Supporting Information

Synthesis and Characterization of the Mixed-Ligand Coordination Polymer $Cu_3Cl(N_4C-NO_2)_2$

Bradley Westwater, Hayleigh J. Lloyd, Inigo J. Victorica-Yrezabal, Angela Fong, Patrick McMaster, Martin Sloan, Brian M. Coaker, Colin R. Pulham, Peter Portius*

Email: p.portius@sheffield.ac.uk

Table of Contents

Figure S1. Photograph of a $Cu_3Cl(N_4C-NO_2)_2$ (3) crystal mounted on the goniometer nylon loop2
<i>Figure S2.</i> Microscope image of microcrystals of 3
<i>Figure S3.</i> Powder diffractograms of pure 3 (bottom) and pure 4 (top, experimental —, predicted from single crystal data —) and of a mixture of 3 and 4 (—)
<i>Figure S4.</i> Images of microcrystalline powders of 3 (left), a mixture of 3 and 4 (middle), and 4 (right). All images were taken at the same degree of magnification
<i>Figure S5a</i> . PXRD of compound 3 recorded after exposure to air for the duration of time as indicated 4
<i>Figure S5b</i> . FTIR spectra of compound 3 recorded after exposure to air (left) and water (right) for the durations of time as indicated
<i>Figure S5c.</i> Powder diffractograms of compound 3 (capillary tube, $\lambda = 0.82471(1)$ Å, at 113 K (bottom) and 298 K (top))
<i>Figure S6.</i> Powder diffractograms (shown between 3° and 25° 2 θ) for compound 3 obtained by powder diffractometry (capillary tube, $\lambda = 0.82471(1)$ Å, at 113 K) (top), and by prediction from single crystal XRD data obtained at 100 K (bottom), for the same the same wavelength
Figure S7. Infrared spectrum of NaNT.2H ₂ O (1)
Figure S8. Infrared spectrum of NaNT.4H ₂ 0 (2)7
<i>Figure S9.</i> Infrared spectra of 1 and 2 1720-1000 cm ^{-1} , showing the effect of dehydration on 2 under vacuum. The diagnostic region 1200-1000 cm ^{-1} shown as enlarged insets; mulling agent peaks (liquid paraffin) at 1463 cm ^{-1} (sholder) and 1377 cm ^{-1}
<i>Figure S10.</i> Infrared spectra of NaNT.4H ₂ O (1), NaNT.2H ₂ O (2) and water-free NaNT. The diagnostic region 1200-1000 cm ⁻¹ shown as enlarged insets; mulling agent peaks (liquid paraffin) at 2954-2853, 1463, 1377 and 721 cm ⁻¹
Figure S11. FTIR spectrum (transmission, mull) of 3, expanded range 1600 to 500 cm
<i>Figure S12.</i> FTIR spectrum (transmission, mull) of a 3 / 4 mixture, expanded range 1600 to 500 cm.9
Figure S13. FTIR spectrum (transmission, mull) of 4, expanded range 1600 to 500 cm9
<i>Figure S14.</i> Infrared spectra of 3 and 4 in the region 1600-600 cm ^{-1} ; mulling agent peaks are labelled by "N"; note the scale change at 1000 cm ^{-1}
Figure S16 UV/vis absorption spectra of $CuSO_{1}$ and compound 3 after digestion in aqueous nitric acid

Figure S17. DSC calorigrams compounds 3 (top) and 4 (bottom), scan rate 3 K min11
Figure S18. DSC calorigrams compounds 3 (top) and 4 (bottom), scan rate 3 K min12
Figure S19. Baseline-corrected section of IR spectra (transmission in nujol) between 750 and 900 cm 12
<i>Figure S20.</i> Histogram showing the probability of initiation of samples of $Cu_3Cl(O_2N-CN_4)_2$ (\bigcirc) and $Cu(O_2N-CN_4)$ (\bigcirc)
<i>Figure S21.</i> Microscope images of three batches of $Cu_3Cl(O_2N-CN_4)_2$ (top [ZnBr ₂ -seeded], middle, bottom [not intentionally seeded]) at 40x (left column) and 100x (right column) magnification. The length scales are shown by horizontal white lines
Figure S22. TOF LD(+) MS spectrum
<i>Table S1.</i> Preparative conditions for the reduction of CuCl ₂ in the presence of NaNT for trials numbered in chronological order (No), yields given in %
Table S2. Key energetic materials parameters of compounds 1-4 and LA
Table S3. Factors contributing to the outcome of the reduction reaction
<i>Table S4.</i> Geometric parameters of strong hydrogen bonds for compound 2 20

Figure S1. Photograph of a $Cu_3Cl(N_4C-NO_2)_2$ (3) crystal mounted on the goniometer nylon loop.

