ELECTRONIC SUPPLEMENTARY INFORMATION

FOR

Aerobic Intramolecular Carbon-Hydrogen Bond Oxidation Promoted by Cu(I) Complexes

María Álvarez,^a Francisco Molina,^a Manuel R. Fructos,^a Juan Urbano,^b Eleuterio Álvarez,^c Mariona Sodupe,^d Agustí Lledós,^{*d} and Pedro J. Pérez^{*a}

Table of Contents

1. General methods and materials					
2. Synthesis and characterization of complexes 1-3					
3. Synthesis and characterization of complex Me-Tp ^{Me2-biphen} Cu(NCPh) (4)					
4. Generation of complex 5	S10				
5. IR spectra	S11				
6. NMR spectra for product characterization					
7. NMR monitoring of the reactions leading to complexes 2a and 2b					
8. Determination of the magnetic susceptibility of complex 2a					
9. UV-Visible studies	S33				
10. DFT calculations	S35				
11. References	S51				
12. Cartesian coordinates and absolute E and G energies in tetrahydrofuran of	S53				
the optimized structures					

1- General methods and materials.

Most of the reactions and operations have been carried out under air, with the exception of the synthesis of Cu(I) complexes, that were carried out using standard Schlenk techniques under an inert atmosphere of nitrogen. All solvents were dried using a SPS-MBraun system. THF was carefully distilled before use in oxygenation reactions, which was preformed using 100% oxygen gas. The reactants were purchased from Sigma-Aldrich and used without further purification.

NMR spectra were recorded on Agilent 500 DD2, ¹H and ¹³C NMR shifts reported relative to tetramethylsilane. FT-IR spectra were collected on a Alpha Bruker FTIR spectrometer. UV-Visible spectra were run using a Varian Cary 50 spectrophotometer. Elemental analyses were performed on a Perkin Elmer Series II CHNS/O Analyzer 2400. Crystal structure determinations were carried out using a BRUKER D8 FIXED-CHI diffractometer equipped with an Oxford Cryosystem low-temperature device.

The compounds $TITp^{Ms}$ (H-B),¹ $TI(Me-Tp^{Ms})^2$ and $Tp^{Ms}Cu(THF)^3$ were prepared according to literature procedures.

CCDC 1998194 (1a), 1998192 (1b), 1998369 (2a), 1998208 (2b), 1998370 (3a) 1998191 (3b), contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

2- Synthesis and characterization of complexes 1-3.

Complexes Tp^xCu(NCPh) (1a,b)

In a Schlenk tube, TITp^{Ms} (0.385 g, 0.5 mmol) or TI(Me-Tp^{Ms}) (0.39 g, 0.5 mmol) was dissolved in 10 mL of dichloromethane, then four equivalents of benzonitrile (206 μ L, 2 mmol) were added. CuCl (0.049 g, 0.5 mmol) was added and the mixture was stirred for 4 h, before being filtered through celite, under nitrogen. The volume of the yellow solution was concentrated under vacuum to approximately one third of the initial. After adding 1 ml of hexane, the solutions were cooled to -30°C, which led to the isolation of both complexes as yellow crystals with yields of 90% for **1a** and 70% for **1b**.

Analysis calculated for C₄₃H₄₅BCuN₇ (**1a**): C, 70.40; H, 6.18; N, 13.35 %. Found: C, 70.63; H, 6.33; N, 13.10 %. Analysis calculated for C₄₄H₄₇BCuN₇ (**1b**): C, 70.40; H, 5.91; N, 13.40 %. Found: C, 70.26; H, 6.19; N, 13.0 %.

¹H NMR (500 MHz, C₆D₆) δ 1.94 (s, 9H, CH_{3Mes}), 2.19 (s, 18H, CH_{3Mes}), 6.02 (d, 3H, J = 2 Hz, CH_{pz}), 6.54 (m, 2H, CH_{bznit}), 6.64 (s, 6H, CH_{Mes}), 6.67 (m, 1H, CH_{bznit}), 6.80 (m, 2H, CH_{bznit}), 7.74 (d, 3H, J = 2 Hz, CH_{pz}). ¹³C{¹H} (125 MHz, C₆D₆) δ 20.5 (CH_{3Mes}), 20.6 (CH_{3Mes}), 104.2 (CH_{pz}), 127.6 (CH_{Mes}), 131.2 (CH_{bznit}), 131.6 (CH_{bznit}), 132.3 (C_{qMes}), 134.2 (CH_{pz}), 135.9 (C_{qMes}), 137.8 (C_{qMes}), 150.1 (C_{qpz}).). ¹¹B{¹H} (160 MHz, C₆D₆) δ -3.06 (BH).

¹H NMR (500 MHz, C₆D₆) δ 1.05 (s, 3H, BCH₃), 1.92 (s, 9H, CH_{3Mes}), 2.18 (s, 18H, CH_{3Mes}), 6.03 (d, 3H, J = 2 Hz, CH_{pz}), 6.63 (s, 6H, CH_{Mes}), 6.69 (t, 2H, J = 7 Hz, CH_{bznit}), 6.78 (s, 1H, CH_{bznit}), 6.85 (t, 2H, J = 7 Hz, CH_{bznit}), 7.65 (d, 3H, J = 2 Hz, CH_{pz}). ¹³C{¹H} (125 MHz, C₆D₆) δ 20.6 (CH_{3Mes}), 20.7 (CH_{3Mes}), 103.9 (CH_{pz}), 127.5 (CH_{Mes}), 131.2 (CH_{bznit}), 131.6 (CH_{bznit}), 131.9 (CH_{pz}), 132.4 (C_{qMes}), 135.8 (C_{qMes}), 137.9 (C_{qMes}), 148.7 (C_{qpz}). ¹¹B{¹H} (160 MHz, C₆D₆) δ -1.35 (*B*Me) Complex 2a

Tp^{Ms}Cu(THF) (0.015 g, 0.021 mmol) was dissolved in oxygenated THF (upon bubbling O2 for one hour, adding THF to maintaing 0.6 mL of volume). The colorless solution was transferred into a NMR tube. After 24 h stading at room temperature, green crystals corresponding to complex **2a** appeared. This reaction was carried out on a larger scale using a Schlenk tube (0.35 g of Tp^{Ms}Cu(THF), 0.5 mmol) in oxygenated THF (10 mL) again obtaining complex **2a** as a crystalline green solid (0.158 g, 68% yield). When using complex Tp^{Ms}Cu(NCPh) **1a** (0.2 g, 0.02 mmol) as starting material, **2a** crystallized after 72 h at room temperature giving 90 mg (71% yield).

Analysis calculated for $C_{72}H_{80}B_2Cu_3N_{12}O_4$ (**2a**): C, 62.23; H, 5.80; N, 12.09 %. Found: C, 62.66; H, 6.04; N, 11.51 %.

Complex 2b

Complex **2b** was obtained following the above procedure, using complex **1b** (0.25 g, 0.33 mmol) in acetone as solvent, previously oxygenated for one hour (10 mL) in a Schlenk tube. After 72 h, the appearance of green crystals of complex **2b** was observed, with a final yield of 24 mg (25%).

Analysis calculated for $C_{74}H_{84}B_2Cu_3N_{12}O_4$ (**2b**): C, 62.69; H, 5.97; N, 11.86 %. Found: C, 62.68; H, 6.33; N, 11.52 %.

<u>Complexes Tp^xCu(Hpz^{Ms}) (3a,b)</u>

These complexes were detected by in situ NMR studies as by-products in the reaction of complexes **2a** and **2b**. For their characterization, they were independently synthesized following this procedure. The compounds $Tp^{Ms}TI$ (0.385 g, 0.5 mmol) or Me- $Tp^{Ms}TI$ (0.393 g, 0.5 mmol) were dissolved in 10 mL of dichloromethane along with one equiv of 3-mesitylpyrazole (0.093 g, 0.5 mmol), before adding CuCl (0.049 g, 0.5 mmol). After 12 h of stirring, the reaction mixtures were filtered through celite, and the filtrates were concentrated under vacuum to ca 50% of the initial volume. Then 1.5 mL of hexane was added before cooling to -30 °C. The expected complexes were obtained as colorless crystals with yields of 60% for **3a** and 55% for **3b**

Analysis calculated for C₄₈H₅₃BCuN₈ (**3a**): C, 70.62; H, 6.54; N, 13.73 %. Found: C, 70.36; H, 6.61; N, 13.57 %. Analysis calculated for C₄₉H₅₅BCuN₈ (**3b**): C, 70.87; H, 6.88; N, 13.49 %. Found C, 70.45; H, 6.88; N, 13.06 %.

¹H NMR (500 MHz, THF-d₈) δ 1.79 (s, 6H, *CH*_{3Mes}), 1.89 (s, 9H, *CH*_{3Mes}), 1.92 (s, 18H, *CH*_{3Mes}), 2.31 (s, 3H, *CH*_{3Mes}), 5.44 (s, 1H, *CH*_{pz}), 5.90 (s, 1H, *CH*_{pz}), 5.97 (d, 3H, *J* = 2 Hz, *CH*_{pz}), 6.59 (s, 6H, *CH*_{Mes}), 6.94 (s, 2H, *CH*_{Mes}), 7.64 (s, 1H, *CH*_{pz}), 7.74 (d, 3H, *J* = 2 Hz, *CH*_{pz}). ¹³C{¹H} (125 MHz, THF-d₈) δ 18.9 (*C*H_{3Mes}), 19.8 (*C*H_{3Mes}), 19.9 (*C*H_{3Mes}), 20.1 (*C*H_{3Mes}), 103.3 (*C*H_{pz}), 104.0 (*C*H_{pz}), 126.3 (*C*q_{Mes}), 127.2 (*C*H_{Mes}), 127.9 (*C*H_{Mes}), 132.4 (*C*H_{pz}), 133.6 (*C*H_{pz}), 136.6 (*C*q_{Mes}), 137.4 (*C*q_{Mes}), 137.5 (*C*q_{Mes}), 138.4 (*C*q_{Mes}), 138.7 (*C*q_{Mes}), 140.2 (*C*q_{pz}), 148.3 (*C*q_{pz}). ¹¹B{¹H}

(160 MHz, THF-d₈) δ -3.35 (BH).

¹H NMR (500 MHz, THF-d₈) δ 1.11 (s, 3H, BC*H*₃), 1.77 (s, 6H, C*H*_{3Mes}), 1.85 (s, 9H, C*H*_{3Mes}), 1.89 (s, 18H, C*H*_{3Mes}), 2.29 (s, 3H, C*H*_{3Mes}), 5.37 (s, 1H, C*H*_{pz}), 5.83 (s, 1H, C*H*_{pz}), 5.93 (d, 3H, *J* = 2 Hz, C*H*_{pz}), 6.55 (s, 6H, C*H*_{Mes}), 6.92 (s, 2H, C*H*_{Mes}), 7.56 (s, 1H, C*H*_{pz}), 7.75 (d, 3H, *J* = 2 Hz, C*H*_{pz}). ¹³C{¹H} (125 MHz, THF-d₈) δ 20.7 (*C*H_{3Mes}), 21.6 (*C*H_{3Mes}), 21.8 (*C*H_{3Mes}), 21.9 (*C*H_{3Mes}), 104.9 (*C*H_{pz}), 105.7 (*C*H_{pz}), 128.3 (*C*q_{Mes}), 129.0 (*C*H_{Mes}), 129.7 (*C*H_{Mes}), 139.3 (*C*q_{Mes}), 140.2 (*C*q_{Mes}), 140.3 (*C*q_{Mes}), 142.3 (*C*q_{pz}), 150.8 (*C*q_{pz}). ¹¹B{¹H} (160 MHz, THF-d₈) δ – 1.38 (*B*-Me).

3. Synthesis and characterization of complex Me-Tp^{Me2-biphen}Cu(NCPh) (4).

Step A: Synthesis of 3-(3,5-dimethyl-[1,1'-biphenyl]-4-yl)-pyrazole)

The preparation of the pyrazole was carried out following a procedure consisting of 8 steps.⁴

In a three-necked round bottom flask under N₂, K₂CO₃ (44.2 g, 328 mmol) was placed and suspended in dry DCM (100 mL). Then 3,5-dimethylaniline (10 mL, 164 mmol) was added and the mixture was cooled to 0°C. After stirring at that temperature for 30 min, acetyl chloride (22.7 mL, 328 mmol, previously distilled) was added dropwise. After 2 h, 10 mL of H₂O were added and organics were extracted with DCM (3 x 60 mL). The organic phases were combined and dried with MgSO4, before filtering and removing volatiles to isolate the desired product as a white solid (53.9 g, 99% yield).

II:

The substituted aniline obtained above (13.59 g, 0.192 mol) and AlCl₃ (50.38 g, 0.465 mol) were placed into a 500 mL three-necked flask under N₂, along with DCM (200 mL), before cooling at 0 °C. Then, acetyl chloride (17.50 mL, 0.253 mol) was added dropwise under N2, the mixture being stirred for 3 h at 0° C. After this time, the flask was opened to air and its content was poured into a beaker containing 600 g of H₂O and 30 mL of HCl. Organics were extracted with DCM (3 x 50 mL) and the organic phase was dried with MgSO₄. After filtration and solvent evaporation, the desired product was obtained as a pale yellow solid (38.6g, 98% yield).

III:

In a 250 mL ampoule, 9 g of the compound obtained in step II, 60 mL of H₂O and 5 mL of HCI were placed. The mixture was heated at 95 °C for 20 h. After this time, it was allowed to cool and the resulting brown solution was transferred to a beaker, pH being brought 8 with a saturated solution of Na₂CO₃. The resulting yellow solid was filtered on a sintered glass funnel and subsequently dissolved in DCM (100 mL). The solution was

treated with MgSO₄ before filtering and evaporating the solvent. The targeted compound was obtained as a yellow solid (7 g, 98% yield).

IV:

In one-round botton flask 72.5 g of ice and 22.5 mL of H_2SO_4 were placed before the product obtained in step II was added portion-wise (2.29 g, 14 mmol). The mixture was stirred until it was dissolved (10 min). Then 97.5 mL of CPME (cyclopentyl methyl ether) and a solution of NaNO₂ (1.06 g, 15.3 mmol in 39 mL of H_2O) were added dropwise, before heating at 110 ° C for 5 h. After this time, the resulting yellow solution was extracted with ethyl acetate (3 x 60 mL). The extracts were combined and dried with MgSO4. Filtration and evaporation led to the desired product as a brown solid. This product was purified by chromatography on a silica column with ethyl acetate (2.2 g, 95% yield).

V:

In a 250 mL Schlenk flask, the above compound (2.53 g, 15 mmol) was placed and dissolved in dry DCM (20 mL). Et₃N (4.30 mL, 31 mmol) was added and the reaction was cooled to 0°C. Then triflic acid (3.11 mL, 18.5 mmol) was added dropwise, turning the color to dark brown. After stirring for 16 h, H₂O (60 mL) was added and extracted with ethyl acetate (3 x 80 mL). The extract was dried with MgSO₄, filtered and taken to dryness to yield the desired product. This product was purified by column chromatography (silica; 5: 1 petroleum ether: ethyl acetate) affording a brown oil (4.2 g, 95% yield).

