Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supporting Information

MOF-derived Hollow Co₄S₃/C Nanosheet Arrays Grown on Carbon Cloth as Anode

for high-performance Li-ion Batteries

Mingchen Shi^{+a}, Qiang Wang^{+a}, Junwei Hao^a, Huihua Min^b, Hairui You^a, Xiaomin Liu^{*a}and Hui Yang^{*a}

a College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, China.

Email Liuxm@njtech.edu.cn, yanghui@njtech.edu.cn

b. Electron Microscope Lab, Nanjing Forestry University, Nanjing, Jiangsu, China.

+ These authors contributed equally to this work

* Corresponding author.

Fig. S1 (a-c) SEM images of Co-MOF, Co/C, Co₄S₃/C (d) high-magnification SEM of h-Co₄S₃/C NA@CC

Fig. S2 (a) XRD pattern of carbon cloth (b) Nitrogen adsorption and desorption curve of Co_4S_3/C (c) Contrast between Co-MOF@CC and Co-MOF.

Fig. S3 (a) CV curves of bare CC anode at the scan rate of 0.1 mV s⁻¹ between 0.01 and 3.0
V (b) Lithiation and delithiation voltage profiles of bare CC anode at the current density of 0.1 A g⁻¹ for the first three cycles (c) The rate capability of bare CC anode

Fig. S4 (a) Lithiation and delithiation voltage profiles of bare Co_4S_3/C anode at the current density of 0.1 A g⁻¹ for the first three cycles (b) CV curves of bare Co_4S_3/C anode at the scan rate of 0.2 mV s⁻¹ between 0.01 and 3.0 V

Fig. S5 Capacitive charge storage contribution of h-Co₄S₃/C NA@CC anode at different scan rates (shaded region)

Material	Current density	Capacity	Cycle number	Refence
	(mA g ⁻¹)	(mAh g ⁻¹)		
Co _{1-x} S/NCS	200	796.3	100 th	1
CoS _x hollow spheres	500	1012.1	100 th	2
CoS _x /RGO	100	796	50 th	3
CoS ₂ -NF/rGO-NS	500	769	200 th	4
Co_3S_4 @C@MoS ₂	200	672.6	200 th	5
lantern-like CoS	1000/100	352/477	$1000^{th}/400^{th}$	6
hierarchitectures				
h-Co ₄ S ₃ /C NA@CC	1000/2000	720.0/321.0	$200^{\text{th}}/500^{\text{th}}$	This work

Table S1. Comparison of electrochemical properties of various CoS-based composite anode

1.Z. Yang, J. Wang, H.-T. Wu, F.-J. Kong, W.-Y. Yin, H.-J. Cheng, X.-Y. Tang, B. Qian, S. Tao, J. Yi, Y.-S. Ma and R.-X. Yuan, *Applied Surface Science*, 2019, **479**, 693-699.

2.Y. Xiao, J.-Y. Hwang, I. Belharouak and Y.-K. Sun, *Nano Energy*, 2017, **32**, 320-328.

3.J. Zhu and X. Ding, *Materials Letters*, 2019, **253**, 22-25.

4.S.-Y. Liao, T.-T. Cui, S.-Y. Zhang, J.-J. Cai, F. Zheng, Y.-D. Liu and Y.-G. Min, *Electrochimica Acta*, 2019, DOI: 10.1016/j.electacta.2019.134992, 134992.

5.J. Dai, J. Li, Q. Zhang, M. Liao, T. Duan and W. Yao, Materials Letters, 2019, 236, 483-486.

6. W Lin, Y Huang and G He, CrystEngComm, 2018, 20,672.