Figure S2. Microscope image of microcrystals of **3**, NB: back-lighting changes the apparent colour of the crystals.

Figure S3. Powder diffractograms of pure 3 (bottom) and pure 4 (top, experimental —, predicted from single crystal data —) and of a mixture of 3 and 4 (—).

Figure S4. Images of microcrystalline powders of **3** (left), a mixture of **3** and **4** (middle), and **4** (right). All images were taken at the same degree of magnification.

Figure S5a. PXRD of compound 3 recorded after exposure to air for the duration of time as indicated.

Figure S5b. FTIR spectra of compound **3** recorded after exposure to air (left) and water (right) for the durations of time as indicated.

Figure S5c. Powder diffractograms of compound **3** (capillary tube, $\lambda = 0.82471(1)$ Å, at 113 K (bottom) and 298 K (top)).

Figure S6. Powder diffractograms (shown between 3° and 25° 2 θ) for compound **3** obtained by powder diffractometry (capillary tube, $\lambda = 0.82471(1)$ Å, at 113 K) (top), and by prediction from single crystal XRD data obtained at 100 K (bottom), for the same the same wavelength.

Figure S7. Infrared spectrum of NaNT.2H₂0 (1).

Figure S8. Infrared spectrum of NaNT.4H₂0 (2).

Figure S9. Infrared spectra of **1** and **2** 1720-1000 cm⁻¹, showing the effect of dehydration on **2** under vacuum. The diagnostic region 1200-1000 cm⁻¹ shown as enlarged insets; mulling agent peaks (liquid paraffin) at 1463 cm⁻¹ (sholder) and 1377 cm⁻¹.

Figure S10. Infrared spectra of NaNT.4H₂O (1), NaNT.2H₂O (2) and water-free NaNT. The diagnostic region 1200-1000 cm⁻¹ shown as enlarged insets; mulling agent peaks (liquid paraffin) at 2954-2853, 1463, 1377 and 721 cm⁻¹.

Figure S11. FTIR spectrum (transmission, mull) of 3, expanded range 1600 to 500 cm⁻¹ shown.

Figure S12. FTIR spectrum (transmission, mull) of a 3 / 4 mixture, expanded range 1600 to 500 cm⁻¹ shown.

Figure S13. FTIR spectrum (transmission, mull) of **4**, expanded range 1600 to 500 cm⁻¹ shown.

Figure S14. Infrared spectra of **3** and **4** in the region 1600-600 cm⁻¹; mulling agent peaks are labelled by "N"; note the scale change at 1000 cm⁻¹.

Figure S15. Infrared spectra of Fig. S14 in the range 4000-500 cm⁻¹.

Figure S16. UV/vis absorption spectra of $CuSO_4$ and compound **3** after digestion in aqueous nitric acid (65%). Both spectra were recorded in 65% aqueous nitric acid. Both peak maxima are at 801 nm.

Figure S17. DSC calorigrams compounds **3** (top) and **4** (bottom), scan rate 3 K min⁻¹.

Figure S18. DSC calorigrams compounds 3 (top) and 4 (bottom), scan rate 3 K min⁻¹.

Figure S19. Baseline-corrected section of IR spectra (transmission in nujol) between 750 and 900 cm⁻¹ 4 (black), 3 (red) on left. Spectra are normalised by the absorption integrated between 786-848 cm⁻¹.

Figure S20. Histogram showing the probability of initiation of samples of Cu₃Cl(O₂N-CN₄)₂ (•) and Cu(O₂N-CN₄) (•). The E_{50} values and margins of error were determined by curve-fitting using the sigmoidal function $H = a / [1 - e^{-k(E - E50)}]$.

Figure S21. Microscope images of three batches of $Cu_3Cl(O_2N-CN_4)_2$ (top [ZnBr₂-seeded], middle, bottom [not intentionally seeded]) at 40x (left column) and 100x (right column) magnification. The length scales are shown by horizontal white lines.

Figure S22. TOF LD(+) MS spectrum. Note: the peak at m/z = 538 is likely to be caused by DCTP.