VI:

The product obtained in the previous step (4.2 g, 14.2 mmol), KF (2.66 g, 45.01 mmol), PCy₃ (47 mg, 0.16 mmol), Pd(OAc)₂, (31 mg, 0.12 mmol) and phenyl boronic acid (2.02 g, 16.5 mol) were placed in a 500 mL ampoule, and was dissolved in dioxane (20 mL). The mixture was heated at 110 ° C for 12 h. After this time, the volatiles were evaporated and the residue was dissolved in ethyl acetate (200 mL). After filtering through celite, the brown solution was taken to dryness and purified by column chromatography (silica; 15: 1, petroleum ether: ethyl acetate) obtaining the desired product as a white solid (2.9 g, yield).

VII:

In a round bottom Schlenk flask, sodium ethoxide (1.07 g, 15.7 mmol) was weighed inside a dry box and dissolved in dry toluene (35 mL). Under N₂, the product obtained in the previous step (3.44g, 15.7 mmol) and ethyl formate (4.14 mL, 54.4 mmol) were added. The reaction was stirred for 3 h while a white solid precipitated. After this time, H₂O (100 ml) was added and the mixture was washed with Et₂O (2 x 50 mL). The aqueous phase was separated and treated with HCl until pH = 5 before organics were S7

extracted with Et₂O (2 x 80 mL). After drying with MgSO₄, the mixture was filtered and evaporated giving the desired product as a white solid (3.4 g, 86% yield).

VIII:

The product obtained in the previous step (3.75 g, 14.1 mmol) was placed to a 250 mL one-neck flask and dissolved in 75 mL of MeOH. Hydrazine monohydrate (197 μ L, 14.1 mmol) was added and the mixture heated to reflux (ca 90 °C) for 12 h. The resulting yellow solution was evaporated affording a yellow solid that was crystallized from MeOH solutions at -30 °C. The pyrazole was obtained as a light yellow solid with a yield of 85%. (3 g).

Analysis calculated for $C_{17}H_{16}N_2$ (3-(3,5-dimethyl-[1,1'-biphenyl]-4-yl)-pyrazole)): C, 81.89; H, 6.87; N, 11.24 %. Found: C, 81.41; H, 6.27; N, 11.10 %.

¹H NMR (500 MHz, CDCl₃) δ 2.14 (s, 6H, CH_{3Me}), 6.23 (s, 1H, CH_{pz}), 7.28 (s, 2H, CH_{arom}), 7.34 (m, 1H, CH_{arom}), 7.42 (t, 2H, J_{H-H} = 8 Hz CH_{arom}), 7.56 (d, 2H, J_{H-H} = 8 Hz CH_{arom}), 7.61 (s, 1H, CH_{pz}). ¹³C{¹H} (125 MHz, CDCl₃) δ 20.6 (CH_{3Me}), 105.8 (CH_{pz}), 126.1 (CH_{arom}), 127.1 (CH_{arom}), 127.3 (CH_{arom}), 128.7 (CH_{arom}), 130.2 (C_{qarom}), 135.9 (CH_{pz}), 138.4 (C_{qarom}), 140.7 (C_{qarom}), 141.2 (C_{qarom}), 144.3 (C_{qpz}).

Step B: Synthesis of TI(Me-Tp^{Me2-biphen})

In a Schlenk tube and under nitrogen atmosphere, 3-(3,5-dimethyl-[1,1'-biphenyl]-4yl)-pyrazole (2.5 g, 10.01 mmol) and MeBH₃Li (109.2 mg, 3.06 mmol) were placed along with 10 mL of mesitylene, and the mixture was stirred for 5 h at room temperature. Since H₂ is released, the tube was connected to the gas line to release over-pressures. After that time, the mixture was heated at 180 °C for 60 h, before being cooled at 50 °C. Volatiles were removed at that temperature under reduced pressure and the residue dissolved in dry THF (20 mL). Tl(OAc) (805 mg, 3.06 mmol) was then added and the mixture stirred for 24 h at room temperature. Solid was removed by filtration, volatiles removed under reduced pressure and the resulting white solid was washed with MeOH (4 x 30 mL) to remove excess of pyrazole. Tl(Me-Tp^{Me2-biphen}) was obtained as a white solid in 90% yield.

Analysis calculated for $C_{17}H_{16}BrN_2$: C, 64.24; H, 4.98; N, 8.64 %. Found: C, 64.15; H, 5.01; N, 8.54 %.

¹H NMR (500 MHz, CDCl₃) δ 1.20 (s, 3H, CH_{3BMe}), 2.01 (s, 18H, CH_{3Me}), 6.12 (d, 3H, J_{H-H} = 2 Hz CH_{pz}), 7.25 (s, 6H, CH_{arom}), 7.29 (t, 3H, t, 3H, J_{H-H} = 8 Hz CH_{arom}), 7.38 (t, 6H, J_{H-H} = 8 Hz CH_{arom}), 7.57 (d, 6H, J_{H-H} = 8 Hz CH_{arom}), 7.90 (d, 3H, J_{H-H} = 2 Hz CH_{pz}). ¹³C{¹H} (125 MHz, CDCl₃) δ 20.8 (CH_{3Me}), 104.6 (CH_{pz}), 125.9 (CH_{arom}), 126.9 (CH_{arom}), 127.2 (CH_{arom}), 128.6 (CH_{arom}), 132.9 (C_{qarom}), 133.4 (CH_{pz}), 137.9 (C_{qarom}), 140.4 (C_{qarom}), 140.7 (C_{qarom}), 149.75 (C_{qpz}). ¹¹B{¹H} (160 MHz, CDCl₃) δ 0.05 (*B*-Me).

Step C: Synthesis of Me-Tp^{Me2-biphen}Cu(NCPh) (4).

In a Schlenk tube, TI(Me-Tp^{Me2-biphen}) (0.49 g, 0.5 mmol) was dissolved in 15 mL of dichloromethane, then four equivalents of benzonitrile (206 μ L, 2 mmol) were added. CuCl (0.049 g, 0.5 mmol) was added to the mixture which was stirred for 12 h at room temperature. The yellow solution was filtered through celite, under nitrogen, and the volatiles were removed. The resulting solid was washed with hexane (2 x 5 mL) to give complex **4** as a yellow solid with in 92% yield.

Analysis calculated for C₅₉H₅₃BCuN₇ (**4**): C, 75.83; H, 5.75; N, 10.49 %. Found: C, 75.60; H, 5.64; N, 40.42 %.

¹H NMR (500 MHz, CDCl₃) δ 1.05 (s, 3H, CH_{3BMe}), 2.28 (s, 18H, CH_{3Me}), 6.10 (m, 3H, CH_{pz}), 6.26 (t, 2H, J = 7 Hz, CH_{bznit}), 6.53 (d, 2H, J = 7 Hz, CH_{bznit}), 6.62 (t, 1H, J = 7 Hz, CH_{bznit}), 7.05 (m, 6H, CH_{arom}), 7.16 (m, 9H, CH_{arom}), 7.17 (s, 6H, CH_{arom}), 7.70 (m, 3H, CH_{pz}). ¹³C{¹H} (125 MHz, CDCl₃) δ 21.9 (CH_{3Me}), 104.0 (CH_{pz}), 125.2 (CH_{arom}), 126.7 (CH_{arom}), 127.0 (CH_{arom}), 128.3 (CH_{arom}), 131.1 (CH_{bznit}), 131.6 (CH_{bznit}), 131.9 (CH_{bznit}), 132.2 (C_{qarom}), 134.4 (CH_{pz}), 138.7 (C_{qarom}), 139.6 (C_{qarom}), 140.9 (C_{qarom}), 149.5 (C_{qpz}).¹¹B{¹H} (160 MHz, CDCl₃) δ -0.927 (*B*-Me).

4. Generation of complex 5.

Complex **4** (0.1 g, 0.107 mmol) was dissolved in oxygenated acetone (upon bubbling O_2 for one hour through 5 mL, and maintaining volume constant). The mixture was left undisturbed, and after two weeks green crystals deposited, some of them suitable for X-Ray studies. Yield = 13%.

5. IR Spectra.

 $v(CN) = 2235 \text{ cm}^{-1}$.

1b (nujol)

v(CN) =2230 cm⁻¹

 $v(BH) = 2452 \text{ cm}^{-1}; v(OH) = 3652 \text{ cm}^{-1}$

 $v(CN) = 2232 \text{ cm}^{-1}$.

6. NMR Spectra for Product Characterization.

Complex Tp^{Ms}Cu(NCPh) (1a)

 $^{1}HNMR$ (500 MHz, C₆D₆)

¹³C{¹H} NMR (125 MHz, C₆D₆)

Complex Me-Tp^{Ms}Cu(NCPh) (1b)

¹H NMR (500 MHz, C₆D₆)

¹³C{¹H} NMR (125 MHz, C₆D₆)

Complex Tp^{Ms}Cu(Hpz^{Ms}) (3a)

¹³C{¹H} NMR (125 MHz, THF-d₈)

Complex Me-Tp^{Ms}Cu(Hpz^{Ms}) (3b)

¹H NMR (500 MHz, THF-d₈)

¹³C{¹H} NMR (125 MHz, THF-d₈)

¹¹B{¹H} NMR (160 MHz, THF-d₈)

3-(3,5-dimethyl-[1,1'-biphenyl]-4-yl)-pyrazole)

¹H NMR (500 MHz, CDCl₃)

¹³C{¹H} NMR (125 MHz, CDCl₃)

Complex TI(Me-Tp^{Me2-biphen})

¹H NMR (500 MHz, CDCl₃)

¹³C{¹H} NMR (125 MHz, CDCl₃)

¹¹B{¹H} NMR (160 MHz, CDCI₃)

Complex Me-Tp^{Me2-biphen}Cu(NCPh) (4)

 $^{1}HNMR$ (500 MHz, C₆D₆)

¹³C{¹H} NMR (125 MHz, C₆D₆)

¹¹B{¹H} NMR (160 MHz, C₆D₆)

7. NMR monitoring of the reactions leading to complexes 2a and 2b.

 $Tp^{Ms}Cu(THF)$ (15 mg, 0.021 mmol) was dissolved in 0.6 mL de THF-d₈ (oxygenated), and the sample was monitored for one week by ¹H NMR spectroscopy.

 $t = 5 min (500 MHz, THF-d_8).$

t = 72 *h* (500 *MHz*, *THF*-*d*₈).

8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 δ ppm

 $t = 6 \text{ days } (500 \text{ MHz}, \text{THF-}d_8).$

A second experiment was carried out starting from the dinuclear complex $[Tp^{Ms}Cu]_2$ (15 mg, 0.012 mmol) in 0.6 mL of THF-d₈.

8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 δ ppm

t = 72 *h* (500 *MHz*, *THF*-*d*₈).

 $t = 120 h (500 MHz, THF-d_8).$

 $t = 7 \text{ days} (500 \text{ MHz}, \text{THF-}d_8).$

In a third experiment, a sample of complex 1b (15 mg, 0.012 mmol) in 0.6 mL of THF-d_8 was used.

8. Determination of the magnetic susceptibility of complex 2a.

The determination of the magnetic susceptibility of complex **2a** was carried out using an Evans balance. The empty sample tube was first introduced to obtain R_o . Subsequently, the tube was filled with compacted complex **2a**, finely divided after crushing crystalline material in a mortar. The sample mass was then weighed and calculated by difference from the weight of the empty tube. The height of the sample in the tube was also measured, in cm (L). Finally, the tube was introduced in the balance and the value of the measurement R was noted:

m = 47 mg $R_o = -25$ R = 111L = 0.85 cm

 χ_g was obtained with the following equation::

$$\chi_g = \frac{LC_{bal}(R - R_o)}{10^9 m}$$

C_{bal} was obtained from:

$$C_{bal} = \frac{C_{std}}{(R - R_o)}$$

 $C_{std} = 1112$

R = 853

 $R_{o} = -32$

From χ_g , the molar magnetic susceptibility (χ_M) was calculated by multiplying χ_g by the molecular weight of complex **2a**. In addition, a correction was made for the existence of additional diamagnetic effects of the metal center and the ligands:

$$\chi_{M \text{ corrected}} = \chi_{M} + 10^{-6} \Box \Box Z_{\text{corrections}}$$

The summation factor of the corrections is obtained from the following Table, with the approcah of the pyridine values for the pyrazole ligands (this affect t o the third decimal integer).

Cations		Anions		Molecules	
1 :+	1.0	F -	0.1		10
LI*	1.0	F	9.1	H ₂ U	13
Na+	6.8	Cl-	23.4	NH_3	16
K⁺	14.9	Br⁻	34.6	en	47
Rb⁺	22.5	-	50.6	ру	49
Cs+	35	CH ₃ CO ₂ -	29	PPh₃	167
TI⁺	35.7	$C_6H_5CO_{2-}$	71		
NH ⁴⁺	13.3	CN⁻	13		
Hg ²⁺	38	CON	23		
Mg ²⁺	5	CNS ⁻	34		
Zn ²⁺	15	CIO ⁴⁻	34		
Pb ²⁺	32	CO32-	28		
Ca ²⁺	10.4	$C_2O_4^{2-}$	28		
Sr ²⁺	16	HCO ²⁻	17		
Ba ²⁺	26	NO ³⁻	19		
Fe ²⁺	12.8	O ²⁻	6		
Cu ²⁺	12.8	OH-	11		
Cu ¹⁺	15	S ²⁻	28		
Ag ¹⁺	27	SO42-	38		
Cd ²⁺	20	S ₂ O ₃ ²⁻	46		
Other metals	13	acac	55		

Table. Correction values for calculating magnetic susceptibility.

From all the previous data, and considering a temperature of 25 °C (298 K), the following value of μ_{ef} was obtained:

$$\mu_{e\!f} = 2.828 \sqrt{\chi_M T}$$

µ_{ef}= 3.329 MB

9. UV-visible studies.

In a quartz cuvette, 15 mg of Tp^{Ms}Cu(THF) were dissolved in 0.6 mL of THF previously oxygenated for one hour, the mixture being monitored by UV-Visible for several days. The spectra obtained were the following:

In a second experiment, metallic copper powder (150 mg) was added, using the same conditions, obtaining the following spectra:

10. DFT Calculations.

<u>I</u>Computational Details

I.I Potential Energy Surface exploration

Theoretical calculations were performed at the DFT level of theory using Gaussian09 software.⁵ All the energies reported in the main text have been obtained with the hybrid meta-GGA TPSSh functional⁶ supplemented with the Grimme's dispersion correction D3.7 This 10% exchange functional accurately reproduce the relative energies of spin states of first-row transition metal complexes⁸ and predicts reactivity at Culll.⁹ We have already employed this methodology in recent studies of copper reactivity involving different spin states of the metal¹⁰ and O₂ activation in transition metal systems.¹¹ Additional calibration calculations employing a set of functionals as well as highly-correlated methods were carried out for certain structures (see section VI in the Supporting Information). The geometries of all the intermediates and transition states were optimized in tetrahydrofuran solvent (ε = 7.4257) with the SMD continuum model¹² using the TPSSh-D3 functional. Basis set BS1 was used for the optimizations. BS1 includes the 6-31G(d,p) basis set for the main group elements,¹³ and the scalar relativistic Stuttgart-Dresden SDD pseudopotential and its associated double- ζ basis set,¹⁴ complemented with a set of *f* polarization functions,¹⁵ for the copper atoms. Frequency calculations were carried out for all the optimized geometries in order to characterize the stationary points as either minima or transition states.

