Supporting information

Lanthanide functionalized MOFs thin films as effective luminescent

materials and chemical sensor for ammonia

Wan-Peng Ma, ^a Bing Yan^{b*}

a. School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.

b. School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.

^{*} Corresponding author: Email address: byan@tongji.edu.cn (Bing Yan)

Fig. S1. The synthesis process of Linker (L)

Fig. S2. The 1H NMR (DMSO-D $_6$, 600 MHz) spectra of L

Fig. S3. The EDS spectra of UMOF (a), Eu@UMOF (b), Eu(TTA)@UMOF (c)

Fig. S4. The EDS mapping of Eu@UMOF-Eu-LA film's cross-section

Fig. S5. (a) The FTIR spectra of L. (b)The FTIR spectra of UMOF, Ln@UMOF and Ln(TTA/TAA)@UMOF.

Fig. S6. The UV-Vis absorption spectra of $\ensuremath{\mathsf{L}}$.

Fig. S7. The UV-Vis diffuse reflection spectra of LA, Eu-LA, UMOF, UMOF-LA.

Fig. S8. The TG and DTG curve of UMOF (a) and Eu@UMOF (b) at temperature range of 40-

800 °C

Fig. S9. N₂ adsorption-desorption isotherms of UMOF, Eu@UMOF and Eu(TTA)@UMOF.

Fig. S10. The emission spectra of LA under the excitation of 280 nm

Fig. S11. The emission spectra of bpy (2,2-bipyridine-5,5-dicarboxylic acid) (a), **UMOF** and bpy (b)

Fig. S12. The emission spectra of Eu-LA (a) and Tb-LA (b), under the excitation of 280nm

Fig. S13. The emission spectra of UMOF-Eu-LA, UMOF-Tb-LA under 328 nm (a,b), under 285 nm (c,d)

Fig. S14. The emission spectra of Eu@UMOF (a) and Tb@UMOF under the excitation of 310 nm and 330 nm, respectively.

Fig. S15. The emission spectra of Eu@UMOF-Eu-LA film under the excitation of 310 nm

Fig. S16. The emission spectra of Nd(TTA)@UMOF under the excitation of 361 nm(a). the emission spectra of Er(TTA)@UMOF under the excitation of 330nm

Fig. S17. The decay curve of Eu@UMOF-Eu-LA before and after exposed to NH₃

Fig. S18. The emission intensity of Eu@UMOF-Eu-LA at 615 nm after exposing to the pure vapors and mixed vapors with NH_3

Fig. S19. The luminescent stablity of Eu@UMOF-Eu-LA after 1 h, 3 h, 5 h, 7 h, under the excitation of 310 nm.

Fig. S20. The time response diagram of Eu@UMOF-Eu-LA film in the presences of NH_3

Fig. S21. The recover curve of Eu@UMOF-Eu-LA in the 40 $^\circ\!C$ oven

Fig. S22. The PXRD pattern (a) and the UV-Vis absorption spectra (b) of Eu@UMOF before and after exposed to NH_3

Fig. S23. The FTIR spectra of Eu@UMOF before and after exposed to NH₃

Fig. S24. The excitation spectra of Eu@UMOF and the emission spectra of ligand in Eu@UMOF before and after exposed to NH_3

Elemen	Atomic percentages	Atomic percentages	Atomic percentages
t	UMOF	Eu@UMOF	Eu(TTA)@UMOF
С	69.30	67.87	66.22
Ν	8.79	8.08	8.10
0	18.24	18.63	19.75
F	0	0	1.35
S	0	0	0.32
Zr	3.67	5.09	4.06
Eu	0	0.32	0.20

Table. S1. The element weight percentages of UMOF, Eu@UMOF, Eu(TTA)@UMOF

 Table. S2. The FTIR absorption peak and the related vibration of Linker

Vibration	Absorption peak (cm ⁻¹)	
V(NH)	3415	
aromatic	3070	
Vas(CH ₃)	2974	
Vas(CH ₂)	2927	
Vs(CH ₃ -CH ₂)	2885	
V(C=O)	1675-1771	
aromatic	1608	
δ(NH)-V(CN)	1587	
V(Si-OEt)	1164-1103	

Table. S3. The triplet energy level of L and UMOF, and the difference with $^5\text{D}_0$ of Eu $^{3+}$ ions

	T ₁ -S ₀ (cm ⁻¹)	⁵ D ₀ of Eu ³⁺ (cm ⁻¹)	Difference
L	19763	17500	2263
UMOF	19646	17500	2146