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Fig. S1: Temperature used for glass precursor elaboration as a function of the material
composition. For compositions with x < 0.1, no glass can be obtained from the melt. For x > 0.1
the glass formation temperature decreases with the Si content increase.
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Fig. S2: PL spectra of Sro75Al15Si0s04:Eu?*,Dy>*. The Dy** content was varied from 0 % to 5 % relatively
to Sr.
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Fig. S3: Schematized energy level diagrams of Eu?* and Dy?* in h-SASO 0.2 (left) and 0.5 (right).
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Fig. S4: (black) PL spectrum of Sro.75Al1 5Sio s04:Eu?* With Aexc = 353 nm and comparison of PLE spectra
for different emission wavelength: (blue) Aem = 440 nm and (green) Aem = 600 Nm.
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Fig. S5: PL/PLE plot of SASO x = 0.5 sample. The upper emission spectra is recorded for Aexc = 350
nm. The side excitation spectra are recorded for pure Eu** emission, Eu** mixed overlapped Dy**
emission and pure Dy** emission (Aem = 490, 569 and 744 nm respectively). The intensity of the
excitation spectra for 569 nm and 744 nm emissions have been multiplied by 2.3 and 48 respectively
in order to be comparable with the pure Eu* one.
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Fig. S6: Comparison of SASO x = 0.5 with 5 % Dy>* doping concentration PLE spectra recorded at
different wavelengths, Aem = 490, 569 and 744 nm (blue, orange and dark red plots respectively).



Supporting Information S7: Eu?* red shift evolution with the materials composition.

The europium excitation redshift in a compound Sri.x/2Al2xSix0a, D(Eu?, Sr142Al2xSix04) is expected to
be the result of (i) the crystal field splitting £s(Eu?*, Sr1x2A1,4Six04) and (ii) the centroid shift e.(Eu®,
Sr1/2A124Six04) as described in the following equation:

N fs(su“,Sr l_EAlz_xSixo‘,)
2

D (Eu2+,Sr1_>z_cAlz_xSix04) =g (Eu2+,Sr1_>z_cAlz_xSix04) — Ae (Eu?Y, free) + + Mgy (Eu?*, free) (eql)
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Using semi-empirical formula, it is possible to relate the crystal field splitting and the centroid shift to
the size and nature of the coordination polyhedral.
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In these expressions, f is a constant parameter describing the type of the coordination polyhedral,
assumed to be constant along the solid solution. as, represents the spectroscopic polarizability,
related to the average cation electronegativity as follows:

1
Asp = X_sz (eq4)

with
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Xav =

The evolution of the average and effective Eu-O bond distances calculated using eq6 and eq7 are
reported in the figure S8 for x = 0.2, 0.3 and 0.5 using the synchrotron experimental data.

1 1 wcN 1
—_— eqb
sy o 2= [di=f (Rg,24—Rpy2+)]° (eqs)

day = (d) — f(Rgy2+ — Rgy2+)  (eq7)

With f = 0.6, Rg,2+ = 1.32 A and R+ = 1.31 A. In this figure, the warning signs remind to be
aware that the Sr, and Srs sites are linearly emptied along the solid solution.
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Fig. S8: Evolution of the Eu-O bond distances for the five distinct Sr sites along the solid solution. On
the left, the Eu-O average bond distances are presented whereas the effective bond distances are
displayed on the right. The warning signs remind that Sr, and Srs sites are partially emptied along
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the solid solution.

Assuming that Eu?* can occupy each Sr?* site (not vacancy), no clear average and effective Eu-O bond
distances can be depicted, in contrast with the clear Eu?* blue shift observed. On the other hand, the
counter cation electronegativity changes from xa = 1.47 to xsi = 1.74. Using eq. X, it is observable that
Xav increases along the solid solution, leading to a decrease of the optical polarizability as indicated in
Figure S9. This decrease of the optical polarizability, which results in a decrease of the centroid shift,
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may be an explanation of the blue shift observed along the solid solution.

Fig. S9: Evolution of the spectroscopic polarizability in the h-SASO x materials (0.2 < x <0.5).
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Fig. S10: Band structures of Sri.x2Al>4Six04 x = 0(left), x = 0.2 (middle) and x = 0.5 (right)

The density functional theory (DFT) calculations of the structural and electronic properties of Sri.x2Al,-
«Six04 (x =0, 0.2 and 0.5) were performed using the CASTEP module of Materials Studio 2017* package
and the GGA-PBE functionals®. The ionic core electrons were replaced by on-the-fly ultrasoft
pseudopotentials implemented in the CASTEP with the following electronic configuations: [Kr] 4s 4p®
5s2 for Sr, [Ne] 3s2 3p? for Al, [Ne] 3s? 3p? for Si and [He] 2s% 2p* for O 3. Relativistic effects were taken
into account at the level of the Koelling-Harmon approximation of the Dirac equation 4. The plane-
wave basis energy cut-off was chosen as 630.0 eV and k-point grids were chosen as 3x2x2 for x =0 and
2x2x2 for x =0.2 and 0.5. The convergence parameters were as follows: total energy tolerance 5.0x10°

6 eV//atom, maximum force tolerance 0.01 eV/A, maximum stress component 0.02 GPa and maximum
displacement 5.0x10* A.
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Fig. S11: Comparison of Eu?* and Dy3* persistent decays in the sample h-Srq 75Al1 5Sip 504 With a 5 % Dy3*
doping concentration after 365 nm excitation for 5 min at RT.
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Fig. S12: Comparison of Eu?* and Dy3* persistent decays in the sample h-Srq 75Al1 5Sip 504 With a 5 % Dy3*
doping concentration after 365 nm excitation for 5 min at RT. Note that in order to normalize, the intensity
of the TL glow curve with excitation at 273 K has been divided 2.3 times more than the low temperature
one.
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Fig. S13: Thermoluminescence glow curve of the monoclinic SrAl,04:Eu*,Dy>* powder obtained by
the ADL method. Prior to recording, the material have been excited using the 365 nm LED for 5min
at 15 K.
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Fig. S14: Persistent luminescence decay curves of Srg7sAl1sSios04:Eu?,Dy®* with Dy** contents
ranging from 0 % to 5%.
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