5(16)   |
| C32 | 25(2)    | 23(2)    | 23(2)    | -1.1(18)  | -2.5(18) | -2.0(17)  |
| C69 | 19(2)    | 18(2)    | 19(2)    | -1.1(17)  | 0.2(16)  | 2.1(16)   |
| C14 | 19(2)    | 23(2)    | 24(2)    | 8.4(17)   | -3.9(18) | -1.2(18)  |
| C70 | 25(2)    | 24(2)    | 27(2)    | 0.4(19)   | -1.1(19) | -6.5(19)  |
| C51 | 27(2)    | 21(2)    | 24(2)    | 4.8(18)   | 5.1(19)  | -1.7(17)  |
| C52 | 16(2)    | 25(2)    | 17(2)    | 3.2(17)   | 0.7(16)  | 1.4(17)   |
| C67 | 21(2)    | 23(2)    | 42(3)    | -1.9(19)  | 3(2)     | 7(2)      |
| C34 | 16(2)    | 38(3)    | 21(2)    | -7.3(19)  | 0.2(17)  | 7.6(19)   |
| C71 | 23(2)    | 28(2)    | 18(2)    | -4.7(19)  | -1.3(18) | 3.0(18)   |
| C57 | 21(2)    | 35(3)    | 41(3)    | -4(2)     | 2(2)     | 12(2)     |
| C23 | 33(2)    | 31(3)    | 16(2)    | -7(2)     | -9.0(18) | -1.2(18)  |
| C1  | 25(2)    | 25(2)    | 18(2)    | 6.5(18)   | -6.7(18) | -0.9(17)  |
| C61 | 16(2)    | 52(3)    | 13.7(19) | -2(2)     | -0.9(16) | -5(2)     |
| C56 | 24(2)    | 17(2)    | 17(2)    | 0.1(17)   | -2.2(17) | -0.3(16)  |
| C73 | 21(2)    | 19(2)    | 17(2)    | -4.7(17)  | 3.4(17)  | -2.0(16)  |
| C4  | 18(2)    | 53(3)    | 11.6(19) | 0(2)      | -0.4(16) | -6(2)     |
| C22 | 18(2)    | 23(2)    | 17(2)    | -5.7(17)  | -3.0(16) | -2.5(16)  |
| C21 | 20(2)    | 28(2)    | 18(2)    | -4.1(18)  | 0.3(17)  | -5.8(17)  |
| C9  | 27(3)    | 30(3)    | 31(3)    | -13(2)    | -5(2)    | 4(2)      |

| C30 | 21(2) | 27(2) | 27(2)    | 2.7(18)  | -8.1(19)  | 1.3(19)  |
|-----|-------|-------|----------|----------|-----------|----------|
| C25 | 20(2) | 20(2) | 24(2)    | 2.3(17)  | -3.6(18)  | 2.5(17)  |
| C43 | 25(2) | 27(2) | 26(2)    | 4.6(19)  | 14.6(19)  | 1.1(19)  |
| C74 | 29(3) | 38(3) | 26(2)    | -6(2)    | -3(2)     | 11(2)    |
| C2  | 24(2) | 48(3) | 18(2)    | 15(2)    | -0.8(18)  | -3(2)    |
| C17 | 24(2) | 35(3) | 27(2)    | 5(2)     | -2.2(19)  | 8(2)     |
| C10 | 18(2) | 32(3) | 41(3)    | -1.9(19) | -5(2)     | 3(2)     |
| C47 | 24(2) | 22(2) | 38(3)    | 2.5(19)  | -5(2)     | 5(2)     |
| C53 | 19(2) | 43(3) | 23(2)    | 2(2)     | -0.1(18)  | 8(2)     |
| C45 | 17(2) | 23(2) | 27(2)    | 1.0(17)  | 3.0(18)   | 1.6(18)  |
| C42 | 34(3) | 33(3) | 16(2)    | 11(2)    | 6.2(18)   | 1.6(18)  |
| C49 | 21(2) | 33(3) | 30(3)    | 6(2)     | 8.2(19)   | 7(2)     |
| C60 | 24(2) | 38(3) | 12.7(19) | -5(2)    | -1.3(17)  | -0.5(18) |
| C44 | 19(2) | 20(2) | 28(2)    | 3.3(17)  | 4.5(18)   | 8.1(18)  |
| C63 | 18(2) | 19(2) | 28(2)    | 2.9(17)  | -0.2(18)  | 7.1(18)  |
| C41 | 22(2) | 29(2) | 16(2)    | 10.0(18) | 4.2(17)   | 0.3(17)  |
| C46 | 30(3) | 25(2) | 23(2)    | -1.7(19) | 2.4(19)   | -0.6(18) |
| C6  | 20(2) | 25(2) | 26(2)    | -0.5(18) | -3.6(18)  | 7.5(18)  |
| C66 | 28(3) | 28(2) | 32(3)    | 4(2)     | 4(2)      | -1(2)    |
| C40 | 26(2) | 34(3) | 21(2)    | 7(2)     | -1.0(19)  | -6.9(19) |
| C26 | 19(2) | 24(2) | 34(3)    | -2.4(18) | -3.1(19)  | 1.6(19)  |
| C18 | 28(3) | 19(2) | 24(2)    | -3.2(18) | -4.4(19)  | 0.7(17)  |
| C76 | 17(2) | 42(3) | 61(4)    | 0(2)     | 6(2)      | 17(3)    |
| C72 | 23(2) | 46(3) | 26(2)    | -2(2)    | 4(2)      | 10(2)    |
| C55 | 24(2) | 49(3) | 24(2)    | 9(2)     | -3(2)     | 10(2)    |
| C68 | 22(2) | 28(2) | 26(2)    | -4.1(19) | -3.6(19)  | -0.0(19) |
| C59 | 26(2) | 43(3) | 19(2)    | -12(2)   | 3.4(19)   | -6(2)    |
| C8  | 31(3) | 30(3) | 30(3)    | -10(2)   | 3(2)      | 2(2)     |
| C37 | 29(3) | 19(2) | 18(2)    | 1.4(18)  | 2.1(18)   | 1.0(16)  |
| C48 | 20(2) | 32(3) | 40(3)    | 1(2)     | 0(2)      | 5(2)     |
| C62 | 24(2) | 55(3) | 16(2)    | 4(2)     | -1.6(18)  | 6(2)     |
| C65 | 33(3) | 27(2) | 32(3)    | 8(2)     | -5(2)     | -5(2)    |
| C75 | 25(2) | 25(2) | 24(2)    | 4.0(19)  | 1.3(19)   | -0.3(18) |
| C28 | 24(2) | 29(2) | 33(3)    | 3(2)     | 9(2)      | 4(2)     |
| C15 | 32(3) | 39(3) | 21(2)    | 3(2)     | -8(2)     | 2(2)     |
| C7  | 26(2) | 27(2) | 28(2)    | 1(2)     | 5(2)      | 4.7(19)  |
| C24 | 24(2) | 28(2) | 27(2)    | -0.1(19) | -13.3(19) | -1.4(19) |
| C64 | 14(2) | 31(3) | 41(3)    | 2.8(19)  | -3(2)     | -3(2)    |
| C38 | 23(3) | 39(3) | 46(3)    | 7(2)     | -3(2)     | 9(2)     |
| C3  | 20(2) | 46(3) | 12.2(19) | 6(2)     | -1.4(17)  | -1.1(18) |
| C29 | 28(3) | 35(3) | 25(2)    | 6(2)     | -4(2)     | -1(2)    |
| C36 | 25(2) | 43(3) | 24(2)    | -9(2)    | 7.3(19)   | 7(2)     |
| C27 | 21(2) | 30(3) | 48(3)    | -2(2)    | 0(2)      | 3(2)     |
| C19 | 24(3) | 35(3) | 58(4)    | -5(2)    | -1(2)     | 8(3)     |
| C5  | 23(2) | 67(4) | 20(2)    | -14(2)   | 3.7(19)   | 7(2)     |