No	Conditions	Reagent 1	с	v	Reagent 2	с	v	Reagent 3	с	V	Product	Yield
1	vessel and stir bar rinsed with water and mechanically cleaned with cellulose paper	CuCl ₂	1.02	1.00	NaNT(H ₂ O) ₂ batch 1	0.46	0.93	Na H-Asc	1.00	0.50	amorphous air sensitive solid	-
2	vessel and stir bar rinsed with water and mechanically cleaned with cellulose paper	CuCl ₂ (H ₂ O) ₂	1.00	1.00	NaNT(H ₂ O) ₄ batch 1	0.47	0.82	Na H-Asc	1.00	0.50	Cu ₃ Cl(N ₄ CNO ₂) ₂	86
3	vessel and stir bar rinsed with water and mechanically cleaned with cellulose paper	CuCl ₂ (H ₂ O) ₂	0.18	1.00	NaNT(H ₂ O) ₄ batch 1	0.66	1.17	Na H-Asc	1.00	0.50	Cu ₃ Cl(N ₄ CNO ₂) ₂	86
4	vessel and stir bar rinsed with water and mechanically cleaned with cellulose paper; only deionised water used that was purified further by distillation	CuCl ₂	0.15	1.00	NaNT(H ₂ O) ₄ batch 1	0.57	1.00	Na H-Asc	0.99	0.50	Cu ₃ Cl(N ₄ CNO ₂) ₂	83
5	vessel and stir bar rinsed with water and mechanically cleaned with cellulose paper	CuCl ₂	0.15	1.00	NaNT(H ₂ O) ₄ batch 1	0.46	0.94	Na H-Asc	1.00	1.00	Amorphous	-
6	vessel and stir bar rinsed with water and mechanically cleaned with cellulose paper	CuCl ₂	0.14	1.00	NaNT(H ₂ O) ₄ batch 1	0.46	1.00	Na H-Asc	0.97	0.50	Cu ₃ Cl(N ₄ CNO ₂) ₂	67
7	vessel and stir bar rinsed with water and mechanically cleaned with cellulose paper; only deionised water used that was purified further by distillation	CuCl ₂	0.15	1.00	NaNT(H ₂ O) ₄ batch 1	0.57	1.00	Na H-Asc	0.99	0.50	Cu ₃ Cl(N ₄ CNO ₂) ₂ / CuCN ₄ NO ₂	73-86
8	vessel and stir bar rinsed with water and mechanically cleaned with cellulose paper	CuCl ₂	0.15	1.00	NaNT(H ₂ O) ₄ batch 1	0.45	1.00	Na H-Asc	0.50	0.50	CuCN ₄ NO ₂	72
9	vessel and stir bar rinsed with water and mechanically cleaned with cellulose paper	CuCl ₂	0.15	1.00	NaNT(H ₂ O) ₄ batch 1	0.46	1.00	Na H-Asc	0.49	0.50	CuCN ₄ NO ₂	71
10	vessel and stir bar rinsed with water and mechanically cleaned with cellulose paper	CuCl ₂	0.15	1.00	NaNT(H ₂ O) ₄ batch 1	0.47	1.00	Na H-Asc	1.00	0.50	CuCN ₄ NO ₂	71
11	vessel treated with 65% aqueous HNO ₃ and neutralised with deionised water	CuCl ₂	0.15	1.00	NaNT(H ₂ O) ₄ batch 2	0.46	1.00	Na H-Asc	0.98	0.50	amorphous solid	-

Table S1. Preparative conditions for the reduction of CuCl₂ in the presence of NaNT for trials numbered in chronological order (No), yields given in %.

