Electronic Supplementary Information

Synthesis and characterization of zinc di(O-2,2-dimethylpentan-3-yl dithiocarbonates) bearing pyridine or tetramethylethylenediamine coligands and investigation of their thermal conversion mechanisms towards nanocrystalline zinc sulfide

Efthymia Vakalopoulou,^{a,1} Christine Buchmaier,^{a,1} Andreas Pein,^a Robert Saf,^a Roland C. Fischer,^b Ana Torvisco,^b Fernando Warchomicka,^c Thomas Rath,^{a,*} Gregor Trimmel^a

- ^a Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
- ^b Institute of Inorganic Chemistry, NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
- ^c Institute of Materials Science, Joining and Forming, Graz University of Technology, Kopernikusgasse
 24, 8010, Graz, Austria

* corresponding author email address: thomas.rath@tugraz.at

¹ both authors have equally contributed

¹³C-NMR

Fig. S1 ¹³C- NMR spectra of (a) ZnHep, (b) ZnHepTMEDA and (c) ZnHepPyr.

¹H-NMR

Fig. S2 ¹H- NMR spectra of (a) ZnHep, (b) ZnHepTMEDA and (c) ZnHepPyr.

Wavenum	ber (cm ⁻¹)	Assignment		
ZnHep	ZnHepTMEDA	ZnHepPyr	Assignment	
2966	2966	2964	v _{as} CH (R-CH ₃)	
2875	2871	2873	v _s CH (R-CH ₃)	
-	2801	-	v _s CH, CH ₃ (N-CH ₃ , N-CH ₂)	
-	-	1608	<i>v</i> C=C	
-	-	1483	v C=N	
1477	1477	1475	$δ_{as}$ CH (R-CH ₃), δ CH (-CH ₂ -) δ CH (N-CH N-CH)	
1463	1461	1463		
		1 4 4 4		
-	-	1444	V C=N	
1398	1393	1395	$\delta_s CH (R-CH_3)$ $\delta_s CH_3 (R(CH_3)_3)$	
1367	1365	1365		
1344	1330	1340	ω CH (-CH ₂ -)	
-	1285	-	<i>ν</i> CN	
1228	1224	1228		
1210	1171	1208		
1128	1122	1124	ρ CH ₃ , ν (S)CO, ν _s COC	
1079	1081	1079	v _{os} CCC	
1057	1057	1059	v_{as} SCS(ROCS ₂)	
1034	1040	1038	v C=S(ROCS ₂)	

Table S1 Assignment of the vibration bands of the zinc xanthate (ZnHep) and complexes(ZnHepTMEDA, ZnHepPyr)

Fig. S3 (a) Offset view of the crystal packing diagram of ZnHepTMEDA along the a-axis. (b) View of the crystal packing diagram of ZnHepTMEDA forming the 2D sheets propagated by C–H···S hydrogen bonds. C–H···S hydrogen bonds highlighted by dashed bonds. All non-carbon atoms shown as 30% shaded ellipsoids. Hydrogen atoms not involved in interactions removed and carbon atoms grayed for clarity.

Fig. S4 (a) Offset view of the crystal packing diagram of ZnHepPyr along the a-axis. (b) View of the crystal packing diagram of ZnHepPyr forming the 2D sheets propagated by C–H···S hydrogen bonds. C–H···S hydrogen bonds highlighted by dashed bonds. All non-carbon atoms shown as 30% shaded ellipsoids. Hydrogen atoms not involved in interactions removed and carbon atoms grayed for clarity.

	Space Group	Intramolecular Bonds (C—H…S)	Hydrogen	Intermolecular Bonds (C—H…S)	Hydrogen
		(Å)	(°)	(Å)	(°)
ZnHepTMEDA	Pbcn	2.52 (H2…S2) 2.84 (H9B…S2 ⁱ) 2.99 (H11 <i>C</i> …S2 ⁱ) 3.02 (H11 <i>A</i> …S1)	114 135 135 111	2.93 (H11 <i>B</i> …S2 ⁱⁱ)	151
ZnHepPyr	C2/c	2.54 (H2…S2)	115	2.96 (H5C…S1 ⁱⁱⁱ) 2.96 (H11…S1) 3.02 (H9…S1 ^{iv})	150 134 127

Table S2 List of bond lengths and angles for intra- and intermolecular secondary interactions inZnHepTMEDA and ZnHepPyr

Symmetry codes: (i) -*x*, *y*, -*z*+1/2; (ii) *x*+1/2, *y*-1/2, -*z*+1/2; (iii) -*x*, -*y*, -*z*; (iv) *x*, -*y*+1, *z*-1/2

Fig. S5 DI/EI mass spectra showing volatile products formed during thermal decomposition of KHep (• 4,4-Dimethyl-2-pentene: M⁺, C₇H₁₄, m/z_{calc}=98.1096Da; [M-CH₃]⁺, C₆H₁₁, m/z_{calc}=83.0861Da; C₄H₇⁺, m/z_{calc}=55.0548Da; relative intensities agree well to Wiley/NIST library spectra. • COS: M⁺, m/z_{calc}=59.9670Da. • 2,2-Dimetyl-3-pentanol: M⁺ not observed; [M-2H]⁺, C₇H₁₄O, m/z_{calc}=114.1045Da; [M-CH₃]⁺, C₆H₁₃O, m/z_{calc}=101.0966Da; [M-C₂H₅]⁺, C₅H₁₁O, m/z_{calc}=87.0810Da; C₅H₉⁺, m/z_{calc}=69.0704Da; C₃H₇O⁺, m/z_{calc}=59.0497Da; C₄H₉⁺, m/z_{calc}=57.0704Da; rel. intensities agree to Wiley/NIST spectra. • CS₂: M⁺, m/z_{calc}=75.9441Da). (**a**) Approx. 20% and (**b**) 80% thermal decomposition, respectively.

Fig. S6 DI/EI mass spectrometry of ZnHepTMEDA. (**a**) Mass spectrum after approx. 30% thermal decomposition / evaporation showing M⁺ ion of ZnHep at m/z=446.0424Da (compare Fig. S4a) due to thermally triggered loss of TMEDA prior evaporation. Inset: expanded view of the low mass region showing xanthate decomposition products (compare Fig. S5) as well as TMEDA (• M⁺, C₆H₁₆N₂, m/z_{calc}=116.1313Da; [M-C₃H₈N]⁺, C₃H₈N, m/z_{calc}=58.0657Da). (**b**) Normalized extracted ion chromatograms at a heating rate of 20 and (**c**) 100 °C/min, respectively (M⁺ of ZnHep, 446.042Da; M⁺ of COS, 59.967Da; M⁺ of CS₂, 75.994Da, M⁺ of TMEDA, 116.131Da).

Fig. S7 DI/EI mass spectrometry of ZnHepPyr. (**a**) Mass spectrum after approx. 40 % thermal decomposition / evaporation showing M⁺ of ZnHep at m/z=446.0420Da (compare Fig. S4a) due to thermally triggered loss of pyridine prior evaporation. Inset: expanded view of the low mass region showing xanthate decomposition products (compare Fig. S5) as well as pyridine (• M⁺, C₅H₅N, m/z_{calc}=79.0422Da; C₄H₄⁺, m/z_{calc}=52.0313Da). (**b**) Normalized extracted ion chromatograms at a heating rate of 20 and (**c**) 100 °C/min, respectively (M⁺ of ZnHep, 446.042Da; M⁺ of COS, 59.967Da; M⁺ of CS₂, 75.994Da, M⁺ of pyridine, 79.042Da).