| 1    | 0.001.00   | nu Dengens for |      |        |          |
|------|------------|----------------|------|--------|----------|
| Aton | n Atom     | Length/Å       | Ator | n Atom | Length/Å |
| Rh5  | Rh6        | 2.4247(5)      | O17  | C40    | 1.466(6) |
| Rh5  | S3         | 2.5195(11)     | O24  | C54    | 1.273(6) |
| Rh5  | 019        | 2.082(3)       | O32  | C73    | 1.275(5) |
| Rh5  | O23        | 2.045(3)       | O6   | C14    | 1.261(6) |
| Rh5  | O21        | 2.043(3)       | O25  | C58    | 1.363(5) |
| Rh5  | N5         | 2.005(3)       | O25  | C59    | 1.462(6) |
| Rh2  | Rh1        | 2.4182(4)      | O8   | C16    | 1.262(5) |
| Rh2  | 02         | 2.066(3)       | 01   | C1     | 1.360(5) |
| Rh2  | O4         | 2.027(3)       | 01   | C2     | 1.468(6) |
| Rh2  | 06         | 2.050(3)       | O30  | C71    | 1.268(5) |
| Rh2  | 08         | 2.042(3)       | O29  | C71    | 1.270(6) |
| Rh2  | N2         | 2.244(4)       | O21  | C52    | 1.268(5) |
| Rh3  | Rh4        | 2.4243(4)      | N7   | C58    | 1.296(6) |
| Rh3  | S2         | 2.5102(11)     | N7   | C60    | 1.467(5) |
| Rh3  | O15        | 2.050(3)       | N1   | C1     | 1.313(6) |
| Rh3  | O13        | 2.046(3)       | N1   | C3     | 1.460(6) |
| Rh3  | 011        | 2.081(3)       | C39  | N5     | 1.303(6) |
| Rh3  | N3         | 2.003(3)       | N3   | C20    | 1.308(6) |
| Rh4  | O10        | 2.060(3)       | N3   | C22    | 1.464(5) |
| Rh4  | O14        | 2.043(3)       | C33  | C34    | 1.511(6) |
| Rh4  | 012        | 2.025(3)       | N5   | C41    | 1.469(5) |
| Rh4  | 016        | 2.038(3)       | C50  | C51    | 1.522(6) |
| Rh4  | N4         | 2.232(4)       | N2   | C18    | 1.127(6) |
| Rh1  | <b>S</b> 1 | 2.4729(11)     | C54  | C55    | 1.516(6) |
| Rh1  | 05         | 2.041(3)       | C13  | C12    | 1.505(6) |
| Rh1  | 03         | 2.080(3)       | N6   | C56    | 1.133(6) |
| Rh1  | O7         | 2.041(3)       | C35  | C36    | 1.499(6) |
| Rh1  | N1         | 1.995(4)       | N8   | C75    | 1.131(6) |
| Rh7  | Rh8        | 2.4201(4)      | C31  | C32    | 1.508(6) |
| Rh7  | S4         | 2.5004(11)     | C11  | C10    | 1.389(7) |
| Rh7  | O27        | 2.074(3)       | C11  | C6     | 1.399(7) |
| Rh7  | O31        | 2.046(3)       | N4   | C37    | 1.140(6) |
| Rh7  | O29        | 2.040(3)       | C16  | C17    | 1.494(6) |
| Rh7  | N7         | 2.000(3)       | C69  | C70    | 1.492(6) |
| Rh8  | O28        | 2.034(3)       | C14  | C15    | 1.499(6) |
| Rh8  | O26        | 2.056(3)       | C52  | C53    | 1.502(6) |
| Rh8  | O32        | 2.039(3)       | C67  | C66    | 1.382(7) |
| Rh8  | O30        | 2.046(3)       | C67  | C68    | 1.376(7) |
| Rh8  | N8         | 2.234(4)       | C71  | C72    | 1.510(6) |
| Rh6  | O20        | 2.030(3)       | C57  | C56    | 1.460(7) |
| Rh6  | O18        | 2.054(3)       | C23  | C22    | 1.515(6) |

