Copper(I) and silver(I) complexes of anthraldehyde thiosemicarbazone: Synthesis, structure elucidation, *in vitro* anti-tuberculosis/cytotoxicity activity and interactions with DNA/HSA

Ashiq Khan^a, Kamaldeep Paul^b, Iqubal Singh^b, Jerry P. Jasinski^c, Victoria A. Smolenski, Ethan P. Hotchkiss^c, Patrick T. Kelley^c, Zachary A. Shalit^c, Manpreet Kaur^c, Somesh Banerjee^d, Partha Roy^d, Rekha Sharma^{a, []}

^aDepartment of Chemistry, Lovely Professional University, Phagwara, Punjab, India

^bSchool of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India

^eDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, US

^dDepartment of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand

Supporting Information

Table S1.Binding constants for the interaction of ligand (H^2L), copper complexes (2, 6 and 8) and silver complexes (9 and 10) with ct-DNA

Compound	K _b (×10 ⁴ M ⁻¹)	R
H ² L	1.40	0.9859
2	6.66	0.9129
6	3.06	0.9716
8	3.62	0.9834
9	4.08	0.9830
10	4.60	0.9881

Figure S1. Benesi-Hildebrand plots: {A/(A-A₀) versus 1/DNA [μ M]} of absorption spectra of ligand (10 μ M) H²L (a); and complexes2 (b); 6 (c); 8 (d); 9 (e) and 10 (f) with increasing concentrations of ct-DNA.

Figure S2. Stern-Volmer plots {Fo/F versus [complex]} of emission spectra of EB (1 μ M) bound to ct-DNA (10 μ M) in the absence and increasing concentrations of the ligand H²L (a); and complexes **2** (b); **6** (c); **8** (d); **9** (d) and **10** (f).

FigureS3. Modified Stern-Volmer plots {log[(Fo-F)/F] versus log[complex]} of emission spectra of EB (1 μ M) bound to ct-DNA (10 μ M) in the absence and increasing concentrations of the ligand H²L (a); and complexes **2** (b); **6** (c); **8** (d); **9** (d) and **10** (f).

Compound	K _b (×10 ⁵ M ⁻¹)	₽R
H ² L	0.50	0.9833
2	3.28	0.9636
6	2.41	0.9699
8	2.20	0.9780
9	2.82	0.9751
10	3.06	0.9661

Table S2.Binding constants for the interaction of HSA with ligand (H^2L), copper complex (2, 6 and 8) and silver complex (9 and 10).

Figure S4.Benesi-Hildebrand plots: {1/(A-A₀) versus 1/complex [μ M]} of absorption spectra of HSA (10 μ M) with increasing concentrations of ligand H²L (a) and complexes2 (b); 6 (c); 8 (d); 9 (e) and 10(f).

Figure S5.Stern-Volmer plots {Fo/F versus [complex]} of emission spectra of HSA (10 μ M) in the absence and increasing concentrations of the ligand H²L (a) and complexes2 (b); 6 (c); 8 (d); 9 (d) and 10 (f).

FigureS6. Modified Stern-Volmer plots {log[(Fo-F)/F] versus log[complex]} of emission spectra of HSA (10 μ M) in the absence and increasing concentrations of the ligand H²L (a) and complexes2 (b); 6 (c); 8 (d); 9 (d) and 10 (f).

Table S3. The docking results based on the binding free energies (kcal/mol) of ligand H^2L , andcomplexes2 and 6 docked into 1BNA and RMSD from the co-crystallized ligand

	H ² L		2		6	
Mode	Affinity (kcal/mol)	RMSD (Å)	Affinity (kcal/mol)	RMSD (Å)	Affinity (kcal/mol)	RMSD (Å)
1	-7.1	0.000	-8.1	0.000	-5.9	0.000
2	-6.3	22.560	-8.0	0.568	-5.7	15.175
3	-6.0	2.126	-7.7	0.911	-5.6	15.146
4	-6.0	3.244	-7.7	1.725	-5.6	13.431
5	-5.9	3.651	-7.6	1.003	-5.6	0.430

6	-5.9	22.565	-7.6	0.678	-5.5	0.443
7	-5.9	3.188	-7.6	1.758	-5.5	0.548
8	-5.8	25.636	-7.5	1.769	-5.5	13.999
9	-5.8	3.100	-7.5	1.800	-5.5	0.420

Table S4.The docking results based on the binding free energies (kcal/mol) of complexes8, 9and 10 docked into 1BNA and RMSD from the co-crystallized ligand

	8		9		10	
Mode	Affinity	RMSD	Affinity	RMSD	Affinity	RMSD
	(kcal/mol)	(Å)	(kcal/mol)	(Å)	(kcal/mol)	(Å)
1	-6.4	0.000	-6.4	0.000	-5.9	0.000
2	-6.4	0.346	-6.3	1.966	-5.8	0.756
3	-6.4	0.437	-6.3	0.946	-5.7	2.307
4	-6.4	0.362	-6.3	0.676	-5.7	14.521
5	-6.3	2.180	-6.3	2.016	-5.6	7.969
6	-6.2	2.203	-6.3	0.664	-5.6	2.271
7	-6.2	0.869	-6.3	3.248	-5.6	14.086
8	-6.1	2.126	-6.3	1.946	-5.6	2.365
9	-6.0	3.229	-6.3	6.895	-5.5	14.176

Table S5. The H-bonding of compounds $H^{2}L$, 2, 6, 7,8, 9 and 10 with DNA docked into 1BNA

Comp.	DNA bases	ligand	Bond
			length (Å)
H ² L	DG-16 (chain B) (O4' of guanine)	NH of ligand (attached with CH ₃)	2.49
	DC-15 (chain B) (O2 of cytosine)	NH of ligand (attached with CH ₃)	2.75
	DC-15 (chain B) (O2 of cytosine)	NH of ligand (attached with N)	2.53
	DC-11 (chain A) (O2 of cytosine)	NH of ligand (attached with N)	2.89
	DG-16 (chain B) (H3 of guanine)	N of ligand (attached with =CH)	3.03
2	DG-4 (chain A) (H21 of guanine)	N of ligand (attached with =CH)	2.93
	DG-4 (chain A) H22 of guanine)	N of ligand (attached with =CH)	2.66
	DC-23 (chain B) (O4' of cytosine)	NH ₂ of ligand	2.13

	DA-6 (chain A) (OP1 of phosphate)	NH ₂ of ligand	2.46
6	DC-3 (chain A) (O2 of cytosine)	NH of ligand (attached with CH ₃)	2.38
	DG-4 (chain A) (O4' of guanine)	NH of ligand (attached with CH ₃)	2.73
8	DG-4 (chain A) (OP4 of phosphate)	NH of ligand (attached with CH ₃)	2.14
	DA-17 (chain B) (OP2 of phosphate)	NH of ligand (attached with CH ₃)	2.96
9	DG-4 (chain A) (OP2 of phosphate)	NH of ligand (attached with CH ₃)	2.13
	DA-17 (chain B) (OP2 of phosphate)	NH of ligand (attached with CH ₃)	2.96
	DC-3 (chain A) (OP1 of phosphate)	NH of ligand (attached with CH ₃)	3.60
	DA-18 (chain B) (OP2 of phosphate)	NH of ligand (attached with CH ₃)	3.75
10	DA-5 (chain A) (H7 of adenine)	Triphenyl ring system	2.90