Supplementary Information

Anisotropic exchange interaction and field-induced SMM behaviour in a mixed valence {Co^{II}₄Co^{III}₂} complex

Daiana Cabrosi^[a], Carlos Cruz ^{[b],[c]}, Verónica Paredes-García^{[b],[c]} and Pablo Alborés^[a]*

- [a] Departamento de Química Inorgánica, Analítica y Química Física/ INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina Fax: +5411 / 4576-3341 E-mail: albores@qi.fcen.uba.ar
- [b] Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, Santiago de Chile, Chile.
- [c] Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Santiago, Chile.

Table SI1. Best fitting parameters of complex 1 AC susceptibility data at 1500 Oe
according to the generalized Debye model.

<i>T</i> / K	$\chi_{\rm S}/{\rm cm^3mol^{-1}}$	χ_T/cm^3mol^{-1}	α	<i>τ</i> / s
2.00	0.257	0.777	0.374	9.44E-05
2.16	0.203	0.766	0.466	6.18E-05
2.34	0.214	0.738	0.463	5.11E-05
2.53	0.202	0.722	0.501	4.02E-05
2.73	0.217	0.669	0.471	2.77E-05
2.95	0.260	0.628	0.425	2.58E-05
3.19	0.243	0.612	0.477	1.75E-05
3.45	0.278	0.594	0.484	1.89E-05

Table SI2. Best fitting parameters of complex 1 AC susceptibility data at 3000 Oeaccording to the generalized Debye model.

<i>T</i> / K	$\chi_{\rm S}/{\rm cm^3mol^{-1}}$	χ_T/cm^3mol^{-1}	α	τ/ s
2.00	0.161	0.681	0.575	7.91E-04
2.16	0.181	0.628	0.534	5.13E-04
2.34	0.144	0.656	0.608	4.03E-04
2.53	0.185	0.644	0.589	4.23E-04
2.73	0.039	0.652	0.701	8.04E-05
2.95	0.212	0.614	0.594	2.89E-04
3.19	0.000	0.701	0.795	2.32E-05
3.45	0.234	0.582	0.609	2.07E-04

Exp	&⊢tensors	$\begin{array}{c} J_1 < 0 \\ J_2 < 0 \end{array}$	&⊢tensors	$J_1 < 0$ $J_2 > 0$	&⊢tensors	$J_1 > 0$ $J_2 < 0$	&⊱tensors
cm-1	$\mathbf{g}_{\mathbf{x}},\mathbf{g}_{\mathbf{y}},\mathbf{g}_{\mathbf{z}}$	cm ⁻¹	$\mathbf{g}_{\mathbf{x}},\mathbf{g}_{\mathbf{y}},\mathbf{g}_{\mathbf{z}}$	cm ⁻¹	$\mathbf{g}_{\mathbf{x}},\mathbf{g}_{\mathbf{y}},\mathbf{g}_{\mathbf{z}}$	cm ⁻¹	$\mathbf{g}_{\mathbf{x}},\mathbf{g}_{\mathbf{y}},\mathbf{g}_{\mathbf{z}}$
0.0 0.0 13.3 13.5 18.3 18.4 21.5 22.3 27.8 28.3 35.5	gx,gy,gz 0.0 0.0 0.0 0.0 0.0 4.52 0.0 0.0 10.1 - - - 0.0 0.0 0.0	cm ⁻¹ 0.0 6.0 7.6 10.7 11.1 16.2 16.6 20.7 21.3 26.9 28.7 20.1	g xygyygz - - 0.0 0.0 0.0 0.0 0.0 2.79 0.0 0.0 0.0 - 0.0 0.0 0.0	cm ⁻¹ 0.0 11.7 14.6 16.0 23.7 24.7 26.1 26.4 34.8 35.4 39.1 42.0	g x, g y, g z - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	cm ⁻¹ 0.0 9.7 17.8 22.3 31.7 32.2 46.4 54.9 65.2 72.1 77.6	g x, g y, g z - 0.0 0.0 0.0 0.0 0.0 0.0 - - 0.0 0.0 0.0 0.0 0.0 0.0
36.1 52.4 52.4 61.3 62.0	0.0 0.0 0.0 - -	29.1 31.8 33.4 34.7 37.5	- 0.0 0.0 3.99 -	42.0 45.6 46.4 50.1 54.5	- 0.0 0.0 0.0 - -	82.1 98.7 100.1 107.4 133.9	0.0 0.0 0.0 - -

Table SI3. Complex 1 energy spectrum and *g* tensors of exchange states as arising from experimental magnetization data and *ab-initio* calculations. Possible pseudo doublets assignments are remarked in bold type.

Figure SI1. Ball & stick/ wireframe molecular representation of complex 1 in crystal structure showing the intra-molecular H -interaction pattern. H atoms have been removed for sake of visualization clarity. Violet: Co(II); Purple: Co(III); Red: O; Blue: N; Grey: C.

Figure SI2. Ball & stick/ wireframe molecular representation of complex 1 showing the inter-molecular H- interaction network in the crystal structure as well as the closest Co...Co inter-molecular distance in Å. H atoms have been removed for sake of visualization clarity. Violet: Co(II); Purple: Co(III); Red: O; Blue: N; Grey: C.

Figure SI3. Ball & stick molecular representation of complex 1 crystal packing along *c*-axis. H atoms have been removed for sake of visualization clarity. Violet: Co(II); Purple: Co(III); Red: O; Blue: N; Grey: C.

Figure SI4. χT vs *T* data fitting residuals contour plot showing the two minima corresponding to two different best fitting parameters sets.

Figure SI5. AC magnetic susceptibility *vs* temperature data of complex **1** at external static fields of: 0 Oe (left), 1500 Oe (middle) and 3000 Oe (right) at driving frequencies in the range 0-10000 Hz. Full symbols: experimental data; Full lines are only for eyes guideline.

Figure SI6. AC magnetic susceptibility data Cole-Cole plots of complex **1** at external static fields of: 0 Oe (left), 1500 Oe (middle) and 3000 Oe (right) in the range 2 - 4 K. Full symbols: experimental data; Full lines: simulation with best fitting parameters according to a generalized Debye model for one relaxation process.

Figure SI7. Complex 1 characteristic magnetization relaxation time temperature dependence at 3000 Oe. Open circles: experimental data; full lines simulated: Orbach (blue); Raman (red). Inset: $\ln \tau vs T^{-1}$ scales (top); $\ln \tau vs \ln T$ (bottom).

Figure SI8. Complex 1 *ab-initio* calculated main magnetic axis orientation at local Co(II) sites (black).

Figure SI9. Left : χT vs *T* plot measured at 1 kOe external magnetic field of complex **1**. Right: Reduced magnetization plot. Open symbols: experimental data; full line: simulation with best fitting parameters with POLY_ANISO; J_1 and $J_2 < 0$ (green), $J_1 < 0$ and $J_2 > 0$ (blue) and $J_1 > 0$ and $J_2 < 0$ (red).

Figure SI10. Spin density iso-surfaces (0.03 a. u.), as arising from BS calculations of complex **1** (see details in text). Top: HS state; Bottom: BS states (left, BS1; right BS2) converged after sequentially flipping both symmetries distinct Co(II) sites.

Figure SI11. Magnetic orbitals overlap ($S_{\alpha\beta}$) as arising from a COT transformation. Isosurfaces (0.03 a. u.), as arising from BS calculations of complex **1** (see details in text; left, BS1; right BS2).