## Table S5. Bond Lengths for MonoAspPhTOX.

| Rh6        | O22 | 2.041(3) | C23 | C24 | 1.518(7) |
|------------|-----|----------|-----|-----|----------|
| Rh6        | O24 | 2.033(3) | C61 | C60 | 1.503(6) |
| Rh6        | N6  | 2.233(4) | C61 | C62 | 1.514(7) |
| S3         | C43 | 1.827(4) | C73 | C74 | 1.495(6) |
| S3         | C44 | 1.791(5) | C4  | C3  | 1.520(6) |
| S2         | C25 | 1.770(5) | C4  | C5  | 1.516(7) |
| S2         | C24 | 1.824(4) | C22 | C21 | 1.531(6) |
| S4         | C63 | 1.766(5) | C9  | C10 | 1.376(7) |
| S4         | C62 | 1.827(5) | C9  | C8  | 1.398(7) |
| <b>S</b> 1 | C6  | 1.774(5) | C30 | C25 | 1.384(6) |
| <b>S</b> 1 | C5  | 1.820(5) | C30 | C29 | 1.387(7) |
| O20        | C50 | 1.270(5) | C25 | C26 | 1.401(6) |
| O28        | C69 | 1.259(5) | C43 | C42 | 1.523(7) |
| 018        | C39 | 1.266(5) | C2  | C3  | 1.526(7) |
| 05         | C14 | 1.286(5) | C47 | C46 | 1.382(7) |
| O10        | C20 | 1.264(5) | C47 | C48 | 1.360(7) |
| 014        | C33 | 1.265(5) | C45 | C44 | 1.383(6) |
| 015        | C35 | 1.271(6) | C45 | C46 | 1.397(6) |
| 012        | C31 | 1.277(5) | C42 | C41 | 1.520(6) |
| O27        | C69 | 1.274(5) | C49 | C44 | 1.371(6) |
| 016        | C35 | 1.263(6) | C49 | C48 | 1.392(7) |
| 019        | C50 | 1.255(5) | C60 | C59 | 1.517(7) |
| 013        | C33 | 1.277(5) | C63 | C68 | 1.394(6) |
| O22        | C52 | 1.274(5) | C63 | C64 | 1.380(7) |
| 011        | C31 | 1.269(5) | C41 | C40 | 1.525(6) |
| 02         | C1  | 1.257(6) | C6  | C7  | 1.386(7) |
| O3         | C12 | 1.263(5) | C66 | C65 | 1.390(7) |
| O7         | C16 | 1.272(5) | C26 | C27 | 1.386(7) |
| O23        | C54 | 1.267(6) | C18 | C19 | 1.443(7) |
| 031        | C73 | 1.256(5) | C76 | C75 | 1.459(7) |
| O4         | C12 | 1.274(5) | C8  | C7  | 1.379(7) |
| 09         | C20 | 1.363(5) | C37 | C38 | 1.439(7) |
| 09         | C21 | 1.458(5) | C65 | C64 | 1.393(7) |
| O26        | C58 | 1.270(6) | C28 | C29 | 1.387(7) |
| 017        | C39 | 1.362(5) | C28 | C27 | 1.392(7) |

## Table S6. Bond Angles for MonoAspPhTOX.

| Atom Atom Atom |     | n Atom | Angle/°   | Aton | 1 Aton | 1 Atom | Angle/°  |
|----------------|-----|--------|-----------|------|--------|--------|----------|
| S3             | Rh5 | Rh6    | 174.60(3) | C52  | 022    | Rh6    | 119.9(3) |
| 019            | Rh5 | Rh6    | 87.14(8)  | C31  | 011    | Rh3    | 119.0(3) |
| 019            | Rh5 | S3     | 94.01(9)  | C1   | 02     | Rh2    | 113.7(3) |
| O23            | Rh5 | Rh6    | 87.81(9)  | C12  | O3     | Rh1    | 117.8(3) |
| O23            | Rh5 | S3     | 86.93(9)  | C16  | O7     | Rh1    | 119.1(3) |

