Loading of Individual Se-doped Fe₂O₃ Decorated Ni/NiO Particles on Carbon Cloth: Novel Synthesis and Efficient Electrocatalysis for Oxygen Evolution Reaction

Sayyar Ali Shah,^a Guoxing Zhu,^b Aihua Yuan,* ^a Nabi Ullah,^b Xiaoping Shen,* ^b Habib Khan,^c Keqiang Xu,^b Xuyu, Wang,^a Xiufen Yan,^a

^aSchool of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China

^bSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China

^cSchool of Chemical Engineering and Technology, Xian Jiaotong University, Xian 710049, PR China

*Corresponding author: Tel.: +86 511 88791800.

E-mail address: aihua.yuan@just.edu.cn (A. H. Yuan), xiaopingshen@163.com (X. P. Shen).

Figure S1. (a and b) SEM images of CC at different magnifications.

Figure S2. (a-d) SEM images of Se-Fe₂O₃@Ni/NiO/CC-1 composite at different magnifications.

Figure S3. (a-d) SEM images of Se-Fe₂O₃@Ni/NiO/CC-3 composite at different magnifications.

Figure S4. (a-d) SEM images of Se-Fe₂O₃/CC product at different magnifications.

Figure S5. (a-d) SEM images of Se-Ni/NiO/CC-2 composites at different magnifications.

Figure S6. Survey XPS spectra of Se-Fe₂O₃@Ni/NiO/CC-2, Se-Ni/NiO/CC and Se-Fe₂O₃/CC products.

Figure S7. The proposed OER reaction path using Fe₂O₃@Ni/NiO/CC-2 catalyst.

Figure S8. (a-f) CV curves of as-synthesized samples and CC between -0.1 and 0 V vs. Ag/AgCl at the scan rates of 10, 30, 50, 70, 90 and 110 mV s⁻¹ in 1.0 M KOH solution. (g) The C_{dl} was used to determine electrochemical surface area of catalysts. The C_{dl} values was calculated by plotting the $\Delta J = (J_a - J_c)$ at -0.05 V vs. Ag/AgCl against various scan rates, the $2C_{dl}$ is equal to the slope.

Figure S9. XRD patterns of the fresh and 2000 cycle used Se-Fe₂O₃@Ni/NiO/CC-2 catalyst.

Figure S10. TEM images of Se-Fe₂O₃@Ni/NiO/CC-2 after 2000 CV cycles.

Figure S11. XPS spectra of the Se-Fe₂O₃@Ni/NiO/CC-2 sample after 2000 CV cycles: (a) Fe 2p,

(b) Ni 2p, (c) Se 3d and (d) C1s.

Catalytic	(η) mV@ (j)10	$(\eta) \text{ mV} @ (j)$	Tafel slop	$R_{\rm CT}$	C_{dl}
materials	mA cm ⁻²	100 mA cm ⁻²	(mV dec ⁻¹)	(Ω)	mF cm ⁻²
CC	526	_	169	2.73	2.1
Se-Fe ₂ O ₃ @/CC	409	—	92	3.12	2.4
Se-Fe ₂ O ₃ @Ni/NiO/CC-1	298	393	51	2.69	5.4
Se-Fe ₂ O ₃ @Ni/NiO/CC-2	205	273	36	2.17	9.0
Se-Fe ₂ O ₃ @Ni/NiO/CC-3	288	350	38	2.3	5.9
Se-Ni/NiO/CC	320	416	67	2	4.6

Table S1. Electrochemical parameters of the as-synthesized samples and CC.

Catalysts	$(\eta) \text{ mV}@(j) \text{ mA cm}^{-2}$	Tefel slope	Ref.
		(mV dec ⁻¹)	
Se-Fe ₂ O ₃ @Ni/NiO/CC-2	205@10	36	This work
Ni _x Fe _{1-x} Se ₂	195@10	28	Nat. Commun. ^{S1}
NiO/NiFe LDH on Cu Foam	205@30	30	Adv. Mater. ^{S2}
MoS ₂ /NiFe-LDH	210@10	65	Nano Lett. ^{S3}
Single-crystalline NiFe DLH	210@20	46	J. Mater. Chem. A ^{S4}
NiFe-LDH/MXene/NF	229@10	44	Nano Energy ^{S5}
CuO@Ni/NiFe hydroxides	230@10	65	Electrochim. Acta ^{S6}
CoFeNi oxide	230@10	40.7	Nano Res. ^{S7}
$Ni_{0.5}Fe_{0.5}Se_2$ nanodendrites	235@10	34.7	Catal. Sci. Technol. S8
Ni/NiO/Fe ₃ O ₄	258@10	62	Electrochim. Acta ^{S9}
NiFe hydroxide	270@10	36.2	Angew. Chem. Int. Ed. ^{\$10}
FeNi@NC	280@10	70	Energy Environ. Sci. ^{S11}
NiFe-V _M -O	371@10	28	ACS Catal ^{S12}
Ni ₃ FeN/NRGO	400@10	62	Small ^{S13}

 Table S2. OER performances of the Fe-Ni-based materials as electrocatalysts in 1.0 M KOH solution.

References

[1] X. Xu, F. Song, X. Hu, Nat. Commun., 2016, 7, 12324.

- [2] Z. W. Gao, J. Y. Liu, X. M. Chen, X. L. Zheng, J. Mao, H. Liu, T. Ma, L. Li, W. C. Wang, X.
 W. Du, *Adv. Mater.*, 2019, **31**, 1804769.
- [3] P. Xiong, X. Zhang, H. Wan, S. Wang, Y. Zhao, J. Zhang, D. Zhou, W. Gao, R. Ma, T. Sasaki, G. Wang, *Nano Lett.*, 2019, **19**, 4518–4526.
- [4] X. Liu, X. Wang, X. Yuan, W. Dong, F. Huang, J. Mater. Chem. A, 2016, 4, 167–172.
- [5] M. Yu, Z. Wang, J. Liu, F. Sun, P. Yang, J. Qiu, Nano Energy, 2019, 63, 103880.
- [6] Y. Liu, Z. Jin, X. Tian, X. Li, Q. Zhao, D. Xiao, *Electrochim. Acta*, 2019, 318, 695-702.
- [7] L. Han, L. Guo, C. Dong, C. Zhang, H. Gao, J. Niu, Z. Peng, Z. Zhang, Nano Res., 2019, 12, 2281–2287.
- [8] Y. Du, G. Cheng, W. Luo, Catal. Sci. Technol., 2017, 7, 4604–4608.
- [9] Y. Xie, X. Wang, K. Tang, Q. Li, C. Yan, *Electrochim. Acta*, 2018, 264, 225-232.
- [10] D. Zhou, S. Wang, Y. Jia, X. Xiong, H. Yang, S. Liu, J. Tang, J. Zhang, D. Liu, L. Zheng, Y. Kuang, X. Sun, B. Liu, *Angew. Chem. Int. Ed.*, 2019, 58, 736–740.
- [11] X. J. Cui, P. J. Ren, D. H. Deng, J. Deng, X. H. Bao, Energy Environ. Sci., 2016, 9, 123–129.
- [12] H. J. Lee, S. Back, J. H. Lee, S. H. Choi, Y. Jung, J. W. Choi. ACS Catal., 2019, 9, 7099–7108.
- [13] Y. Fan, S. Ida, A. Staykov, T. Akbay, H. Hagiwara, J. Matsuda, K. Kaneko, T. Ishihara, Small, 2017, 13, 1700099.