Gibbs energies in tetrahydrofuran (ΔG_{THF}) were calculated at 298.15 K adding to the potential energies in tetrahydrofuran, obtained with single point calculations using an extended basis set (BS2) at the BS1 optimized geometries, the thermal and entropic corrections obtained with BS1. In BS2 the main group element atoms are described with a 6-311++G(d,p) basis set.¹⁶

A correction of 1.9 kcal mol⁻¹ was applied to all Gibbs values to change the standard state from the gas phase (1 atm) to solution (1 M) at 298.15 K.¹⁷ In this way, all the energy values in the energy profiles are Gibbs energies calculated using the formula:

$$G_{THF} = E_{THF}(BS2) + G_{THF}(BS1) - E_{THF}(BS1) + \Delta G^{1atm \rightarrow 1M}$$

where $\Delta G^{1atm \rightarrow 1M} = 1.9$ kcal mol⁻¹ is the Gibbs energy change for compression of 1 mol of an ideal gas from 1 atm to the 1 M solution phase standard state.

Unrestricted open-shell singlet calculations (OSS) have been performed with the broken-symmetry formalism. It is important to note that, in open-singlet biradicals, the

unrestricted wavefunction is often contaminated by higher spin states, especially by the triplet state. In order to take into account this spin contamination the energy of all stationary points with an open-shell singlet spin state was further corrected with the Yamaguchi approach.¹⁸

I.II Calculation of electronic spectra

Simulations of the electronic spectra of the mononuclear copper complex **C**, the dinuclear **C-Cu** and trinuclear **2a** in THF solvent have been carried out with the TD-DFT approach at the B3LYP/BS1¹⁹ level of theory, using the TPSSh-D3/BS1 geometries optimized in THF solvent. For all systems we have run calculations asking for 10 roots, except for **C** in the triplet state, for which the simulation was done for 18 roots. This way we could cover up to 500 nm and thus, analyze the wavelength range where the experimental band was observed. Simulated spectra for the three compounds are shown in Figure S8-S10. In addition, for **2a** we have also performed calculations with CAM-B3LYP²⁰ and with the BS2 basis set, to assess the influence of i) considering a range separated functional, which has been shown to provide better results for charge transfer excitations, and ii) further enlarging the basis set. Results are given in Figure S10.

II. Comparison of triplet and open-shell singlet Gibbs energy profiles.

Figure S1. DFT-computed (TPSSh-D3/BS2) Gibbs energy profile for the reaction of **1** with O₂ in tetrahydrofuran, in the triplet (blue lines) and open-shell singlet (red lines) spin states. Solid lines: pathway A; dotted lines: pathway B. Relative ΔG_{THF} values are given in kcal mol⁻¹ and are reported with respect to separated **1** and O₂

•

III. Optimized structures of all the intermediates and transition states in the pathway for the formation of C from 1 and O_2 in the triplet state (Gibbs energy profile in Figure 4 of the main text)

a)

Figure S2. Optimized structures of all the intermediates and transition states in the pathway for the formation of **C** from **1** and O_2 in the triplet state (Gibbs energy profile in Figure 4 of the main text): a) formation of hydroperoxo intermediate; b) pathway A; c) pathway B. Geometries of the corresponding species in the open-shell singlet state are very similar.

IV. Closed-shell singlet Gibbs energy profile

Figure S3. DFT-computed (TPSSh-D3/BS2) Gibbs energy profile for the reaction of **1** with O_2 in tetrahydrofuran, in the closed-shell singlet spin state. Relative ΔG_{THF} values are given in kcal mol⁻¹ and are reported with respect to separated **1** and O_2 .

V. Optimized structures of all the intermediates and transition states in the pathway for the formation of C from 1 and O_2 in the closed-shell singlet state (Gibbs energy profile in Figure S3)

Figure S4. Optimized structures of all the intermediates and transition states in the pathway for the formation of **C** from **1** and O_2 in the closed-shell singlet state (Gibbs energy profile in Figure S3). In this spin state hydrogen abstraction and O-O bond splitting (a) takes place in a concerted way (**TS**_{CH}-**CSS**) yielding the copper-oxo/alcohol intermediate **I-COH-CSS**. From this intermediate, proton transfer to the oxo group, with concomitant formation of a Cu-O bond with the alkoxy group (**TS**_{OHO}-**CSS**) leads to intermediate **C-CSS** (b).

a)

b)

VI. DFT benchmark study for the nature of intermediate C and relative stabilities of Cu^I, Cu^{II} and Cu^{III} species

The transformation of $1 + O_2$ in **2a** involves four different oxidation states of copper (0, I, II and III) and takes place in different spin states. To computationally deal with both issues is challenging. Accurate calculations of the energy splitting between low-spin and high-spin states²¹ and between compounds including copper centers in different oxidation states²² is difficult due to the strong functional dependence it displays. Thus, in order to determine the correct ground state of intermediate **C**, as well as to benchmark the relative energies of copper species in different oxidation states, we performed Coupled Cluster calculations including single, double, and perturbatively estimated triple excitations [CCSD(T)] within a domain-based local pair natural orbital (DLPNO) formulation²³ of species **1** (Cu^{II}, closed-shell singlet) + O₂ (triplet), **C-T** (Cu^{II}, triplet) and **C-CSS** (Cu^{III}, closed-shell singlet). The obtained values were benchmarked against several density functional-based methods (Table S1). DLPNO-CCSD(T) has been devised to obtain accurate electronic energies for large molecules and already employed to benchmark singlet-triplet gaps in copper complexes.^{22b,24}

Figure S5. TPSSh-D3 optimized geometries of 1, C-T and C-CSS used for the benchmarking calculations.

All these benchmarking calculations have been performed at the TPSSh-D3/BS1 optimized geometries of the complexes using a further extended basis ser (BS3). BS3 consists in the def2-TZVP basis set for the main group elements, and the quadruple- ζ def2-QZVP basis set for Cu.²⁵ Data collected in Table 1 enable us to assign a singlet-Cu^{III} nature to the mononuclear species **C** resulting from the hydroxylation of **1**, though highlighting the difficulties of DFT methods in accurately estimate in a balanced way the relative energies of these three copper complexes. The results also show that the level

of calculation used to build up the energy profiles (single point TPSSh-D3/BS2 calculations over TPSSh-D3/BS1 optimized geometries) is giving a good estimation of **1** + $O_2 \rightarrow$ **C-CSS** reaction, although overestimates the stability of **C-T**. Overall, the lower absolute deviations with respect the DLPNO-CCSD(T) values are obtained with PBE-D3 and TPSSh-D3 functionals.

Table S1. Relative energies of copper species in different oxidation states and Cu(III)/Cu(II) singlet-triplet energy gap, in kcal mol⁻¹, computed for **1** and **C** using various density functionals compared against DLPNO-CCSD(T) reference values. All single-point calculations are done using BS3 on TPSSh/BS1 singlet and triplet optimized geometries.

Mothod	% HE ovebongo	1 (Cu ⁱ)	C-T	C-CSS	ΔΕ	Absolute
Method	%HE exchange	+ O2	(Cu ^{II})	(Cu ^{III})	(Cu(II)-Cu(III))	deviation ^a
DLPNO-CCSD(T)/BS3 (gp)	/	0.0	-22.9	-42.7	19.8	0.0
TPSSh-D3/BS1 (opt)	10	0.0	-35.3	-44.1	8.8	13.8
TPSSh-D3/BS2	10	0.0	-33.8	-42.7	8.9	10.9
TPSSh-D3/BS3	10	0.0	-26.1	-35.5	9.4	10.4
PBE-D3/BS3	0	0.0	-28.2	-39.6	11.4	8.4
M11-L/BS3	0	0.0	-44.5	-50.0	5.5	28.9
B3LYP-D3/BS3	20	0.0	-15.7	-31.1	15.4	18.8
PBE0-D3/BS3	25	0.0	-10.7	-26.5	15.8	28.4
M06/BS3	27	0.0	-19.0	-27.7	8.7	18.9
MN15/BS3	44	0.0	7.4	-8.7	16.1	64.3
CAM-B3LYP-D3	19(SR)65(LR)	0.0	-22.2	-28.0	5.8	15.4
wB97XD	22(SR)/100(LR)	0.0	-14.9	-20.3	5.4	30.4
M11/BS3	42.8(SR)/100(LR)	0.0	-16.2	-13.9	-2.2	35.5

^{a)} Computed as the sum of the absolute values of the differences of the relative energies of the Cu^{III} and Cu^{III} species with respect the corresponding DLPNO-CCSD(T)/BS3 relative energy values.

VII. Minimum Energy Crossing Point (MECP) of the triplet and closed-shell singlet potential energy surfaces

Optimization of the triplet hydroperoxide intermediate **I-OOH-T** in the closed-shell singlet state leads to intermediate **I-COH-CSS** with a copper(III)-oxo/C-OH nature. We have explored this alternative route to enter into the Cu(III) PES, by locating the minimum energy crossing point (MECP) between the triplet and singlet surfaces that connects both intermediates. To locate the MECP between potential energy surfaces of different spin, the program developed by the group of Harvey was employed.²⁶ To confirm that the MECP connects the two intermediates located in the two energy surfaces, the MECP structure was optimized in the different spin states involved in the crossing. The Gibbs energies in solution of the MECP was estimated by adding to the calculated potential energy of the MECP thermal and entropic corrections calculated with the option freq = projected of the Gaussian 09 program.²⁷ The structure of the MECP is depicted in Figure S6.

Figure S6. TPSSh-D3/BS1 optimized structure of MECP connecting **I-OOH-T** and **I-COH-CSS** intermediates. Selected distances in Å.

The MECP is found at 31.0 kcal mol⁻¹, much higher than TS_{rot} -T (20.1 kcal mol⁻¹) and TS_{co} -T (23.1 kcal mol⁻¹). Consequently, this alternative route to reach C can be discarded.

VIII. Structural and electronic analysis of the trinuclear complex 2a.

Figure S7. TPSSh-D3/BS1 optimized structures of the trinuclear complex **2a** optimized in the doublet (**2a-D**) and quadruplet (**2a-Q**) spin states. In black Cu···Cu distances (in Å) and in blue Mulliken atomic spin populations, displaying the presence of three equivalent copper(II) centers. There is a huge thermodynamic driving force directing the formation of the trimetallic copper(II) complex from two monuclear copper(III) complexes **C-CSS** and one copper atom.

Table S2.Comparison of the X-ray determined and DFT-optimized maingeometrical parameters of 2a.Distances in Å, angles in degrees.

	X-ray	2a-D ^a	2a-Q ^a
Cu _L -O _C	1.916	1.928	1.929
СиОн	1.945	1.984	1.975
Cu _C -O _C	1.930	1.934	1.943
Си _с -О _н	1.906	1.940	1.945
Cu _L -N	2.01/2.026/2.026	2.033/2.069/2.218	2.048/2.061/2.323
$Cu_L\cdots Cu_C$	3.0067	2.992	2.948
O_C - Cu_L - O_H	76.65	77.3	78.7
O_C - Cu_C - O_H	77.25	78.3	79.1
N-Cu _L -N	85.27/91.47/87.08	90.4/85.9/86.6	89.9/85.4/86.6

^{a)} TPSSh-D3/BS1 optimized geometry in THF

IX. TD-DFT calculation of the UV-Vis spectra

UV-Vis simulated spectra in THF for the mononuclear (C), dinuclear (C-Cu) and trinuclear (2a) complexes are shown in Figures S8-S10. Results for C in the singlet state (C-CSS) indicate that the wavelength of the most intense band is 500 nm. This band mainly corresponds to $O_p \rightarrow Cu_d$ excitation. However, in the triplet state (C-T) simulations indicate that there is an intense band at 1498 nm corresponding mainly to the $O1_p \rightarrow O2_p$ excitation and a less intense band at 644 nm corresponding to a $L \rightarrow O$ transition. For the dinuclear complex C-Cu we have run simulations both for the doublet and quartet spin states and found intense bands at 394 and 565 nm, respectively. Former band mainly corresponds to a Cu1_{3d} \rightarrow L transition whereas that of the quartet state corresponds to a Cu1_{4s} \rightarrow L transition. Finally, for the trinuclear complex **2a**, both in the doublet and quartet state, most intense band shows contributions from $O_p \rightarrow Cu_d$ and $Cu_d \rightarrow Cu_d$ transitions among the different copper sites. In addition, for **2a** we have also performed calculations with CAM-B3LYP²⁰ (Figure S10) and with the BS2 basis set (Figure S11), to assess the influence of i) considering a range separated functional, which has been shown to provide better results for charge transfer excitations, and ii) further enlarging the basis set. Results show that neither changing the functional to CAM-B3LYP nor enlarging the basis set has a major influence on the computed spectrum, the wavelength of the band maximum differing by less that 1 nm. Overall, and because the ground state of complex C is the singlet state, observed bands at 675 nm are assigned to $d \rightarrow d$ transitions of the trinuclear complex 2a.

Figure S8. UV-Vis Absorption spectrum for complex **C**, both for the singlet and triplet spin states, at the TD-DFT B3LYP/BS1 level of theory.

Figure S9. UV-Vis Absorption spectrum for complex **C-Cu**, both for the doublet and quartet spin states, at the TD-DFT B3LYP/BS1 level of theory.

NROOTS=10

Figure S10. UV-Vis absorption spectrum for trinuclear complex **2a** both at the TD-DFT B3LYP/BS1 and CAM-B3LYP/BS1 levels of theory.

Figure S11. UV-Vis absorption spectrum for trinuclear complex **2a** both at the TDDFT B3LYP/BS1 and B3LYP/BS2 levels of theory.