| O23 | Rh5 | 019 | 89.23(12)  | C54 | O23 | Rh5 | 118.8(3) |
|-----|-----|-----|------------|-----|-----|-----|----------|
| O21 | Rh5 | Rh6 | 88.38(8)   | C73 | 031 | Rh7 | 119.0(3) |
| O21 | Rh5 | S3  | 96.89(9)   | C12 | O4  | Rh2 | 120.8(3) |
| O21 | Rh5 | 019 | 89.75(12)  | C21 | 09  | C20 | 105.4(3) |
| O21 | Rh5 | O23 | 176.10(12) | C58 | O26 | Rh8 | 113.2(3) |
| N5  | Rh5 | Rh6 | 85.63(11)  | C40 | O17 | C39 | 105.3(3) |
| N5  | Rh5 | S3  | 93.21(11)  | C54 | O24 | Rh6 | 119.3(3) |
| N5  | Rh5 | 019 | 172.77(14) | C73 | O32 | Rh8 | 118.5(3) |
| N5  | Rh5 | O23 | 90.69(13)  | C14 | 06  | Rh2 | 120.2(3) |
| N5  | Rh5 | 021 | 89.85(13)  | C59 | O25 | C58 | 105.0(3) |
| 02  | Rh2 | Rh1 | 90.48(9)   | C16 | 08  | Rh2 | 118.7(3) |
| O4  | Rh2 | Rh1 | 87.26(9)   | C2  | 01  | C1  | 105.9(4) |
| O4  | Rh2 | 02  | 176.56(12) | C71 | O30 | Rh8 | 119.2(3) |
| 06  | Rh2 | Rh1 | 87.27(9)   | C71 | O29 | Rh7 | 119.4(3) |
| 06  | Rh2 | 02  | 91.44(12)  | C52 | O21 | Rh5 | 118.6(3) |
| 06  | Rh2 | 04  | 91.04(12)  | C58 | N7  | Rh7 | 121.2(3) |
| 08  | Rh2 | Rh1 | 87.99(8)   | C60 | N7  | Rh7 | 129.0(3) |
| 08  | Rh2 | 02  | 88.52(12)  | C60 | N7  | C58 | 109.6(4) |
| 08  | Rh2 | 04  | 88.80(12)  | C1  | N1  | Rh1 | 120.7(3) |
| 08  | Rh2 | 06  | 175.26(12) | C3  | N1  | Rh1 | 129.4(3) |
| N2  | Rh2 | Rh1 | 171.00(10) | C3  | N1  | C1  | 109.5(4) |
| N2  | Rh2 | 02  | 95.48(13)  | 017 | C39 | 018 | 116.9(4) |
| N2  | Rh2 | 04  | 87.08(13)  | N5  | C39 | 018 | 128.4(4) |
| N2  | Rh2 | 06  | 85.84(13)  | N5  | C39 | 017 | 114.8(4) |
| N2  | Rh2 | 08  | 98.88(13)  | C20 | N3  | Rh3 | 121.0(3) |
| S2  | Rh3 | Rh4 | 175.11(3)  | C22 | N3  | Rh3 | 129.5(3) |
| 015 | Rh3 | Rh4 | 87.30(9)   | C22 | N3  | C20 | 109.3(3) |
| 015 | Rh3 | S2  | 87.90(9)   | 013 | C33 | 014 | 126.1(4) |
| 013 | Rh3 | Rh4 | 88.56(8)   | C34 | C33 | 014 | 117.3(4) |
| 013 | Rh3 | S2  | 96.25(8)   | C34 | C33 | 013 | 116.6(4) |
| 013 | Rh3 | 015 | 175.84(12) | C39 | N5  | Rh5 | 121.1(3) |
| 011 | Rh3 | Rh4 | 87.25(8)   | C41 | N5  | Rh5 | 129.3(3) |
| 011 | Rh3 | S2  | 93.59(8)   | C41 | N5  | C39 | 109.2(4) |
| 011 | Rh3 | 015 | 89.24(12)  | 09  | C20 | O10 | 116.8(4) |
| 011 | Rh3 | 013 | 90.19(12)  | N3  | C20 | O10 | 128.6(4) |
| N3  | Rh3 | Rh4 | 85.76(10)  | N3  | C20 | 09  | 114.6(4) |
| N3  | Rh3 | S2  | 93.39(10)  | O25 | C58 | O26 | 116.5(4) |
| N3  | Rh3 | 015 | 90.55(13)  | N7  | C58 | O26 | 128.4(4) |
| N3  | Rh3 | 013 | 89.51(13)  | N7  | C58 | 025 | 115.1(4) |
| N3  | Rh3 | 011 | 173.01(13) | 019 | C50 | O20 | 126.2(4) |
| O10 | Rh4 | Rh3 | 91.08(8)   | C51 | C50 | O20 | 115.7(4) |
| 014 | Rh4 | Rh3 | 86.97(8)   | C51 | C50 | 019 | 118.1(4) |
| 014 | Rh4 | O10 | 90.02(12)  | C18 | N2  | Rh2 | 156.1(4) |
| 012 | Rh4 | Rh3 | 88.01(8)   | O24 | C54 | O23 | 126.3(4) |
| 012 | Rh4 | O10 | 179.00(12) | C55 | C54 | O23 | 116.6(4) |