-												
12	vessel and stir bar rinsed with water and mechanically cleaned with cellulose paper	CuCl2	0.15	1.00	NaNT(H ₂ O) ₂ batch 2	0.47	1.00	Na H-Asc	0.99	0.50	amorphous solid	-
13	beaker treated with 65% aqueous HNO ₃ and neutralised with deionised water; seeded with $10 - 15 \text{ mg Cu}(N_4 \text{CNO}_2)$	CuCl ₂	0.15	1.00	NaNT(H ₂ O) ₄ batch 2	0.46	1.00	Na H-Asc	0.98	0.50	CuN ₄ CNO ₂	65
14	beaker treated with 65% aqueous HNO ₃ and neutralised with deionised water; seeded with 10 – 15 mg Cu ₃ Cl(N ₄ CNO ₂) ₂	CuCl ₂	0.15	1.00	NaNT(H ₂ O) ₄ batch 2	0.46	1.01	Na H-Asc	0.99	0.50	CuN ₄ CNO ₂	69
15	beaker treated with 65% aqueous HNO ₃ and neutralised with deionised water; seeded with 10 – 15 mg Cu ₃ Cl(N ₄ CNO2) ₂	CuCl ₂	0.15	1.00	NaNT(H ₂ O) ₄ batch 2	0.46	1.01	Na H-Asc	0.98	0.50	Cu ₃ Cl(N ₄ CNO ₂) ₂ / CuCN ₄ NO ₂	67-79
16	beaker only rinsed with deionized water	CuCl ₂	0.15	1.00	NaNT(H ₂ O) ₄ batch 2	0.47	1.00	Na H-Asc	0.98	0.50	CuCN ₄ NO ₂	61
17	seeded with 10 to 15 mg Cu(N ₄ CNO ₂)	CuCl ₂	0.15	1.00	NaNT(H ₂ O) ₂ batch 3	0.56	1.20	Na H-Asc	0.99	0.50	amorphous air sensitive solid	-
18	vessel and stir bar rinsed with water and mechanically cleaned with cellulose paper	CuCl ₂	0.14	1.00	NaNT(H ₂ O) ₄ batch 3	0.56	1.20	Na H-Asc	0.88	0.50	CuN4CNO2	72
19	vessel and stir bar rinsed with water and mechanically cleaned with cellulose paper	CuCl ₂	0.15	1.00	NaNT(H ₂ O) ₄ batch 4	0.31	0.67	Na H-Asc	1.00	0.50	amorphous air sensitive solid	-
20	seeded with 10 to 15 mg Cu ₃ Cl(N ₄ CNO ₂) ₂	CuCl ₂	0.15	1.00	NaNT(H ₂ O) ₄ batch 4	0.31	0.67	Na H-Asc	0.99	0.50	amorphous solid; red material depo- sited on vessel walls	-
21	beaker only rinsed with deionized water	CuCl ₂	0.15	1.00	NaNT(H ₂ O) ₄ batch 4	0.47	1.00	Na H-Asc	0.98	0.50	amorphous solid; 64 mg dark red material deposited on vessel walls	15
NB:	c and v refer to reagent concentration (mol	dm^{-3}) and the st	toichion	netric coe	efficient, respect	ively.						

	Na(N ₄ C- NO ₂)·2H ₂ O	Na(N ₄ C- NO ₂)·4H ₂ O	Cu ₃ Cl(N ₄ C- NO ₂) ₂	Cu(N ₄ C- NO ₂)	α -Pb(N ₃) ₂
	(1)	(2)	(3)	(4)	(LA)
$T_{ m dec}{}^{ m on}$ / ${}^{ m o} m C$	-	-	274 ^a	293 ^a	313 ^b
$\Delta H_{\rm exo}/({\rm kJ}~{\rm mol}^{-1})$	-	-	546 ^c	294 ^c	443 ^d
$\Delta H_{ m exo}$ / (kJ g ⁻¹)	-	-	1.201 ^a	1.653 ^a	1.52 ^e
$\Delta H_{\rm exo}/({\rm kJ~cm^{-3}})$	2.9 ^{f,g}	2.4 ^{f,g}	3.5 ^g	4.3 ^g	7.2 ^g
<i>E</i> ₅₀ / J (impact)	-	-	$1.8(\pm 0.2)^{h}$	4.3(±0.3) ^{<i>h</i>}	2.5 - 4.0 ⁱ
$\rho_{\text{crystal}}(\text{calc.}) / (\text{g cm}^{-3})$	1.731 ^k	1.703 ^{<i>l</i>}	2.939 ^{<i>l</i>}	2.584 ^m	4.763 ^{<i>n</i>}
$M / (\mathrm{g} \mathrm{mol}^{-1})$	173.02 °	209.04 °	454.18 <i>°</i>	177.59 <i>°</i>	291.24 °

Table S2. Key energetic materials parameters of compounds 1-4 and LA.

^{*a*} obtained by DSC, heating rate 3 K min⁻¹

^b D. J. Whelan, R. J. Spear, R. W. Read, The thermal decomposition of some primary explosives as studied by differential scanning calorimetry, *Thermochim. Acta*, 1984, **80**, 149-163; DSC data, heating rate 5 K min⁻¹

 $^{c} \Delta H_{\text{exo}} / (\text{kJ mol}^{-1}) = [\Delta H_{\text{exo}} / (\text{kJ g}^{-1})] \times [M / (\text{g mol}^{-1})]$

^d Bowden, F. P.; Williams, H. T. Initiation and Propagation of Explosion in Azides and Fulminates, *Proc. R. Soc. Lon. Ser.-A*, 1951, **208**, 176-188