11. References

- [1] A. Olmos, A. Pereira, T. R. Belderrain, P. J. Pérez, Synthesis 2018; 50, 3333-3336.
- [2] R. Dias, X. Wang, *Polyhedron* **2004**, *23*, 2533-2536.
- [3] J. L. Schneider, S. M. Carrier, C. E. Ruggiero, V. G. Young Jr., W. B. Tolman, *J. Am. Chem. Soc.* **1998**, *120*, 11408-11418.
- [4] Steps I-IV: Y. Luo, Y. Zhu, K. Ran, A. Liu, N. Wang, K. Feng, J. Zeng, L. Zhang, B. He, Y. Tinghong, Z. Shirui, Q. Xiaolong, Y. Luoting, *Med. Chem. Commun.*, 2015, 6, 1036-1043. Steps V-VI: patent WO/2013/082324. Steps. VII-VIII: A. L. Rheingold, C. B. White, S. Trofimenko, *Inorg. Chem.* 1993, *32*, 3471-3477.
- [5] Gaussian 09 (Revision D.01): Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.;Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., Gaussian, Inc., Wallingford CT, 2011.
- [6] a) V. N. Staroverova, G. E. Scuseria, J. Tao, J. P. Perdew, J. Chem. Phys. 2003, 119, 12129; b) J. Tao, J. P. Perdew, V. N. Staroverova, G. E. Scuseria, Phys. Rev. Lett., 2003, 146401.
- [7] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- [8] a) K. P. Jensen, J. Cirera, J. Phys. Chem. A 2009, 113, 10033-10039; b) J. Cirera, M. Via-Nadal, E. Ruiz, Inorg. Chem. 2018, 57, 14097-14105.
- [9] K. L. Vikse, P. Chen, Organometallics 2015, 34, 1294-1300.
- [10] P. Villuendas, S. Sara Ruiz, P. Pietro Vidossich, A. Lledós, E. P. Urriolabeitia, *Chem. Eur. J.* 2018, 24, 13124–13135.
- [11] a) M. P. del Río, P. Abril, J. A. López, M. Sodupe, A. Lledós, M. A. Ciriano, C. Tejel, *Angew. Chem. Int. Ed.* **2019**, *58*, 3037–3041; b) P. Abril, M. P. del Río, J. A. López, A. Lledós, M. A. Ciriano, C. Tejel, *Chem. Eur. J.* **2019**, *25*, 14546–14554.
- [12] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
- [13] a) W. J. Hehre, R. Ditchfield, J. A. Pople, *J. Chem. Phys.* **1972**, *56*, 2257-2261; b)
 M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, *J. Chem. Phys.* **1982**, *77*, 3654-3665.
- [14] M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 1987, 86, 866-872.
- [15] A. W. Ehlers, M. Bohme, M. S. Dapprich, A. Gobbi, A. Hollwarth, V. Jonas, K. F. Kohler, R. Stegmann, A. Veldkamp, G. Frenking, *Chem. Phys. Lett.* **1993**, 208, 111-114.

- [16] a) R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, *J. Chem. Phys.* **1980**, 72, 650-654; b) A. D. McLean, G. S. Chandler, *J. Chem. Phys.* **1980**, 72, 5639-5648.
- [17] V. S. Bryantsev, M. S. Diallo, W. A. Goddard III., J. Phys.Chem. B 2008, 112, 9709-9719.
- [18] K. Yamaguchi, Y. Takahara, T. Fueno, K. N. Houk, *Theor. Chim. Acta* **1988**, *73*, 337–364.
- [19] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; b) A. D. Becke, J. Chem. Phys. 1996, 104, 1040–1046.
- [20] T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51–57.
- [21] a) K. P. Kepp, Coord. Chem. Rev. 2013, 257, 196-209; b) M. Swart, Int. J. Quantum Chem 2013, 113, 2-7; c) C. Daul, M. Zlatar, M. Gruden-Pavlovic, M. Swart, in Spin States in Biochemistry and Inorganic Chemistry; M. Swart, M. Costas, Eds.; Wiley: Chichester, United Kingdom, 2016; pp 7-34; d) P. Verma, Z. Varga, J. E. M. N. Klein, C. J. Cramer, L. Que Jr., D. G. Truhlar, Phys.Chem.Chem.Phys. 2017, 19, 13049-13069.
- [22] a) B. F. Gherman, C. J. Cramer, *Coord. Chem. Rev.* 2009, 253, 723-753; b) B.
 Dereli, M. A. Ortuño, C. J. Cramer, *ChemPhysChem* 2018, 19, 959–966.
- [23] a) C. Riplinger, F. Neese, J. Chem. Phys. 2013, 138, 034106; b) C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese, J. Chem. Phys. 2013, 139, 134101.
- [24] M. Mandal, C. E. Elwell, C. J. Bouchey, T. J. Zerk, W. B. Tolman, C. J. Cramer, J. Am. Chem. Soc. 2019, 141, 17236-17244.
- [25] a) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297-3305; b) F. Weigend, *Phys. Chem. Chem. Phys.* 2006, *8*, 1057-1065.
- [26] J. N. Harvey, M. Aschi, H. Schwarz, W. Koch, Theor. Chem. Acc. 1998, 99, 95–99.
- [27] A. G. Baboul, H. B. Schlegel, J. Chem. Phys. 1997, 107, 9413.

12. Cartesian coordinates and absolute E and G energies in tetrahydrofuran of the optimized structures.

Cartesian coordinates, BS1 and BS2 TPSSh-D3 energies (hartrees) in THF solvent and uncorrected Gibbs energies (298.15 K) of all the optimized structures.

1

Charge Spin State Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u) Number of Imaginary Frequencies

Molecular Geometry in Cartesian Coordinates

С	1.271194	-2.248975	-3.498724
Н	1.260194	-2.230970	-4.579175
С	1.846515	-3.136667	0.031595
С	0.804204	-3.485037	0.925888
С	1.134753	-3.916975	2.215946
Н	0.332480	-4.190608	2.899318
С	2.465304	-4.008713	2.648817
С	3.478381	-3.651956	1.750930
Н	4.517139	-3.703446	2.072125
С	3.194098	-3.219203	0.448448
С	-0.652158	-3.393897	0.524110
Н	-1.275689	-3.997141	1.191157
Н	-0.810539	-3.732339	-0.505101
Н	-1.013418	-2.357835	0.570420
С	2.790163	-4.492443	4.042536
Н	2.184341	-3.974714	4.795070
Н	3.845481	-4.333226	4.284745
Н	2.581463	-5.564978	4.144232
С	4.328609	-2.828486	-0.472076
Н	4.109612	-1.900145	-1.009396
Н	4.515639	-3.599745	-1.229128
Н	5.254579	-2.690286	0.094321
С	-3.160810	-0.001028	-1.225948
С	-3.795330	-0.041995	-2.488419
Н	-4.856259	-0.044002	-2.690703
С	-2.760201	-0.056179	-3.411867
Н	-2.770833	-0.078229	-4.492210
С	-3.725568	0.053316	0.141329
С	-3.433565	1.150966	0.983056
С	-3.963861	1.168996	2.282106
Н	-3.747307	2.020095	2.925371

0 Singlet -1947.024309 0.610311 -1947.392129 -1946.781818 0

С	-4.767810	0.132455	2.768007
С	-5.041329	-0.948234	1.916517
Н	-5.659342	-1.767988	2.278656
С	-4.534856	-1.007643	0.614068
С	-2.571261	2.306012	0.521743
Н	-1.503328	2.067652	0.610854
Н	-2.764111	3.197226	1.126857
Н	-2.749178	2.550037	-0.530047
С	-5.320997	0.160907	4.173386
Н	-4.852597	-0.611587	4.795940
Н	-6.399677	-0.032774	4.179184
Н	-5.145958	1.128758	4.652748
С	-4.836354	-2.208164	-0.254552
Н	-5.310566	-2.999548	0.333322
Н	-3.922873	-2.612753	-0.704635
Н	-5.512612	-1.952983	-1.078361
В	-0.132023	-0.026123	-3.289073
Н	-0.162785	-0.028753	-4.487919
Н	2.419860	0.169177	0.344445

1-THF

Charge Spin State Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u) Number of Imaginary Frequencies

Molecular Geometry in Cartesian Coordinates

Cu	-0.035142	0.155130	-0.574247
Ν	0.584336	1.863059	-1.570722
Ν	0.381049	1.820502	-2.915842
Ν	0.981951	-1.058381	-1.946192
Ν	0.851141	-0.647178	-3.236077
Ν	-1.759495	0.051002	-1.720835
Ν	-1.530538	0.173933	-3.057422
С	1.002464	3.106850	-1.274681
С	1.060211	3.885018	-2.452074
Н	1.366405	4.917016	-2.543676
С	0.660442	3.026655	-3.467322
Н	0.561158	3.180137	-4.532563
С	1.352950	3.439244	0.125354
С	2.459343	2.796184	0.729686
С	2.768910	3.089936	2.062749
Н	3.622182	2.597435	2.526011
С	2.009107	4.000049	2.813620
С	0.919689	4.622177	2.194780
Н	0.314885	5.325882	2.763983
С	0.577554	4.359686	0.860015
С	3.295791	1.801222	-0.044439
Н	3.644992	2.228271	-0.991644
Н	4.168276	1.487479	0.536295
С	2.356742	4.289525	4.255018
Н	2.127858	3.430843	4.898386
Н	1.795041	5.148692	4.634032
Н	3.425803	4.503037	4.369818

0
Singlet
-2179.545872
0.722537
-2179.966942
-2179.244405
0

~	0.000450		0.005447
C	-0.609452	5.056542	0.235117
н	-1.262654	5.477214	1.005646
Н	-1.198272	4.371137	-0.381865
Н	-0.290288	5.879988	-0.415732
С	1.854515	-2.082531	-1.945803
Ċ	2 299921	-2 331240	-3 263895
н	2.200021	-3 002057	-3 501278
C	1 622709	1 200622	4 047942
	1.033790	-1.399032	-4.047043
н	1.652025	-1.222380	-5.113795
C	2.179063	-2.772441	-0.676348
С	1.155291	-3.427836	0.047649
С	1.477540	-4.058083	1.256166
Н	0.690448	-4.571406	1.805424
С	2.777553	-4.040429	1.778892
С	3.772268	-3.373999	1.052256
н	4,785716	-3.335736	1,447130
C	3 498074	-2 746031	-0 170677
Ĉ	-0.274506	-3 //18001	-0.442836
ц	0.274000	4 125674	0.146679
	-0.001009	-4.155074	0.140070
н	-0.334280	-3.733811	-1.497036
Н	-0.720983	-2.443021	-0.368089
С	3.097269	-4.734769	3.081541
Н	2.251548	-4.690951	3.775651
Н	3.967244	-4.285185	3.570582
Н	3.326385	-5.795104	2.914455
С	4.604693	-2.025541	-0.907026
н	4.282121	-1.034461	-1.243030
н	4 920998	-2 578403	-1 799341
н	5 / 80828	-1 003032	-0.263077
C	2 061464	0.256105	1 572094
Č	-3.001404	-0.230195	-1.572904
	-3.680475	-0.342150	-2.839696
н	-4.716976	-0.561044	-3.050823
С	-2.671884	-0.058746	-3.749667
Н	-2.681468	0.001139	-4.828679
С	-3.632377	-0.418322	-0.216827
С	-3.666184	0.687402	0.662136
С	-4.198338	0.515838	1.947159
Н	-4.226798	1.369180	2.622199
С	-4.673418	-0.723510	2.391445
Ċ	-4 623873	-1 808727	1 504886
н	-4 984119	-2 781856	1 833943
C	-/ 110752	-1 676675	0 2051/7
č	2 106054	2 021440	0.255904
	-3.100954	2.031440	0.20004
	-2.010433	2.004662	0.242157
н	-3.420537	2.812026	0.955507
Н	-3.426856	2.314780	-0.752685
С	-5.188796	-0.901698	3.800095
Н	-4.458971	-1.443756	4.415030
Н	-6.119082	-1.479991	3.817546
Н	-5.375710	0.063057	4.281239
С	-4.084994	-2.876690	-0.714053
Н	-4.210974	-3.803450	-0.146104
н	-3.141179	-2,933757	-1.264904
н	-4,887857	-2.832510	-1.460052
R	-0 113761	0.51/083	-3 500520
ы	-0.113/01	0.014303	-0.090000
	2 740026	0.003177	0.200646
	2.7 10830	0.910063	-0.299040
	-0.976143	-0.059039	2.258482
0	0.124807	-0.199888	1.422478
С	1.398847	-0.438979	2.091709
С	1.031710	-0.845024	3.516211

С	-0.325526	-1.537118	3.318406
Н	1.974228	0.485724	2.035892
Н	1.787593	-1.498557	3.959653
Н	0.918965	0.042012	4.149594
Н	-0.179645	-2.550079	2.930999
Н	-0.923368	-1.589623	4.232327
Н	-1.686908	-1.178543	1.614375
Н	-1.461192	0.220807	2.693719
Н	1.918299	-1.235560	1.553284

02

Charge
Spin State
Electronic Energy, BS1 (a.u.)
Thermal and entropic correction, BS1 (a.u.)
Electronic Energy, BS2 (a.u.)
Gibbs Enegy, BS2 (a.u.)
Number of Imaginary Frequencies

0 Triplet -150.327093 -0.016258 -150.377867 -150.394125 0

Molecular Geometry in Cartesian Coordinates

0	0.000000	0.000000	0.608944
0	0.000000	0.000000	-0.608944

Mononuclear complexes

Triplet Potential Energy Surface

1-O₂-T

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies

Molecular Geometry in Cartesian Coordinates

Cu	0.112351	-0.030869	-0.361583
0	-0.391564	-0.622594	1.488002
0	-0.141884	0.658925	1.533480
Ν	0.687708	-1.570403	-1.533170
Ν	0.558333	-1.382460	-2.874353
Ν	-1.735330	0.129711	-1.517302
Ν	-1.530677	0.022660	-2.858644
Ν	0.956753	1.311789	-1.585889
Ν	0.739328	1.124171	-2.916087
С	1.260477	-2.774289	-1.343067
С	1.506806	-3.373059	-2.594467
Н	1.951229	-4.339878	-2.778292
С	1.044716	-2.458302	-3.532429
н	1.021353	-2.495149	-4.612016

0 -2097.380953 0.613080 -2097.793749 -2097.180669 0

-			
С	1.516384	-3.265758	0.030135
С	0.428044	-3.653429	0.840680
C	0 682882	-4 092014	2 146808
ц	0.154004	1 201051	2 772900
	-0.134224	-4.591951	2.113090
С	1.982747	-4.147116	2.664705
С	3.046380	-3.751796	1.840397
н	4.062254	-3.780669	2.230111
Ĉ	2 926092	2 21/772	0.527612
	2.030902	-3.314773	0.527013
C	-0.987528	-3.601526	0.312608
Н	-1.089518	-4.194663	-0.603984
н	-1.695441	-3,985650	1.052183
Ċ	2 2/2012	4 621257	4 071420
	2.243912	-4.031237	4.07 1420
н	2.791637	-5.581644	4.064286
Н	1.310511	-4.785970	4.620499
н	2,853960	-3.913018	4.630857
Ĉ	4 009724	2 002105	0 22/270
	4.000724	-2.903105	-0.334370
н	4.900046	-2.733105	0.276514
Н	3.793986	-1.988445	-0.895436
Н	4.251646	-3.679630	-1.069956
C	-3 065112	0 18158/	-1 32/706
č	-3.003112	0.101304	-1.524700
C	-3.730233	0.100373	-2.568630
Н	-4.795237	0.127713	-2.746086
С	-2.717246	0.002787	-3.511670
Ĥ	-2 750263	-0.073010	-4 589170
0	-2.730203	-0.073010	-4.503170
C	-3.013508	0.349463	0.041170
С	-3.336834	1.534877	0.759885
С	-3.848449	1.674806	2.055720
н	-3 635112	2 587200	2 609579
	4 604559	0.674272	2,656009
C	-4.024000	0.674373	2.000000
С	-4.882426	-0.492611	1.925637
Н	-5.473713	-1.285577	2.379929
С	-4.391403	-0.673110	0.626076
ĉ	2 502177	2 6/1622	0 15/102
	-2.505177	2.041033	0.154192
н	-2.543639	3.542093	0.774005
Н	-2.850317	2.898259	-0.853024
Н	-1.454999	2.340383	0.060902
C	-5 10315/	0 863708	1 0/2/18
	-0.100104	0.000700	4.070000
н	-4.523551	1.460215	4.670333
Н	-5.365426	-0.096780	4.538292
Н	-6.156006	1.389311	4.001187
С	-4 682804	-1 956223	-0 118810
ц	2 772224	2 270761	0.550140
	-3.773334	-2.370701	-0.559149
н	-5.389812	-1.792460	-0.940518
Н	-5.117903	-2.702775	0.552120
С	1.697786	2.427948	-1.443492
Ċ	1 959147	2 971517	-2 718195
	0.505147	2.071017	2.710100
н	2.535293	3.856527	-2.943009
С	1.337355	2.114469	-3.615918
Н	1.279151	2.132389	-4.694576
С	2 117336	2 893696	-0 102431
č	2.050620	2.070906	0.600217
C	2.950050	2.079090	0.099317
С	3.324378	2.539346	1.968374
Н	3.970054	1.915356	2.583459
С	2,888363	3,773614	2,466302
ĉ	2 063590	1 562260	1 653505
	2.0000000	4.002209	1.000090
н	1.709346	5.521491	2.026234
С	1.669403	4.145737	0.376106
С	3.436893	0.730559	0.220514
Ĥ	2 642700	-0 024151	0 277/38
	4 060007	0.0270005	0.211700
н	4.209887	0.3/6925	0.034705
н	3.761958	0.765991	-0.824270