| 012        | Rh4 | 014        | 90.33(12)  | C55 | C54 | O24 | 117.2(4) |
|------------|-----|------------|------------|-----|-----|-----|----------|
| 016        | Rh4 | Rh3        | 88.09(8)   | C56 | N6  | Rh6 | 163.0(3) |
| 016        | Rh4 | O10        | 89.09(12)  | O16 | C35 | 015 | 126.2(4) |
| 016        | Rh4 | 014        | 174.96(12) | C36 | C35 | 015 | 116.1(4) |
| 016        | Rh4 | 012        | 90.47(12)  | C36 | C35 | 016 | 117.7(4) |
| N4         | Rh4 | Rh3        | 174.99(9)  | C75 | N8  | Rh8 | 158.0(4) |
| N4         | Rh4 | O10        | 91.64(12)  | O11 | C31 | 012 | 124.8(4) |
| N4         | Rh4 | O14        | 97.24(12)  | C32 | C31 | 012 | 116.9(4) |
| N4         | Rh4 | 012        | 89.24(12)  | C32 | C31 | 011 | 118.3(4) |
| N4         | Rh4 | 016        | 87.74(13)  | C6  | C11 | C10 | 119.4(5) |
| <b>S</b> 1 | Rh1 | Rh2        | 176.08(3)  | C37 | N4  | Rh4 | 163.9(3) |
| 05         | Rh1 | Rh2        | 88.13(9)   | O4  | C12 | 03  | 125.6(4) |
| 05         | Rh1 | <b>S</b> 1 | 88.12(9)   | C13 | C12 | 03  | 117.6(4) |
| O3         | Rh1 | Rh2        | 88.03(8)   | C13 | C12 | 04  | 116.8(4) |
| O3         | Rh1 | <b>S</b> 1 | 90.91(9)   | 08  | C16 | O7  | 126.4(4) |
| O3         | Rh1 | 05         | 91.30(12)  | C17 | C16 | O7  | 117.2(4) |
| O7         | Rh1 | Rh2        | 87.50(8)   | C17 | C16 | 08  | 116.4(4) |
| O7         | Rh1 | <b>S</b> 1 | 96.24(9)   | O27 | C69 | O28 | 125.3(4) |
| O7         | Rh1 | 05         | 175.62(12) | C70 | C69 | O28 | 116.7(4) |
| O7         | Rh1 | O3         | 88.27(12)  | C70 | C69 | O27 | 118.0(4) |
| N1         | Rh1 | Rh2        | 86.08(11)  | O6  | C14 | 05  | 125.0(4) |
| N1         | Rh1 | <b>S</b> 1 | 94.98(11)  | C15 | C14 | 05  | 117.0(4) |
| N1         | Rh1 | 05         | 88.84(14)  | C15 | C14 | 06  | 118.0(4) |
| N1         | Rh1 | O3         | 174.11(14) | O21 | C52 | O22 | 125.9(4) |
| N1         | Rh1 | 07         | 91.13(13)  | C53 | C52 | 022 | 116.8(4) |
| S4         | Rh7 | Rh8        | 176.20(3)  | C53 | C52 | 021 | 117.2(4) |
| O27        | Rh7 | Rh8        | 87.88(8)   | C68 | C67 | C66 | 120.7(5) |
| O27        | Rh7 | S4         | 91.90(8)   | O29 | C71 | O30 | 125.6(4) |
| 031        | Rh7 | Rh8        | 87.54(8)   | C72 | C71 | O30 | 117.0(4) |
| 031        | Rh7 | S4         | 96.24(9)   | C72 | C71 | O29 | 117.4(4) |
| 031        | Rh7 | O27        | 88.51(12)  | C24 | C23 | C22 | 113.7(4) |
| O29        | Rh7 | Rh8        | 87.72(9)   | 01  | C1  | 02  | 117.5(4) |
| O29        | Rh7 | S4         | 88.49(9)   | N1  | C1  | 02  | 128.3(4) |
| O29        | Rh7 | O27        | 90.50(12)  | N1  | C1  | 01  | 114.2(4) |
| O29        | Rh7 | 031        | 175.20(12) | C62 | C61 | C60 | 112.3(4) |
| N7         | Rh7 | Rh8        | 85.51(10)  | C57 | C56 | N6  | 179.5(5) |
| N7         | Rh7 | S4         | 94.72(11)  | O32 | C73 | 031 | 126.7(4) |
| N7         | Rh7 | O27        | 173.38(13) | C74 | C73 | 031 | 117.1(4) |
| N7         | Rh7 | 031        | 90.75(13)  | C74 | C73 | O32 | 116.1(4) |
| N7         | Rh7 | O29        | 89.69(14)  | C5  | C4  | C3  | 112.2(4) |
| O28        | Rh8 | Rh7        | 87.16(8)   | C23 | C22 | N3  | 114.7(3) |
| O26        | Rh8 | Rh7        | 90.91(9)   | C21 | C22 | N3  | 101.1(3) |
| O26        | Rh8 | O28        | 176.89(13) | C21 | C22 | C23 | 113.9(4) |
| O32        | Rh8 | Rh7        | 87.90(8)   | C22 | C21 | 09  | 104.7(3) |
| O32        | Rh8 | O28        | 89.10(12)  | C8  | C9  | C10 | 119.8(5) |