 ${}^{e}\Delta H_{\text{exo}} / (\text{kJ g}^{-1}) = [\Delta H_{\text{exo}} / (\text{kJ mol}^{-1})] / [M / (\text{g mol}^{-1})]; \text{R. Meyer, J. Köhler, A. Homburg, Explosives, 6th ed. Wiley-VCH, Weinheim, 2007, state 1.6 kJ g⁻¹ for the heat of explosion$

 f these estimates are based on the average molar contribution of the nitrotetrazolato group derived from DSC enthalpies of decomposition of **3** and **4** and mixtures thereof, 292(±17) kJ mol⁻¹, ignoring all other enthalpic effects

 $^{g}\Delta H_{\rm exo} / (\rm kJ \ cm^{-1}) = [\Delta H_{\rm exo} / (\rm kJ \ mol^{-1})] / [M / (\rm g \ mol^{-1})] x [\rho_{\rm crystal} / (\rm g \ cm^{-3})]$

 h values obtained from material as synthesised without further processing; apparatus used for testing **3** and **4** is different to those used for LA

^{*i*} data taken from T. M. Klapötke, C. M. Sabate, Safe 5-nitrotetrazolate anion transfer reagents, *Dalton Trans.*, 2009, 1835-1841, using BAM method

^{*k*} data taken from T. M. Klapötke, C. M. Sabate, J. M. Welch, Alkali metal 5-nitrotetrazolate salts: prospective replacements for service lead(ii) azide in explosive initiators, *Dalton Trans.* 2008, 6372-6380.

^{*l*} this paper

^{*m*} data taken from J. W. Fronabarger, M. D. Williams, W. B. Sanborn, J. G. Bragg, D. A. Parrish and M. Bichay, DBX-1 – A Lead Free Replacement for Lead Azide, *Propell. Explos. Pyrotech.*, 2011, **36**, 541-550

^{*n*} using a = 6.63, b = 16.25, c = 11.31 Å, Z = 12 given in L. V. Azaroff, Structural Investigation of Lead Azide, *Z. Kristallog. – Cryst. Mater.*, 1956, **107**, 362-369 leads to V = 1219 Å³ and $\rho = 4.76$ g cm⁻³

^o calculated with ChemDraw Professional Version 18.0.0.231 (4029).

Table S3. Factors contributing to the outcome of the reduction reaction.

Factor	Olive-green (amorphous) Material		us)	Cu ₃ Cl(N ₄ CNO ₂) ₂			Cu ₃ Cl(NT) ₂ - Cu(NT)		Cu(N4CNO ₂)		O 2)		
Na(NT).4H ₂ O reagent used		x	x	x		X	X	x	x	x	X	X	X
Na(NT).2H ₂ O reagent used	x				x								
deionised water as reaction solvent	x	x	x	x	x	X		x		X	x	x	X
distilled deionised water as reaction solvent							X		x				
NaHAsc addition regime applied	x				x	X	X	x	x	x	x	X	x
NaHAsc addition regime not applied		x	x	x									
Reaction vessel and stir bar rinsed with purified water (and mechanically cleaned with cellulose paper in most cases)	x	x		x	x	X	X		x		x		
Reaction vessel cleaned with hot aq. HNO ₃ and neutralised with purified water			x					x		X		x	X
not externally seeded (or previously vessel)	X	x	x			x	X	x	x		X		
seeded with Cu ₃ Cl(N ₄ CNO ₂) ₂				x						X			X
seeded with Cu(N ₄ CNO ₂)					x							x	
addition of 1/3 equiv. ZnCl ₂ or NiCl ₂								x					

	DonorHAcceptor	D-H	HA	DA	D-HA
1	O(3)H(3A)O(4)	0.84(2)	1.97(2)	2.7987(18)	170(2)
2	O(3)H(3B)O(4)	0.86(3)	1.97(3)	2.8140(18)	169(4)
3	O(4)H(4A)N(2)(α)	0.87	2.03	2.803(3)	147
4	O(4)H(4A)N(3)(α)	0.87	2.16	3.026(3)	171'
5	O(4)H(4B)O(2)	0.84(3)	2.10(3)	2.906(7)	161(2)
6	$O(4)H(4B)N(4)(\beta)$	0.84(3)	2.22(3)	2.976(9)	150(2)'

Table S4. Geometric parameters of strong hydrogen bonds for compound **2**.

equivalent position codes: 4, 1-x,-y,1-z; 1, 3/2-x,1/2+y,3/2-z; 5, 1-x,1+y,3/2-z; 6, x,1-y,1/2+z.