~			0 000740
C	3.304696	4.244660	3.839719
Н	3.492684	3.397405	4.506355
Н	2.532635	4.873808	4.294116
Н	4.227478	4.837475	3.794471
С	0.762823	5.027561	-0.453326
Н	0.318383	5.812512	0.165563
Н	-0.047009	4.452708	-0.914411
Н	1.312666	5.516589	-1.266149
В	-0.094180	-0.084835	-3.421194
Н	-0.111077	-0.103241	-4.617874
Н	-1.278597	-2.576442	0.061709

TS_{CH}-T

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies Imaginary frequencies (cm-1) 0 -2097.338729 0.612191 -2097.752197 -2097.140006 1 -1408.3i

Molecular Geometry in Cartesian Coordinates

Cu	-0.274439	-0.102727	-0.324656
0	0.593329	0.102128	1.387222
0	-0.396401	-0.891956	1.559421
Ν	0.119389	1.315921	-1.719103
Ν	0.030821	0.918371	-3.018497
Ν	1.196421	-1.371890	-1.427584
Ν	0.974995	-1.398213	-2.768109
Ν	-1.756308	-0.841288	-1.431492
Ν	-1.530062	-1.034224	-2.756311
С	0.380534	2.635819	-1.712181
С	0.455291	3.101379	-3.041095
Н	0.658987	4.109860	-3.368962
С	0.231968	1.981179	-3.830996
Н	0.209583	1.859747	-4.904376
С	0.587947	3.337163	-0.424615
С	1.727019	3.021195	0.348161
С	1.904501	3.665466	1.579572
Н	2.781727	3.425236	2.177095
С	0.982359	4.601393	2.062472
С	-0.139133	4.899380	1.275226
Н	-0.867874	5.622458	1.637484
С	-0.351849	4.285505	0.035456
С	2.744312	2.012041	-0.134300
Н	3.051034	2.219739	-1.165730
Н	3.635039	2.024964	0.500454
С	1.180958	5.276246	3.399199
Н	0.350183	5.053526	4.079347
Н	1.224091	6.366529	3.290663
Н	2.107138	4.945722	3.878284
С	-1.569262	4.641203	-0.787446
Н	-2.329939	5.124229	-0.167100
Н	-2.014488	3.757428	-1.254259
Н	-1.311220	5.335629	-1.596625
С	2.374500	-1.989154	-1.212412
С	2.908966	-2.436072	-2.444414

	0.007000	2 000025	0.00054
	3.02/020	-2.960625	-2.002004
C	1.990753	-2.035326	-3.401145
Н	1.983794	-2.151620	-4.475443
С	2.954239	-2.080707	0.143522
С	2.208597	-2.646874	1.227181
С	2.806728	-2.702120	2.514865
н	2.228952	-3.129193	3.331579
C	4 090199	-2 229668	2 751267
Č	1 708388	-1 671567	1 660360
ц	F 706251	1 070706	1 0/177/
0	0.790301	-1.2/3/20	0.070400
	4.258741	-1.593232	0.378429
	0.856898	-3.119317	1.080550
н	0.466374	-3.761511	1.870064
Н	0.468201	-3.312412	0.083133
Н	0.141975	-1.894089	1.405774
С	4.718283	-2.291755	4.122183
Н	4.036123	-2.733512	4.853985
Н	4.991335	-1.289463	4.472338
н	5.637585	-2.889098	4.107525
С	5.083040	-0.948996	-0.714344
Ĥ	4 470862	-0.312690	-1 359875
н	5 559009	-1 699030	-1 356510
и Ц	5.030003	-1.033030	0.279107
	0.070007	-0.337772	-0.270197
C	-2.995521	-1.290192	-1.153661
C	-3.575216	-1.794701	-2.336254
Н	-4.563393	-2.214436	-2.450985
С	-2.615404	-1.608090	-3.322598
Н	-2.626442	-1.832999	-4.379231
С	-3.538627	-1.164902	0.217486
С	-3.700057	0.117594	0.787418
С	-4.185438	0.218177	2.098282
Н	-4.314352	1.206178	2.535784
С	-4.506395	-0.913780	2.855659
Ċ	-4 339808	-2 175478	2 267192
н	-4 582225	-3 067049	2 842423
C	-3 862263	-2 322653	0 960571
Č	2 257970	1 276440	0.001316
ц	-3.337070	1.570449	0.021310
	-2.273392	1.042042	-0.000033
п	-3.814742	2.251284	0.492881
Н	-3.696256	1.322305	-1.018708
C	-4.994170	-0.787790	4.279304
Н	-4.186487	-1.011761	4.987727
Н	-5.809741	-1.489360	4.485227
Н	-5.349116	0.225167	4.491741
С	-3.670432	-3.704894	0.378538
Н	-3.846504	-4.472150	1.138063
Н	-2.653825	-3.834801	-0.009737
н	-4.356633	-3.893560	-0.454593
В	-0.188838	-0.578739	-3.380849
Ĥ	-0.216179	-0.716243	-4.569837
н	2.332347	0.997790	-0.116237
• •		0.001100	00201

I-OOH-T

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies 0 -2097.342765 0.614355 -2097.757690 -2097.143335 0

Molec		erry in Cartes	
Cu	-0.276520	-0.096694	-0.315806
0	0.569035	0.225713	1.361333
0	-0.406039	-0.824713	1.630805
N	0.120066	1.316410	-1.718484
N	0.037760	0.917841	-3.017808
N	1 207726	-1 383227	-1 424004
N	0.990128	-1 396382	-2 766248
N	-1 741773	-0.852880	-1 432053
N	-1 513960	-1 0/1159	-2 757250
C	0.381216	2 636506	-1 711200
Ĉ	0.301210	2.000000	2 040205
С Ц	0.401077	3.100092 4.100056	2 267991
C	0.0000007	4.109050	2 920265
	0.242339	1.979007	-3.630303
	0.225339	1.007200	-4.903725
	0.584427	3.341442	-0.424905
	1.724284	3.032640	0.349283
	1.897664	3.680436	1.579259
Н	2.775133	3.445229	2.178450
C	0.969563	4.611338	2.060276
С	-0.152384	4.902809	1.271235
Н	-0.885290	5.622629	1.631648
С	-0.360176	4.286282	0.031927
С	2.745639	2.025982	-0.129586
Н	3.057047	2.235362	-1.159348
Н	3.633217	2.040289	0.509531
С	1.161820	5.287301	3.397431
Н	0.332234	5.057814	4.076689
Н	1.196640	6.377918	3.289691
Н	2.089951	4.963661	3.877299
С	-1.577663	4.635329	-0.793767
Н	-2.340544	5.118597	-0.176249
Н	-2.019933	3.748416	-1.257567
Н	-1.320727	5.327240	-1.605528
С	2.386969	-2.002302	-1.215189
С	2.925230	-2.434247	-2.450028
Н	3.846345	-2.974290	-2.610999
С	2.008321	-2.024367	-3.404171
Н	2.003378	-2.128301	-4.479779
С	2.966211	-2.106604	0.140003
С	2.229703	-2.730966	1.207853
С	2.815589	-2.767164	2.509901
Н	2.249074	-3.231483	3.314111
С	4.069838	-2.235015	2.765559
С	4.771700	-1.642439	1.695687
Н	5.750747	-1.207112	1.884547
С	4.244670	-1.573906	0.396283
C	0.953998	-3.311077	1.015760
н	0.477349	-3.849524	1.831437
н	0.494355	-3.367732	0.034985
Н	0.143361	-1.659248	1.575495
C	4.682179	-2.273570	4.144654
Ĥ	4.008520	-2.741303	4.868003
Н	4,912604	-1.261966	4,498036
Н	5.623318	-2.835855	4,141331
C	5.061806	-0.897771	-0.682625
Ĥ	4,437444	-0.287010	-1.340717
H	5.576705	-1.631684	-1.313687
H	5.825785	-0.255749	-0.234648
С	-2.984015	-1.298002	-1.159034

Molecular Geometry in Cartesian Coordinates

С	-3.562265	-1.796406	-2.344553
Н	-4.551559	-2.212507	-2.462621
С	-2.599716	-1.609018	-3.328026
Н	-2.608958	-1.829457	-4.385601
С	-3.534294	-1.174374	0.209399
С	-3.706802	0.107861	0.776261
С	-4.200826	0.207595	2.083894
Н	-4.337582	1.195383	2.519435
С	-4.518994	-0.925321	2.840971
С	-4.342408	-2.186854	2.254962
Н	-4.583834	-3.078993	2.829774
С	-3.856874	-2.333084	0.951187
С	-3.366691	1.366612	0.009322
Н	-2.282546	1.533611	-0.019731
Н	-3.823642	2.241410	0.480730
Н	-3.706176	1.311379	-1.030371
С	-5.013840	-0.800628	4.262263
Н	-4.208030	-1.019382	4.974318
Н	-5.826320	-1.506524	4.465356
Н	-5.375332	0.210460	4.472163
С	-3.656750	-3.714608	0.370193
Н	-3.837187	-4.482848	1.127710
Н	-2.636729	-3.841981	-0.010020
Н	-4.335638	-3.904229	-0.468681
В	-0.174384	-0.580011	-3.379599
Н	-0.199683	-0.717430	-4.568666
н	2.335198	1.011006	-0.113412

Triplet PES, pathway A

TS_{rot}-T

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies Imaginary frequencies (cm-1)

Molecular Geometry in Cartesian Coordinates

Cu	-0.033496	0.100886	-0.368166
0	-0.133298	-0.758848	1.313893
0	0.174816	0.617075	1.703498
Ν	1.644642	-0.732804	-1.489815
Ν	1.522542	-0.617734	-2.840408
Ν	-1.294939	-0.921360	-1.629881
Ν	-0.987092	-0.890780	-2.952419
Ν	-0.028527	1.647278	-1.622643
Ν	0.037052	1.403583	-2.956367
С	2.858672	-1.256358	-1.245834
С	3.535997	-1.475223	-2.466312
Н	4.522630	-1.893277	-2.602068
С	2.649523	-1.058430	-3.449188
Н	2.731187	-1.049448	-4.526745
С	3.266470	-1.565984	0.144150
С	2.567593	-2.565076	0.857433
С	2.948937	-2.844713	2.175924
Н	2.412890	-3.616185	2.725460

0 -2097.338443 0.613692 -2097.754648 -2097.140956 2 -71.8i, -1.0i

-			
С	3.995747	-2.158463	2.803635
С	4.677545	-1.175216	2.073511
ŭ	5.405504	0.000404	0.544005
н	5.495581	-0.632494	2.544265
С	4.333368	-0.868540	0.751442
C	1 425006	2 22/260	0 216170
C	1.435990	-3.334300	0.210170
н	1.725745	-3.723017	-0.766670
н	1 132422	-4 176470	0 845279
	1.102122	0.450000	4.000750
C	4.372642	-2.452600	4.236758
н	3.991889	-1.673356	4.909935
Ц	5 460229	2 496777	1 264621
	J.400ZZ0	-2.400777	4.304021
н	3.958141	-3.409094	4.570651
С	5 104369	0 192174	-0.001602
ŭ	5.0000.47	0.000040	0.007002
п	5.698347	0.800940	0.085808
н	4.438444	0.855411	-0.561727
н	5 793174	-0 256178	-0 727644
	0.100114	0.200170	4.400.475
C	-2.408244	-1.666157	-1.483475
С	-2.816469	-2.135972	-2.752470
ц	-3 677252	-2 7/771/	-2 077117
~	-0.077202	-2.171114	-2.311111
С	-1.893520	-1.617126	-3.648583
н	-1.816143	-1.705576	-4.722620
C	3 025720	-1 857144	-0 156657
C	-3.0257.59	-1.037144	-0.150057
С	-3.341686	-0.714177	0.662324
С	-3.932046	-0.946282	1.940640
ů.	4 470707	0.002062	0 550440
п	-4.1/2/0/	-0.063062	2.000110
С	-4.210799	-2.223822	2.404899
C	-3 877381	-3 320086	1 583687
ŭ	4.000047	4.000000	1.000001
п	-4.066917	-4.328909	1.945124
С	-3.289913	-3.155861	0.319645
C	-3 109078	0 618412	0 254217
Ň	0.100070	4.407050	0.204211
н	-3.356894	1.437658	0.922791
н	-2.743811	0.867396	-0.734293
н	-0 706759	0 987410	1 922263
	0.700700	0.007410	0.750500
C	-4.848738	-2.455321	3.753596
н	-5.036278	-1.512071	4.275259
Ц	1 207406	2 075960	1 200991
	-4.207430	-3.07.3000	4.390001
н	-5.804836	-2.982258	3.649417
С	-2.930696	-4.387708	-0.482834
Ū.	1 0502/1	1 297040	0.059600
	-1.950541	-4.207049	-0.956600
н	-3.658846	-4.579098	-1.279393
н	-2.910027	-5,269967	0.162823
С.	0 1 1 1 7 9 9	2 079100	1 1 1 9 1 0 6
C	-0.144702	2.970109	-1.440190
С	-0.158772	3.605809	-2.709189
н	-0.234294	4.663660	-2.911915
<u> </u>	0.027606	0 570070	2 624577
C	-0.037000	2.372273	-3.031377
н	0.005350	2.583572	-4.711081
С	-0.224755	3.508890	-0.067762
Ĉ	0.000000	2 205120	0 770007
C	0.900990	3.395130	0.779097
С	0.784347	3.801528	2.113798
н	1 648537	3 708954	2 768121
 C	0.445060	4 240472	2.00725
U L	-0.415269	4.310172	2.020/20
С	-1.511039	4.433817	1.763374
н	-2.448556	4,834836	2,143802
<u> </u>	1 426076	4 046007	0.410004
C	-1.430270	4.040237	0.410091
С	2.208514	2.832602	0.270476
н	2,120612	1,762996	0.053033
 Ц	2 00024 4	2 050007	1 012024
П	3.000314	2.900037	1.013034
Н	2.520634	3.325120	-0.657231
С	-0.533505	4,681794	4.087806
	0.000000	2 000004	4.677000
н	-0.893302	3.828064	4.0//223
Н	-1.241986	5.503182	4.236711
н	0 434578	4.979778	4.502874