| O32 | Rh8        | O26 | 88.38(12)  | C29 | C30 | C25 | 121.0(4) |
|-----|------------|-----|------------|-----|-----|-----|----------|
| O30 | Rh8        | Rh7 | 87.55(8)   | C30 | C25 | S2  | 117.7(4) |
| O30 | Rh8        | O28 | 90.45(12)  | C26 | C25 | S2  | 123.6(4) |
| O30 | Rh8        | O26 | 91.91(13)  | C26 | C25 | C30 | 118.6(4) |
| O30 | Rh8        | O32 | 175.44(12) | C42 | C43 | S3  | 111.9(3) |
| N8  | Rh8        | Rh7 | 171.90(10) | C3  | C2  | 01  | 104.6(4) |
| N8  | Rh8        | O28 | 88.76(13)  | C9  | C10 | C11 | 120.7(5) |
| N8  | Rh8        | O26 | 93.45(13)  | C48 | C47 | C46 | 119.0(5) |
| N8  | Rh8        | O32 | 99.04(14)  | C46 | C45 | C44 | 118.4(4) |
| N8  | Rh8        | O30 | 85.49(14)  | C41 | C42 | C43 | 113.4(4) |
| O20 | Rh6        | Rh5 | 88.04(8)   | C48 | C49 | C44 | 119.1(5) |
| 018 | Rh6        | Rh5 | 91.11(9)   | C61 | C60 | N7  | 113.5(4) |
| 018 | Rh6        | O20 | 179.12(12) | C59 | C60 | N7  | 101.1(4) |
| O22 | Rh6        | Rh5 | 87.11(9)   | C59 | C60 | C61 | 115.1(4) |
| O22 | Rh6        | O20 | 89.80(12)  | C45 | C44 | S3  | 115.9(3) |
| O22 | Rh6        | O18 | 90.40(12)  | C49 | C44 | S3  | 123.0(4) |
| O24 | Rh6        | Rh5 | 87.73(9)   | C49 | C44 | C45 | 121.1(5) |
| O24 | Rh6        | O20 | 90.92(12)  | C68 | C63 | S4  | 125.0(4) |
| O24 | Rh6        | O18 | 88.80(12)  | C64 | C63 | S4  | 115.9(4) |
| O24 | Rh6        | O22 | 174.77(12) | C64 | C63 | C68 | 119.0(4) |
| N6  | Rh6        | Rh5 | 175.00(9)  | C42 | C41 | N5  | 114.4(4) |
| N6  | Rh6        | O20 | 88.76(12)  | C40 | C41 | N5  | 101.3(4) |
| N6  | Rh6        | O18 | 92.07(12)  | C40 | C41 | C42 | 113.5(4) |
| N6  | Rh6        | O22 | 96.72(13)  | C45 | C46 | C47 | 121.0(4) |
| N6  | Rh6        | O24 | 88.48(13)  | C11 | C6  | S1  | 124.1(4) |
| C43 | S3         | Rh5 | 109.36(15) | C7  | C6  | S1  | 115.9(4) |
| C44 | S3         | Rh5 | 113.44(15) | C7  | C6  | C11 | 119.8(4) |
| C44 | S3         | C43 | 102.2(2)   | C65 | C66 | C67 | 118.8(5) |
| C25 | S2         | Rh3 | 112.55(15) | C41 | C40 | O17 | 104.5(3) |
| C24 | S2         | Rh3 | 109.02(14) | C27 | C26 | C25 | 120.5(5) |
| C24 | S2         | C25 | 103.4(2)   | C19 | C18 | N2  | 177.3(5) |
| C63 | S4         | Rh7 | 109.32(14) | C63 | C68 | C67 | 120.8(5) |
| C62 | S4         | Rh7 | 107.20(16) | C60 | C59 | O25 | 105.9(4) |
| C62 | S4         | C63 | 105.4(2)   | C7  | C8  | C9  | 119.9(5) |
| C6  | <b>S</b> 1 | Rh1 | 109.54(16) | C38 | C37 | N4  | 179.9(5) |
| C5  | <b>S</b> 1 | Rh1 | 107.37(16) | C49 | C48 | C47 | 121.4(5) |
| C5  | <b>S</b> 1 | C6  | 105.0(2)   | C61 | C62 | S4  | 115.6(3) |
| C50 | O20        | Rh6 | 120.0(3)   | C64 | C65 | C66 | 120.6(5) |
| C69 | O28        | Rh8 | 121.2(3)   | C76 | C75 | N8  | 176.6(5) |
| C39 | O18        | Rh6 | 113.7(3)   | C27 | C28 | C29 | 119.2(5) |
| C14 | 05         | Rh1 | 119.1(3)   | C8  | C7  | C6  | 120.4(5) |
| C20 | O10        | Rh4 | 113.5(3)   | C23 | C24 | S2  | 112.3(3) |
| C33 | 014        | Rh4 | 120.2(3)   | C65 | C64 | C63 | 120.1(4) |
| C35 | 015        | Rh3 | 119.2(3)   | C4  | C3  | N1  | 113.1(4) |
| C31 | 012        | Rh4 | 120.9(3)   | C2  | C3  | N1  | 101.5(4) |

| C69 | O27 | Rh7 | 118.1(3) | C2  | C3  | C4  | 115.0(4) |
|-----|-----|-----|----------|-----|-----|-----|----------|
| C35 | 016 | Rh4 | 119.1(3) | C28 | C29 | C30 | 120.3(5) |
| C50 | 019 | Rh5 | 118.6(3) | C28 | C27 | C26 | 120.4(5) |
| C33 | 013 | Rh3 | 118.1(3) | C4  | C5  | S1  | 115.1(3) |

Table S7 Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for MonoAspPhTOX.

| Atom | x         | У          | z         | U(eq)    |
|------|-----------|------------|-----------|----------|
| H01d | 942(11)   | 7281(9)    | 11979(15) | 34.9(13) |
| H01e | 1890(30)  | 7048(4)    | 12684(4)  | 34.9(13) |
| H01f | 2340(20)  | 7449(5)    | 11992(15) | 34.9(13) |
| H01P | 7890(5)   | 6567.5(17) | 9513(3)   | 33.8(13) |
| H01g | 3200(30)  | 7159(3)    | 7608(4)   | 35.5(14) |
| H01h | 4154(11)  | 7362(7)    | 6885(17)  | 35.5(14) |
| H01i | 2740(20)  | 7501(5)    | 6806(16)  | 35.5(14) |
| H01j | 6031(12)  | 2670(9)    | -4452(16) | 38.4(15) |
| H01k | 6960(30)  | 2905(4)    | -5163(3)  | 38.4(15) |
| H011 | 7440(20)  | 2511(5)    | -4465(16) | 38.4(15) |
| H01a | 8170(30)  | 2873(3)    | -124(3)   | 36.0(14) |
| H01b | 9109(11)  | 2649(8)    | 592(17)   | 36.0(14) |
| H01c | 7690(20)  | 2518(5)    | 648(16)   | 36.0(14) |
| H01Z | 14413(5)  | 3325.9(16) | -3177(4)  | 34.9(13) |
| H02  | 410(30)   | 5123(8)    | 7135(5)   | 37.4(15) |
| Н    | 1453(5)   | 5267(11)   | 7854(13)  | 37.4(15) |
| На   | 300(20)   | 5608(4)    | 7695(16)  | 37.4(15) |
| H02a | 13031(4)  | 4567(12)   | 590(13)   | 48.8(17) |
| H02b | 13247(6)  | 4588(11)   | 1667(14)  | 48.8(17) |
| H02c | 13232(7)  | 4086.9(18) | 1150(30)  | 48.8(17) |
| H0aa | 651(5)    | 6003.3(16) | 2904(3)   | 31.9(12) |
| Hb   | -437(5)   | 5638.1(16) | 2707(3)   | 31.9(12) |
| H4aa | 11185(4)  | 4157.1(18) | -1676(3)  | 32.6(12) |
| Hc   | 11517(4)  | 4217.6(18) | -621(3)   | 32.6(12) |
| H02p | 6177(4)   | 5859.8(18) | 9157(3)   | 33.4(12) |
| H02q | 6473(4)   | 5818.5(18) | 8093(3)   | 33.4(12) |
| H029 | -3(4)     | 5312.4(15) | 4235(3)   | 23.2(10) |
| Hlaa | 1454(4)   | 5133.5(15) | 2670(3)   | 26.7(11) |
| Hd   | 670(4)    | 4758.7(15) | 3255(3)   | 26.7(11) |
| H02t | 8847(5)   | 7009.3(16) | 12036(3)  | 35.5(13) |
| H2aa | 77(4)     | 7024.8(16) | 6045(3)   | 30.1(12) |
| H02d | 3593(4)   | 4053.5(16) | 3458(3)   | 31.2(12) |
| H02e | 3601(4)   | 3697.6(16) | 4307(3)   | 31.2(12) |
| H5aa | 10040(30) | 4771(7)    | -4591(9)  | 45.9(16) |
| He   | 10370(20) | 4256(6)    | -4983(18) | 45.9(16) |
| Hf   | 9166(9)   | 4528(12)   | -5329(10) | 45.9(16) |