С	-2.639563	4.204398	-0.481799
Н	-3.542904	4.394135	0.105042
Н	-2.806295	3.313444	-1.094642
Н	-2.507434	5.046662	-1.171394
В	0.221412	-0.056288	-3.458286
Н	0.274330	-0.082278	-4.653857
Н	0.565561	-2.688825	0.065128

I-OOH_rot-T

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies

Molecular Geometry in Cartesian Coordinates

Cu	0.092252	-0.014763	-0.344536
0	-0.838707	0.192813	1.588282
0	0.213365	-0.803970	1.364691
Ν	-0.254700	1.458817	-1.662687
Ν	-0.287293	1.136384	-2.982981
Ν	1.611986	-0.712709	-1.516146
Ν	1.386028	-0.723690	-2.857974
Ν	-1.345867	-1.214854	-1.516278
Ν	-1.090744	-1.242345	-2.850372
С	-0.554076	2.767797	-1.551062
С	-0.788087	3.297075	-2.836797
Н	-1.039025	4.317033	-3.086551
С	-0.605564	2.231717	-3.708769
Н	-0.672942	2.173096	-4.785505
С	-0.587001	3.409457	-0.218431
С	0.583854	3.444784	0.574006
С	0.517737	4.017183	1.850292
Н	1.418786	4.045102	2.459852
С	-0.672893	4.548314	2.362175
С	-1.818954	4.504060	1.557316
Н	-2.754999	4.906086	1.940643
С	-1.798097	3.946441	0.273232
С	1.898284	2.885974	0.073942
Н	2.071315	3.143006	-0.976224
Н	2.732417	3.269088	0.668791
С	-0.712566	5.184417	3.731279
Н	-1.700549	5.080089	4.191106
Н	-0.492060	6.258054	3.669635
Н	0.028050	4.736013	4.400864
С	-3.064221	3.923358	-0.553679
Н	-3.939958	4.100870	0.077433
Н	-3.196652	2.966379	-1.067426
Н	-3.049238	4.702419	-1.325651
С	2.898108	-1.063351	-1.318854
С	3.511112	-1.302798	-2.566173
Н	4.530771	-1.611369	-2.741971
С	2.517726	-1.078005	-3.508721
Н	2.528281	-1.149072	-4.586785
С	3.455255	-1.161965	0.045681
С	2.937152	-2.150187	0.951705
С	3.495538	-2.210676	2.263203

0 -2097.341826 0.614301 -2097.757792 -2097.143491 0

н	3 105026	-2 954008	2 954866
C	4 507476	-1 353002	2.004000
C C	4 989827	-0.394341	1 757849
й	5 772789	0.293206	2 071776
C	4 479458	-0.290043	0 454196
C C	1 920938	-3.056185	0.581959
н	1.520000	-3 773895	1 303993
н	1.040120	-3 040801	-0.401669
C	5 088416	-1 428337	4 064982
н	4 967065	-0 475595	4.503860
н	6 163230	-0.473035	4.031612
н	4 604032	-2 200822	4.657/3/
C	5.034035	0 764052	-0 /78180
ц	1 242038	1 238000	-0.470103
Ц	5 750304	0.331388	-1.000097
Ц	5 555025	1 5/1653	0.087084
C	-2 3/0010	-2 086800	-1 285681
Ċ	-2.340919	-2.000009	-7.203001
ц	-2.732001	-2.097333	-2.437770
C	1 012921	2 122020	-2.043000
с ц	-1.912031	-2.120000	-3.403720
C	-7.854280	-2.202000	-4.332039
Č	2 407072	1 125629	0.090000
Č	2 000500	1 222704	2 049602
Ц	-3.900399	0 29/16/	2.040093
C	-4.309024	-0.304104	2.321324
Ċ	-3.033300	-2.400000	2.100030
ц	-2 800/68	-4.406216	2,132934
C	2.099400	2 421706	2.713900
Č	2 757120	-3.421790	0.019330
Ц	-3.737130	0.133308	-0.039707
	-2.023130	0.020039	-0.370409
Ц	-4.313034	-0.047978	-0.0701/1
C	-4.144426	-2 /07/50	4 226103
ц	-3 773/65	-2.497409	4.220193
н	-5.775405	-2 502823	4.704002
н	-3 780631	-1 637256	4 804564
C	-1 030500	-1.037230	0 186207
ц	-1.959599	-4.337430	0.100297
Ц	-0.07/202	-1 202837	-0.321323
н	-0.974292	-5.02/638	-0.232274
B	0.003065	-0.310656	-3 436370
Ц	0.003903	-0.313030	-7 631200
Ц	1 021289	1 7012/4	-4.031299 0 1/0639
Ц	-1 652969	-0.360471	1 570220
п	-1.002000	-0.300471	1.570630

TSco-T

Charge	0
Electronic Energy, BS1 (a.u.)	-2097.334876
Thermal and entropic correction, BS1 (a.u.)	0.615017
Electronic Energy, BS2 (a.u.)	-2097.751092
Gibbs Energy, BS2 (a.u.)	-2097.136075
Number of Imaginary Frequencies	1
Imaginary frequencies (cm-1)	-524.0i

Molecular Geometry in Cartesian Coordinates

Cu	0.107027	0.042143	-0.319440
0	-0.848891	0.191250	1.508026

-			
0	0.389473	-0.850700	1.316092
N	-0.359288	1 479246	-1 636240
	0.000200	1.170210	0.05000
IN	-0.375029	1.159071	-2.958033
N	1.624196	-0.578377	-1.511568
NI	1 204760	0 616724	2 050602
IN	1.394700	-0.010724	-2.000002
N	-1.295715	-1.259745	-1.526477
N	-1.041247	-1.265232	-2.859899
0	0 712712	2 772705	1 500760
C	-0.713713	2.773705	-1.522700
С	-0.971169	3.295192	-2.807416
н	-1.266071	4.303787	-3.055178
<u> </u>	0 741412	2.244265	2 604227
C	-0.741113	2.241303	-3.001337
н	-0.805106	2.182282	-4.758234
С	-0 758529	3 418562	-0 192341
Č	0.447004	2 506220	0 505007
C	0.417001	3.000200	0.000227
С	0.343563	4.089178	1.857656
н	1 249519	4 157053	2 456733
C	0.050602	1 501550	2 274060
C	-0.000000	4.004002	2.374909
С	-2.011247	4.491248	1.582003
н	-2.956146	4.867516	1.969920
С.	1 002555	2 010722	0.206014
C	-1.963000	3.910/22	0.306014
С	1.748299	2.991641	0.080756
н	1.873257	3.171720	-0.991598
 ப	2 574220	2 471757	0.614009
	2.074230	5.4/1/5/	0.014000
С	-0.914930	5.234375	3.736972
н	-1.814175	4.931519	4.284117
 L	0.042070	6 227061	2 646960
п	-0.943079	0.327901	3.040009
н	-0.040976	4.973954	4.341657
С	-3.254587	3.839441	-0.509376
ц Ц	1 1 2 0 2 0 7	1 010112	0 122202
п	-4.129397	4.019112	0.122292
н	-3.368910	2.861549	-0.987606
н	-3.262023	4.590960	-1.308048
C	2 004727	0.052517	1 20/017
C	2.904737	-0.952517	-1.304917
С	3.506539	-1.234957	-2.550163
н	4.517927	-1.569793	-2.723791
C	0 515701	1 012100	2 101022
C	2.010701	-1.013100	-3.494022
н	2.521506	-1.112678	-4.570551
С	3.480217	-1.031741	0.052168
Ċ	2 8/5205	-1 832022	1 060603
0	2.045295	-1.032022	1.000033
C	3.441756	-1.892068	2.351339
н	2.954694	-2.495492	3.114017
C	4 607938	-1 203419	2 656608
õ	T.007.000	0.445000	2.000000
C	5.200409	-0.415309	1.649610
н	6.101298	0.149714	1.880293
С	4 656768	-0.319141	0.360190
Č	1 625112	0.010111	0.001044
C	1.035113	-2.340644	0.031041
н	1.242456	-3.187195	1.608011
н	1.217361	-2.647976	-0.161298
C	5 220474	1 27/0/6	4 020206
	5.230474	-1.274040	4.030390
н	5.307250	-0.276284	4.478177
н	6.246483	-1.683697	3.982082
н	4 641320	-1 003808	1 703053
	0-1320	-1.303000	4.700000
C	5.330723	0.579019	-0.653599
Н	4.599417	1.173192	-1.211231
н	5 907226	0 003520	-1.3868/2
	0.001220	4.004007	0.454405
н	6.021877	1.264237	-0.154435
С	-2.215366	-2.211484	-1.298108
C	-2 553777	-2 852975	-2 511116
Ц	2 260004	2 640440	2.01110
н	-3.209891	-3.048149	-2.008353
С	-1.785076	-2.216163	-3.476401
н	-1,717474	-2.363534	-4.544983
<u> </u>	2 720060	_2 201126	0 079740
U	-2.130909	-2.331120	0.0/0/49

С	-3 461020	-1 335972	0 681999
Č	-3 883260	-1 478068	2 010979
н	-4 437293	-0.665020	2 476164
C	-3 612536	-2 639124	2 751347
Č	-2.906830	-3.672843	2.126381
Ĥ	-2.683626	-4.578118	2.687389
C	-2.457866	-3.569671	0.801797
Ċ	-3.787334	-0.070476	-0.084442
H	-2.881506	0.491220	-0.334739
н	-4.441026	0.578377	0.504914
н	-4.288033	-0.302177	-1.031254
С	-4.077055	-2.760055	4.182904
н	-3.739491	-3.698193	4.632944
Н	-5.171466	-2.728272	4.246463
Н	-3.694769	-1.932825	4.792081
С	-1.677806	-4.703308	0.177374
Н	-1.341716	-5.410481	0.941254
Н	-0.800359	-4.333242	-0.362225
Н	-2.289339	-5.257169	-0.545023
В	-0.004835	-0.271003	-3.429552
Н	0.023134	-0.323033	-4.625334
Н	1.842486	1.909790	0.235414
Н	-1.591693	-0.447615	1.464721

C-T

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies

Molecular Geometry in Cartesian Coordinates

-0.006553	-0.256263	-0.202087
-0.527387	-1.019080	1.440992
1.310240	0.730816	0.842617
-1.411917	-1.281199	-1.286266
-1.076513	-1.669029	-2.547998
0.126691	0.981630	-1.827051
0.127688	0.450297	-3.073101
1.598036	-1.463833	-1.253431
1.464065	-1.615668	-2.593727
-2.621426	-1.804011	-1.006731
-3.064155	-2.559462	-2.115217
-4.000271	-3.088749	-2.210259
-2.062167	-2.438970	-3.064760
-1.980205	-2.829355	-4.068868
-3.336941	-1.507491	0.253635
-3.614233	-0.170791	0.615498
-4.321121	0.076994	1.800893
-4.537675	1.108030	2.074999
-4.750540	-0.957232	2.638366
-4.461478	-2.276021	2.260052
-4.777416	-3.095892	2.902832
-3.765249	-2.569715	1.083415
-3.165805	1.005434	-0.222405
-3.202413	0.787725	-1.293775
-3.789786	1.881712	-0.021312
	-0.006553 -0.527387 1.310240 -1.411917 -1.076513 0.126691 0.127688 1.598036 1.464065 -2.621426 -3.064155 -4.000271 -2.062167 -1.980205 -3.336941 -3.614233 -4.321121 -4.537675 -4.750540 -4.461478 -4.777416 -3.765249 -3.165805 -3.202413 -3.789786	-0.006553-0.256263-0.527387-1.0190801.3102400.730816-1.411917-1.281199-1.076513-1.6690290.1266910.9816300.1276880.4502971.598036-1.4638331.464065-1.615668-2.621426-1.804011-3.064155-2.559462-4.000271-3.088749-2.062167-2.438970-1.980205-2.829355-3.336941-1.507491-3.614233-0.170791-4.3211210.076994-4.5376751.108030-4.750540-0.957232-4.461478-2.276021-4.777416-3.095892-3.765249-2.569715-3.1658051.005434-3.2024130.787725-3.7897861.881712

0 -2097.407686 0.620126 -2097.823876 -2097.203750 0

0	E E4 4740	0.070004	0.000700
	-5.514713	-0.072201	3.909723
н	-5.063566	-1.186220	4.766180
Н	-6.551721	-1.022762	3.834879
Н	-5.538252	0.399128	4.130175
С	-3.460755	-4.010998	0.740357
H	-3 635697	-4 655852	1 606696
ц	-2 /10873	-4 135033	0 423117
	4.002570	4.077504	0.423117
	-4.092570	-4.377561	-0.077172
C	0.031475	2.322963	-1.950668
С	-0.025050	2.653929	-3.322306
Н	-0.082287	3.639565	-3.757822
С	0.039303	1.439926	-3.990968
н	0.037071	1.208048	-5.046104
С	0 011602	3 179764	-0 751370
Ĉ	0.045580	2 071600	0.203546
Č	0.940300	2.371030	1 4 4 2 6 9 2
	0.909404	3.769668	1.443682
Н	1.628553	3.579615	2.236895
С	-0.021645	4.802218	1.582112
С	-0.945429	4.994241	0.543724
Н	-1.700276	5.771307	0.647461
С	-0.948562	4.212482	-0.617660
С	1,955809	1.833786	0.251889
н	2 838417	2 091878	0.848495
Ц	2.000417	1 602945	0.777619
0	2.200074	1.002040	-0.777010
	-0.032543	5.692198	2.800613
н	-1.055976	5.943557	3.097246
Н	0.489065	6.636142	2.597635
Н	0.466027	5.213205	3.648306
С	-2.003455	4.467247	-1.670121
Н	-2.392975	3.532657	-2.084923
н	-1.605316	5.053481	-2.506633
н	-2.837588	5.030545	-1.242166
C	2 887825	-1 697319	-0.955763
Ĉ	3 508074	-2 021286	-2 137220
ц	1 641207	2.021200	2.137220
	4.041307	-2.200/44	-2.227023
U	2.655105	-1.951856	-3.151851
Н	2.739787	-2.116714	-4.216669
С	3.340921	-1.554928	0.444118
С	2.704909	-2.296616	1.474708
С	3.110738	-2.098407	2.799672
н	2.624096	-2.670440	3.587717
С	4 126678	-1 195554	3 136928
Ĉ	4 756478	-0 489559	2 102205
ц	5 551407	0.212916	2.102200
0	4.007505	0.212010	2.345559
	4.30/323	-0.034002	0.763067
U	1.598316	-3.275933	1.184487
н	0.634329	-2.739832	1.152760
Н	1.538958	-4.032166	1.974012
Н	1.731175	-3.776858	0.221355
С	4.522777	-0.985705	4.578430
Н	5.449536	-0.409931	4.659618
н	4.665485	-1.941693	5.094397
н	3 740808	-0 441087	5 122379
C	5 102840	0 1/2381	-0.303546
	5.102040	0.142301	-0.303340
	0.049980	0.911020	0.143342
H	4.406826	0.542035	-1.04/4/0
н	5.829261	-0.475704	-0.844868
В	0.173759	-1.097840	-3.260518
Н	0.152820	-1.370052	-4.426538
Н	-2.129656	1.279596	0.013206
Н	0.163373	-0.685386	2.042035

Triplet PES, pathway B

TS_{COH}-T

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies Imaginary frequency (cm-1) 0 -2097.325232 0.612756 -2097.741711 -2097.128955 1 -692.6i

Molecular Geometry in Cartesian Coordinates

Cu	-0.229880	0.044123	-0.298418
0	-0.611721	-0.547338	1.445278
0	1.015659	-0.046711	1.295922
Ν	-1.815784	-0.215735	-1.486222
Ν	-1.588314	-0.403060	-2.815154
Ν	0.628725	1.298312	-1.639015
Ν	0.494139	1.008785	-2.959352
Ν	0.843455	-1.602175	-1.505047
Ν	0.699008	-1.483197	-2.849607
С	-3.132649	-0.388001	-1.266540
С	-3.767135	-0.697343	-2.487444
Н	-4.819636	-0.877029	-2.647678
С	-2.754127	-0.694474	-3.435900
Н	-2.774749	-0.872647	-4.501295
С	-3.704065	-0.212594	0.087149
С	-3.653335	1.054417	0.708424
С	-4.197125	1.198518	1.991134
Н	-4.161010	2.174405	2.471443
С	-4.780828	0.122594	2.670664
С	-4.812871	-1.126217	2.035576
Н	-5.250225	-1.976973	2.554540
С	-4.286970	-1.313817	0.752347
С	-3.016982	2.243453	0.024793
Н	-3.282964	2.290862	-1.036472
Н	-3.326544	3.177018	0.503699
С	-5.381702	0.304801	4.044126
Н	-4.919671	1.144102	4.573820
Н	-5.258881	-0.596723	4.653574
Н	-6.458556	0.509488	3.977528
С	-4.323633	-2.683255	0.112840
Н	-4.610062	-3.443541	0.845026
Н	-3.347370	-2.956116	-0.301868
Н	-5.045920	-2.723807	-0.710961
С	1.311619	2.459224	-1.543029
С	1.621381	2.918732	-2.840931
Н	2.168048	3.811826	-3.103029
С	1.090011	1.969422	-3.701368
Н	1.095419	1.902575	-4.779576
С	1.627502	3.073673	-0.235623
С	2.357897	2.348684	0.758983
С	2.649545	2.984078	1.993126
Н	3.198764	2.422013	2.744937
С	2.252176	4.288783	2.260813
С	1.531263	4.977265	1.267757
Н	1.195648	5.993092	1.466877

С	1.213547	4.396273	0.032067
С	2.779067	0.997020	0.574673
н	3.431369	0.543268	1.312851
н	2.717769	0.521337	-0.396941
С	2.567700	4.957375	3.576785
н	3.132709	4.292815	4.236572
н	1.648711	5.252531	4.096448
н	3.158049	5.868250	3.422747
С	0.413332	5.199521	-0.968926
н	-0.353814	4.588604	-1.454829
н	1.052118	5.608920	-1.760173
н	-0.079135	6.041285	-0.473881
С	1.759290	-2.562816	-1.293988
С	2.213236	-3.075279	-2.531182
н	2.934908	-3.862418	-2.692966
С	1.512724	-2.358368	-3.491067
н	1.530662	-2.405367	-4.570714
С	2.139265	-2.897892	0.098366
С	1.161059	-3.393366	0.993489
С	1.524325	-3.626517	2.328821
Н	0.771743	-4.004625	3.017607
С	2.820586	-3.386620	2.796706
С	3.777486	-2.910743	1.888095
Н	4.791848	-2.720837	2.234004
С	3.463419	-2.665843	0.546760
С	-0.260043	-3.648434	0.548342
Н	-0.820456	-2.707267	0.563662
Н	-0.753662	-4.351798	1.226138
Н	-0.300124	-4.051849	-0.468055
С	3.183817	-3.615151	4.244662
Н	3.322654	-2.660704	4.767570
Н	4.122348	-4.173012	4.335698
Н	2.401230	-4.171188	4.769151
С	4.532687	-2.151461	-0.390013
Н	5.385741	-1.762989	0.173861
Н	4.154808	-1.356365	-1.040012
Н	4.902842	-2.949489	-1.044641
В	-0.160310	-0.327820	-3.411276
Н	-0.209051	-0.377928	-4.606617
Н	-1.922668	2.188361	0.075642
Н	1.396268	-0.950518	1.225074

I-COH-T

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies

Molecular Geometry in Cartesian Coordinates

Cu	-0.130768	-0.084332	-0.232820
0	-0.574490	-1.022454	1.264093
0	1.389689	0.853746	0.941924
Ν	-1.393961	-1.108871	-1.458987
Ν	-1.053010	-1.267519	-2.765385
Ν	-0.014206	1.347129	-1.674388
Ν	0.033731	0.978058	-2.979890

0 -2097.401090 0.619841 -2097.817051 -2097.197210 0

N	1 630453	-1 060719	-1 416537
	1.000100	1.000710	0.700007
N	1.469334	-1.067534	-2.763885
С	-2 487486	-1 856885	-1 224768
õ	2.052022	0.000770	0.445400
C	-2.853932	-2.520770	-2.415188
Н	-3.697147	-3.178972	-2.561764
C	1 000551	2 115065	2 260500
C	-1.922001	-2.115965	-3.300300
Н	-1.818114	-2.358966	-4.408182
C	-3 152075	-1 8/3718	0.006451
0	-3.132073	-1.043710	0.030431
С	-3.671746	-0.632607	0.606457
C	-4 326384	-0 647734	1 845527
	4.020004	0.047704	1.040027
н	-4.732797	0.283390	2.235525
С	-4 471975	-1 822725	2 590306
õ	0.040040	0.044000	0.005704
C	-3.943348	-3.011382	2.065781
Н	-4.039877	-3.933990	2.635326
C	2 2071 17	2 044102	0 000000
C	-3.20/14/	-3.044163	0.632033
С	-3.541421	0.671666	-0.148084
Ц	-3 712600	0.540800	-1 221555
	-3.712033	0.040000	-1.221000
н	-4.253207	1.410957	0.231515
C	-5 172943	-1 819683	3 928330
	0.172040	1.010000	0.020000
н	-4.471895	-2.049028	4.740085
н	-5.963787	-2.577820	3.963081
	C CO 4 4 C C	0.045044	4 4 4 0 0 4 0
п	-5.624455	-0.845944	4.140248
С	-2.717865	-4.346647	0.317021
Ū.	2 712000	F 102000	1 107265
п	-2.712990	-5.103099	1.107305
Н	-1.691801	-4.217370	-0.043108
Ц	-3 305277	-1 713107	-0 510304
	-3.303277	-4.743407	-0.313304
С	-0.129460	2.690509	-1.633774
С	-0 151026	3 192511	-2 952072
ŭ	0.101020	0.102011	2.002012
н	-0.218459	4.225142	-3.258764
С	-0.043809	2.074646	-3.767090
	0.040757	4.070550	4.040040
н	-0.012757	1.978550	-4.842649
С	-0.193532	3.397347	-0.338691
C	0 776476	2 1/0201	0 659600
C	0.770470	5.149501	0.050000
С	0.705705	3.824598	1.883879
н	1 /613/0	3 620/82	2 630230
	1.401040	0.020402	2.000200
C	-0.307709	4.748600	2.151795
С	-1 267325	4 976838	1 154122
	0.075400	5.070454	4.040704
п	-2.075129	5.679451	1.349791
С	-1.233261	4.325474	-0.082849
C	1 070062	2 1 4 0 7 0 1	0 464690
C	1.079005	2.140791	0.404009
н	2.752076	2.412094	1.065953
н	2 175612	2 051394	-0 584447
	2.170012	2.001001	0.001111
C	-0.388610	5.468961	3.475574
н	0.464412	5.225009	4.115201
	1 202050	E 10EEC0	4.042000
п	-1.303650	5.195566	4.013990
Н	-0.409755	6.555502	3.333063
C	-2 321207	4 601028	-1.005621
0	-2.321237	4.001920	-1.035021
н	-2.681921	3.678479	-1.560341
н	-1 966800	5 253333	-1 902623
	0.400007	5.200000	0.047005
н	-3.168907	5.100975	-0.017235
С	2.893734	-1.452636	-1.174846
Ċ	3 559707	1 719500	2 202720
U	3.000/9/	-1./ 10099	-2.393/39
Н	4.573562	-2.063256	-2.528171
C	2 6127/5	-1 /60500	-3 376/82
	2.010/40	-100030	-0.070400
Н	2.667446	-1.527934	-4.453812
С	3.370539	-1.528376	0.226312
ĉ	0 754074	0 105750	1 100004
U	2.751074	-2.420/53	1.132584
С	3.181982	-2.440040	2.465061
Ц	2 708225	-3 120502	3 160070
	2.100220	-0.128082	5.1009/0
С	4.199665	-1.594775	2.926652
С	4,804297	-0.722726	2,012933
-			

Н	5.598247	-0.060468	2.352035
С	4.413734	-0.676761	0.667700
С	1.627660	-3.336489	0.697484
Н	0.678092	-2.785348	0.730765
Н	1.550473	-4.196736	1.370235
Н	1.773837	-3.701325	-0.323781
С	4.611175	-1.606335	4.379448
Н	3.941692	-0.975352	4.977831
Н	5.628579	-1.225080	4.510588
Н	4.563829	-2.616883	4.797599
С	5.105730	0.278574	-0.278850
Н	5.621911	1.066767	0.277009
Н	4.400368	0.746970	-0.972052
Н	5.853647	-0.242133	-0.888829
В	0.160422	-0.520622	-3.371412
Н	0.167948	-0.635753	-4.563559
Н	-2.534346	1.091269	-0.036572
Н	2.126026	0.208724	0.896988

ТЅоно-Т

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies Imaginary frequency (cm-1)

Molecular Geometry in Cartesian Coordinates

Cu	0.013181	-0.146372	-0.303286
0	1.304720	0.311445	1.075921
0	-0.979629	0.498857	1.291268
Ν	1.010946	-1.435428	-1.482419
Ν	0.896192	-1.290222	-2.828223
Ν	-1.636872	-0.286905	-1.498039
Ν	-1.391432	-0.224204	-2.837946
Ν	0.681796	1.482866	-1.635551
Ν	0.659122	1.208415	-2.964973
С	1.854084	-2.457431	-1.245050
С	2.298691	-2.978300	-2.478893
Н	2.970167	-3.809636	-2.632142
С	1.666928	-2.212282	-3.449116
Н	1.706663	-2.254528	-4.527995
С	2.147242	-2.877119	0.143137
С	1.098235	-3.315619	0.983281
С	1.397946	-3.680804	2.303329
Н	0.590857	-4.023805	2.947788
С	2.700468	-3.621334	2.810348
С	3.725699	-3.193780	1.954536
Н	4.745678	-3.140961	2.330712
С	3.474058	-2.820528	0.630520
С	-0.332843	-3.413175	0.500391
Н	-0.389754	-3.675297	-0.560164
Н	-0.880270	-4.166045	1.076014
С	2.995393	-3.979729	4.247463
Н	3.060602	-3.075891	4.867309
Н	3.951395	-4.506085	4.340023
Н	2.210379	-4.614530	4.670822

0 -2097.387451 0.612350 -2097.801507 -2097.189157 1 -1074.6i

С	4.612845	-2.349630	-0.245529
н	5,506171	-2.155649	0.355275
ц	1 351638	_1 /3031/	-0.780052
	4.075000	-1.+0001+	4.000002
	4.675630	-3.096365	-1.002004
C	-2.979071	-0.215864	-1.330294
С	-3.591776	-0.098038	-2.597850
Н	-4.647994	-0.014030	-2.802148
С	-2.555105	-0.106167	-3.514319
н	-2.555249	-0.036257	-4.592282
C	-3 676578	-0.262496	-0.023036
Č	2 215051	0.202430	1 052112
	-3.315051	0.007.001	1.052112
	-4.068425	0.579115	2.229796
н	-3.770225	1.235768	3.044699
С	-5.176823	-0.260563	2.391710
С	-5.498411	-1.122145	1.338071
Н	-6.333159	-1.810734	1.454219
С	-4.777145	-1.141947	0.135833
Ċ	-2 050856	1 411081	1 019639
ц	-2 073537	2 185731	1 70/535
	1 005222	2.100701	0.046646
	-1.905332	1.090001	0.040040
C	-5.995713	-0.235084	3.659212
Н	-5.368144	-0.040390	4.534537
Н	-6.520070	-1.182948	3.813643
Н	-6.753508	0.557561	3.618625
С	-5.197650	-2.132675	-0.928776
Н	-4.343460	-2.513877	-1.495012
н	-5.892788	-1.684259	-1.648644
н	-5 712368	-2 981491	-0 468249
C .	1 261700	2.001401	1 4700040
	1.301709	2.030400	-1.470001
U 	1.775329	3.114341	-2.737654
Н	2.331639	4.017385	-2.942951
С	1.311631	2.175558	-3.652000
Н	1.396769	2.125488	-4.728311
С	1.584435	3.147781	-0.107482
С	2.709599	2.699964	0.622415
С	2.884920	3.155223	1.936274
Ĥ	3 748140	2 809611	2 501396
Ċ	1 0710/18	4 025531	2 5/1/32
č	0.064025	4.020001	4 704522
	0.004033	4.400090	1.794000
Н	0.147263	5.138159	2.250271
С	0.657823	4.037509	0.475357
С	3.725393	1.780244	-0.013737
Н	3.231519	0.984619	-0.577890
Н	4.360443	1.317815	0.747642
Н	4.372900	2.332934	-0.707706
С	2,153797	4,461679	3,975949
Ĥ	1 695636	3 738390	4 663505
ц	1 685525	5 /33650	1 161574
	2.044502	4 50010	4.101374
	3.214523	4.555120	4.236965
C	-0.523291	4.552515	-0.314368
Н	-1.292623	4.958564	0.348624
Н	-0.972910	3.766151	-0.927358
Н	-0.215498	5.353782	-0.997907
В	0.045120	-0.136501	-3.418607
Н	0.013671	-0.212446	-4.612713
н	-0.862299	-2.460207	0.623784
н	0.179535	0.713302	1.478864
Open-shell singlet Potential Energy Surface