| H02u | 5333(4)  | 5060.6(18) | 8409(3)   | 36.0(13) |
|------|----------|------------|-----------|----------|
| H02v | 4547(4)  | 5163.5(18) | 7502(3)   | 36.0(13) |
| H02w | 4940(30) | 5195(6)    | 12142(10) | 42.9(16) |
| H02x | 5364(19) | 5711(7)    | 12467(17) | 42.9(16) |
| H02y | 4143(11) | 5481(12)   | 12874(8)  | 42.9(16) |
| H02z | 9375(4)  | 6682.3(17) | 10641(4)  | 36.6(13) |
| H02J | 1466(4)  | 2846.4(16) | 639(4)    | 33.4(12) |
| H02f | 5340(20) | 4842(9)    | 353(4)    | 42.2(16) |
| H02g | 6467(4)  | 4745(11)   | -316(14)  | 42.2(16) |
| H02h | 5380(30) | 4366(3)    | -242(15)  | 42.2(16) |
| H02L | 5005(4)  | 3003.8(15) | 1451(3)   | 26.6(11) |
| H02i | 4599(5)  | 4345.8(16) | 4847(3)   | 33.0(12) |
| H02k | 5681(5)  | 3982.0(16) | 4625(3)   | 33.0(12) |
| H02N | 2247(4)  | 3475.5(17) | 3044(3)   | 33.4(13) |
| H6aa | 9314(4)  | 4060.9(16) | -350(3)   | 29.9(12) |
| H02R | 4987(4)  | 4678.7(16) | 3309(3)   | 26.9(11) |
| H02S | 3554(5)  | 2753.8(16) | 368(3)    | 31.2(12) |
| H7aa | 13863(5) | 2959.5(16) | -4545(3)  | 35.2(13) |
| H02m | 6464(4)  | 4853.7(16) | 4870(3)   | 32.2(12) |
| H02o | 5662(4)  | 5229.1(16) | 4296(3)   | 32.2(12) |
| H3aa | -2747(4) | 6515.4(16) | 4549(3)   | 30.8(12) |
| H8aa | 2510(5)  | 4562(14)   | -4297(13) | 60(2)    |
| Hg   | 2298(8)  | 4094(2)    | -3700(30) | 60(2)    |
| Hh   | 2247(7)  | 4605(13)   | -3230(16) | 60(2)    |
| H9aa | 5850(30) | 3373(9)    | -143(5)   | 47.5(17) |
| Hi   | 4787(5)  | 3268(12)   | -866(14)  | 47.5(17) |
| Hj   | 5850(30) | 2887(3)    | -707(17)  | 47.5(17) |
| H03a | 9280(20) | 3365(10)   | 4851(3)   | 48.9(17) |
| H03b | 9480(30) | 2917(2)    | 4198(16)  | 48.9(17) |
| H03c | 10470(7) | 3334(11)   | 4221(16)  | 48.9(17) |
| H031 | 12964(4) | 3457.4(16) | -2058(3)  | 30.3(12) |
| H03x | 10302(5) | 4939.5(17) | -899(3)   | 35.3(13) |
| H03y | 9511(5)  | 4823.9(17) | -4(3)     | 35.3(13) |
| H033 | 6797(5)  | 7205.1(17) | 12336(4)  | 36.4(13) |
| H035 | 830(5)   | 3224.7(17) | 1948(4)   | 36.7(13) |
| H03z | 10632(4) | 3437.0(18) | -383(3)   | 38.1(14) |
| Hk   | 11914(4) | 3446.4(18) | -900(3)   | 38.1(14) |
| H037 | 11834(5) | 2711.5(17) | -4759(4)  | 36.6(13) |
| H039 | -3406(5) | 7229.5(17) | 6892(4)   | 34.6(12) |
| H03d | 930(20)  | 7022(5)    | 8052(17)  | 46.6(17) |
| H03e | 700(30)  | 6507(7)    | 7626(8)   | 46.6(17) |
| H03f | -242(7)  | 6718(12)   | 8352(10)  | 46.6(17) |
| H03g | 5308(5)  | 7088.8(16) | 11222(3)  | 32.6(12) |
| H03n | -1395(4) | 5939.0(16) | 4099(3)   | 31.4(12) |
| H03o | -1416(4) | 6288.0(16) | 3239(3)   | 31.4(12) |

| H03  | 10371(4) | 2840.6(17) | -3628(4)  | 34.3(13) |
|------|----------|------------|-----------|----------|
| H03p | 8244(7)  | 5423(13)   | 5817(11)  | 54.1(19) |
| H03q | 8241(7)  | 5883(2)    | 6460(30)  | 54.1(19) |
| H03r | 8022(5)  | 5369(11)   | 6888(16)  | 54.1(19) |
| H03h | 4235(4)  | 5926.4(17) | 7857(3)   | 31.1(12) |
| H03s | -1297(5) | 7326.9(17) | 7105(3)   | 35.0(13) |
| H03t | 4340(30) | 6600(9)    | 2684(3)   | 45.9(16) |
| H03u | 4440(30) | 7068(2)    | 3293(16)  | 45.9(16) |
| H03v | 5494(5)  | 6674(11)   | 3338(15)  | 45.9(16) |
| H03w | -4122(5) | 6811.1(17) | 5618(4)   | 39.7(14) |
| H03i | -2836(5) | 5573(15)   | 10666(4)  | 58(2)    |
| Н03ј | -2568(8) | 5302(8)    | 11600(20) | 58(2)    |
| H03k | -2599(8) | 5869(7)    | 11580(20) | 58(2)    |
| H031 | 5461(5)  | 6583.9(19) | 7912(3)   | 44.2(16) |
| H03m | 6774(5)  | 6594.4(19) | 8392(3)   | 44.2(16) |



























S47











## References

- 1. M. P. Sibi, D. Rutherford, P. A. Renhowe and B. Li, *Journal of the American Chemical Society*, 1999, **121**, 7509-7516.
- 2. United States of America Pat., US 2014/0206677, 2014.
- 3. T. Nagashima and H. M. L. Davies, *Abstr Pap Am Chem S*, 2000, **220**, U120-U120.
- 4. D.-R. Hou, J. H. Reibenspies and K. Burgess, *The Journal of Organic Chemistry*, 2001, **66**, 206-215.
- 5. B. G. Anderson, D. Cressy, J. J. Patel, C. F. Harris, G. P. A. Yap, J. F. Berry and A. Darko, *Inorg. Chem.*, 2019, **58**, 1728-1732.
- 6. W. Sheffield, A. Abshire and A. Darko, *Eur. J. Org. Chem.*, 2019, 6347-6351.
- 7. T. Cachet and I. W. G. M. Anal, *Flavour Frag J*, 2011, **26**, 297-299.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Journal*, 2009.
- 9. Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215-241.
- 10. F. Weigend and R. Ahlrichs, *Physical Chemistry Chemical Physics*, 2005, **7**, 3297-3305.
- 11. G. A. Zhurko, *Journal*, Chemcraft graphical software for visualization of quantum chemistry computations.