1-0₂-0S

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies

Molecular Geometry in Cartesian Coordinates

0 -2097.369734 0.613778 -2097.782520 -2097.168742 0

Cu 0.169361 -0.013114 -0.368400 0 -0.249717 -0.579859 1.430168 0 -0.126939 0.738620 1.378724 Ν 0.684357 -1.513274 -1.560704 Ν -1.304336 0.562596 -2.899397 0.147480 Ν -1.736015 -1.525516 Ν -1.547633 0.061361 -2.8699970.938480 Ν 1.349986 -1.583015 Ν 0.699035 1.201949 -2.913014 С 1.262390 -2.717301 -1.381141 С 1.519973 -3.293937 -2.639959 Н 1.968699 -4.256572 -2.834407 С 1.059269 -2.368283 -3.567690 Н 1.041745 -2.390139 -4.647748 С 1.499548 -3.238169 -0.016518 С 0.395249 -3.618798 0.777947 С 0.631309 2.070968 -4.099831 Н -0.216968 -4.397690 2.684021 С 1.927094 -4.204159 2.594292 С 3.005051 -3.819415 1.786070 Н 4.017938 -3.892471 2.177425 С 2.814889 -3.340004 0.483800 С -1.016673 -3.515678 0.247360 н -4.030936 -0.714803 -1.118479 н -1.729891 -3.953531 0.951137 С 2.154907 4.005356 -4.692234 н 3.100470 -5.237081 4.092134 н 1.345405 -5.351017 4.334739 Н 2.197835 -3.849166 4.706691 С 4.005403 -2.945878 -0.360713 Н 4.889284 -2.788309 0.264291 Н 3.813467 -2.028591 -0.925575 Н 4.249815 -3.726903 -1.091257 С -3.063407 0.184447 -1.317667 С -3.743436 0.114023 -2.554789 Н -4.810818 0.131908 -2.719175 С -2.740974 0.038596 -3.511205 Н -2.785744 -0.023545 -4.589203 С -3.591397 0.324544 0.059438 С -3.332108 1.510125 0.782146 С -3.809049 1.620034 2.094690 Н -3.607036 2.532337 2.652846 С -4.531022 0.588077 2.706729 С -4.777407 -0.577991 1.969088 Н -5.329221 -1.394399 2.431646 С -4.322153 -0.727369 0.653418 С -2.554250 2.648127 0.161666

Н	-2.568593	3.528498	0.810854
Н	-2.968791	2.929855	-0.813221
Н	-1.511496	2.362583	-0.003960
С	-5.051952	0.730322	4.117449
Н	-4.548343	1.543550	4.648855
Н	-4.908555	-0.193203	4.688710
Н	-6.127680	0.948198	4.118704
С	-4.609121	-2.004633	-0.103581
Н	-3.732384	-2.349813	-0.660383
Н	-5.416247	-1.862205	-0.832772
Н	-4.918561	-2.799889	0.581183
С	1.649523	2.482054	-1.410658
С	1.863715	3.079513	-2.669013
Н	2.407608	3.989677	-2.872426
С	1.249577	2.236605	-3.585843
Н	1.167783	2.293000	-4.661577
С	2.085867	2.898773	-0.059911
С	2.954392	2.069652	0.686319
С	3.328196	2.471187	1.974696
Н	3.998823	1.834911	2.549139
С	2.859937	3.662325	2.543128
С	2.005362	4.469972	1.781254
Н	1.629235	5.397650	2.208140
С	1.609795	4.111513	0.487345
С	3.479728	0.763328	0.132846
Н	2.748942	-0.046281	0.254351
Н	4.390896	0.461166	0.657593
Н	3.700066	0.834354	-0.936796
С	3.281723	4.075383	3.933189
Н	3.448646	3.202632	4.572417
Н	2.524046	4.708054	4.405927
Н	4.218343	4.647218	3.907962
С	0.673569	5.010284	-0.288133
Н	0.223908	5.758866	0.370636
Н	-0.132052	4.440133	-0.761727
Н	1.201516	5.544081	-1.087129
В	-0.113956	-0.013555	-3.437221
Н	-0.126196	-0.020225	-4.633667
Н	-1.302705	-2.472106	0.082253

TS_{CH}-OS

Charge

Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies Imaginary frequency (cm-1)

Molecular Geometry in Cartesian Coordinates

Cu	-0.281577	-0.095757	-0.323675
0	0.593208	0.097766	1.387354
0	-0.421569	-0.872074	1.555157
Ν	0.149551	1.297670	-1.727226
Ν	0.056328	0.891299	-3.023633
Ν	1.165215	-1.408608	-1.414626
Ν	0.941298	-1.446736	-2.754334
Ν	-1.776756	-0.811717	-1.426580

0 -2097.337040 0.611195 -2097.750489 -2097.139294 1 -1547.5i

N	-1.553457	-1.019460	-2.749689
С	0.445115	2.610274	-1.729972
Ĉ	0.538375	3 062138	-3.062452
	0.000070	3.002130	-3.002432
Н	0.770160	4.062109	-3.397630
С	0.289385	1.941486	-3.843909
н	0 268734	1 811515	-4 916321
<u> </u>	0.666219	2 21 9 4 4 0	0.449420
C	0.000310	3.310440	-0.440439
С	1.797167	2.984801	0.329066
С	1.989705	3.640042	1.552393
н	2 861174	3 386675	2 152923
<u> </u>	1 000046	4 602244	2.102020
C	1.069646	4.603244	2.023412
С	-0.024237	4.917734	1.232043
Н	-0.736254	5.661592	1.585327
С	-0 250954	4 294167	-0.000357
č	0.200001	1.042000	0.120020
C	2.788756	1.943808	-0.139038
Н	3.095302	2.125294	-1.175430
Н	3.682393	1.947530	0.491805
С	1 302190	5 286883	3 353502
	0.475004	5.200000	4.044.005
п	0.475964	5.071704	4.041685
Н	1.348478	6.376149	3.237405
Н	2.230523	4.955533	3.827765
C	-1 460377	4 667424	-0 827274
	0.000011	T.007 T24	0.027274
п	-2.208914	5.176289	-0.212803
Н	-1.927054	3.788083	-1.281455
Н	-1.187452	5.344842	-1.645909
C	2 325885	-2 055577	-1 192587
č	2.020000	2.000017	0.440740
0	2.040200	-2.535097	-2.416719
Н	3.748191	-3.107292	-2.570806
С	1.937129	-2.121851	-3.379814
н	1 925015	-2 253083	-4 452360
0	0.000505	-2.200000	-4.402000
C	2.908505	-2.137192	0.163051
С	2.155781	-2.668505	1.258592
С	2.754934	-2.709954	2.545803
н	2 170981	-3 109617	3 371894
0	4.047000	0.100017	0.071004
C	4.047892	-2.257530	2.770456
С	4.764176	-1.735005	1.676338
Н	5.770209	-1.353668	1.838786
С	4 222771	-1 670648	0.385235
č	0 702445	2 110/17	1 1000200
	0.793445	-3.110447	1.122003
н	0.399576	-3.746545	1.922264
Н	0.408082	-3.334541	0.128558
н	0.103063	-1.901692	1.411673
C	4 676977	2 202047	1 1 1 1 6 5 9
	4.070077	-2.303047	4.141030
Н	3.993548	-2.732352	4.879771
Н	4.952980	-1.296766	4.478012
Н	5.594410	-2.903184	4.134957
C	5 055081	-1.062650	-0 721516
	3.033901	-1.002039	-0.721310
н	4.454284	-0.425448	-1.375896
Н	5.514172	-1.833177	-1.352147
Н	5.865255	-0.460075	-0.299026
C	-3 022461	-1 240429	-1 144817
č	0.022401	1.240420	0.000004
C	-3.609444	-1.746096	-2.323331
Н	-4.603936	-2.151559	-2.434714
С	-2.647037	-1.582163	-3.311119
Ĥ	-2 661130	-1 816254	-4 365715
0	2.001100	1.010204	
U	-3.303696	-1.09/929	0.224701
С	-3.708401	0.190301	0.786728
С	-4.198507	0.306765	2.094391
н	-4 313605	1 299450	2 525166
C	1.010000	0.015000	2.020100
	-4.541360	-0.015288	2.05/105
С	-4.391982	-2.082975	2.277174

Н	-4.650667	-2.967183	2.856659
С	-3.910988	-2.245665	0.973485
С	-3.340378	1.438055	0.015010
н	-2.253028	1.583223	-0.008115
н	-3.783067	2.324214	0.478873
н	-3.674191	1.383649	-1.026455
С	-5.033285	-0.672242	4.277686
Н	-4.227172	-0.886114	4.990929
Н	-5.848477	-1.372163	4.490099
Н	-5.389947	0.342856	4.476591
С	-3.739260	-3.634300	0.400485
Н	-3.919115	-4.393787	1.166896
Н	-2.727108	-3.778881	0.005928
Н	-4.433542	-3.821194	-0.426428
В	-0.200266	-0.602326	-3.375508
Н	-0.229121	-0.747923	-4.563450
Н	2.353065	0.939902	-0.099771

I-OOH-OS

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies

Molecular Geometry in Cartesian Coordinates

Cu	-0.211600	0.009260	-0.341289
0	0.656692	0.129278	1.347341
0	-0.376939	-0.885027	1.542499
Ν	0.197696	1.587728	-1.567471
Ν	0.114405	1.344295	-2.904466
Ν	1.221445	-1.178891	-1.566574
Ν	1.078470	-0.978817	-2.902883
Ν	-1.665209	-0.610624	-1.543465
Ν	-1.422190	-0.643271	-2.879577
С	0.422373	2.904783	-1.407060
С	0.479305	3.524414	-2.672722
Н	0.655429	4.569397	-2.880219
С	0.283753	2.498981	-3.588055
Н	0.260836	2.502598	-4.668347
С	0.607093	3.474115	-0.053397
С	1.749747	3.117523	0.694726
С	1.912108	3.661474	1.975884
Н	2.793491	3.390521	2.553605
С	0.970519	4.535638	2.531504
С	-0.159592	4.868662	1.770632
Н	-0.905660	5.541564	2.189643
С	-0.357385	4.354742	0.484313
С	2.785309	2.168571	0.135431
Н	3.090183	2.461538	-0.875829
Н	3.675063	2.146002	0.771448
С	1.159044	5.112473	3.915010
Н	0.318325	4.852332	4.568925
Н	1.213968	6.207337	3.882591
Н	2.076807	4.741421	4.380542
С	-1.587544	4.739872	-0.306005

0 -2097.342590 0.612889 -2097.757677 -2097.144788 0

Н	-2.338985	5.197418	0.344180
Ц	2 020262	2 972101	0 706091
	-2.039202	5.072101	-0.730301
Н	-1.344049	5.462473	-1.094355
С	2.381859	-1.839741	-1.390086
Ĉ	2 002744	-2 071308	-2 644861
	2.332744	-2.07 1390	-2.044001
Н	3.917734	-2.594101	-2.837876
С	2.131637	-1.507179	-3.573050
н	2 186/36	-1 //3805	-4 650441
0	2.100400	0.040040	4.000441
C	2.842919	-2.213049	-0.038055
С	1.994496	-2.991754	0.829152
С	2 476950	-3 322734	2 132940
Ŭ Ŭ	4 004647	2.007200	2.702010
	1.031047	-3.907309	2.765055
C	3.726411	-2.920412	2.578183
С	4.531135	-2.158125	1.706090
н	5 506522	-1 820136	2 049600
	A 444EEA	1.020100	0.414140
C	4.111554	-1.603326	0.414142
С	0.708569	-3.437833	0.446312
Н	0.132236	-4.066620	1.120137
н	0 304342	-3 246566	-0 540945
	0.004042	4.705004	4 200254
н	0.115915	-1.735304	1.398354
С	4.225696	-3.272343	3.958529
Н	3.496941	-3.878882	4.503686
н	1 122061	-2 367602	1 515505
		-2.007032	4.04000
н	5.165936	-3.833495	3.904982
С	5.033460	-0.968997	-0.447514
Н	4.484685	-0.205911	-1.006879
н	5 563986	-1 588574	-1 180110
	5,200000	0.474500	0.470404
	5.760639	-0.471526	0.170194
С	-2.885015	-1.142203	-1.331014
С	-3.435889	-1.530431	-2.569996
н	-4 405361	-1 973386	-2 741837
0	9.470000	1.070000	2.741007
U	-2.479200	-1.193102	-3.316261
Н	-2.474724	-1.296746	-4.593607
С	-3.445467	-1.212622	0.036819
C	-3 658969	-0 024553	0 770596
č	4.400070	0.02-000	0.770000
U	-4.162970	-0.116377	2.007137
Н	-4.354851	0.799455	2.629373
С	-4.483973	-1.348551	2.657587
С	-4 258533	-2 514521	1 911819
U U	4.402004	2.011021	2.255.000
	-4.462901	-3.462715	2.30000
С	-3.745886	-2.469433	0.611081
С	-3.324747	1.336302	0.202075
н	-2 254809	1 555679	0 312807
 Ц	2.076261	2 121250	0 707502
	-3.070301	2.121330	0.727595
Н	-3.554052	1.400774	-0.866000
С	-5.008420	-1.428378	4.071465
Н	-4,203529	-1.692181	4,769283
 Ц	5 795146	2 10/576	4 167242
	-5.765140	-2.194570	4.107242
н	-5.426507	-0.471145	4.397311
С	-3.498485	-3.755950	-0.144011
Н	-3.620709	-4.619214	0.516414
н	-2 186313	3 78/102	-0 562202
11	-2.400042	-0.704190	-0.002293
Н	-4.193591	-3.8/5861	-0.982685
В	-0.081868	-0.102007	-3.435833
Н	-0.094574	-0.104522	-4.632926
Н	2.389269	1,149821	0.071961
	2.000200		0.0.1001

Open-shell singlet PES, pathway A

TS_{rot}-OS

Charge
Electronic Energy, BS1 (a.u.)
Thermal and entropic correction, BS1 (a.u.)
Electronic Energy, BS2 (a.u.)
Gibbs Energy, BS2 (a.u.)
Number of Imaginary Frequencies
Imaginary frequency (cm-1)

Molecular Geometry in Cartesian Coordinates

C	0 000082	0.011075	0 259247
Cu O	0.090982	-0.840100	1 322001
0	-0.211325	0.534036	1.322001
N	1 724497	0.334030	1.730110
IN NI	1.724407	0.707504	2 702/12
IN NI	1.000010	-0.703142	-2.792413
IN NI	-1.241259	1 196777	-1.547290
IN NI	-0.930675	-1.100///	-2.009199
IN N	-0.090766	1.402303	-1.090140
	-0.027792	1.140048	-3.013943
	2.980145	-1.1/58/2	-1.182897
	3.641831	-1.459887	-2.396839
Н	4.654177	-1.815371	-2.520858
C	2.706028	-1.199876	-3.388246
Н	2.764398	-1.282455	-4.464148
С	3.460555	-1.288087	0.213979
С	2.938607	-2.303351	1.045940
С	3.394293	-2.393430	2.365673
Н	2.995935	-3.177097	3.007454
С	4.340923	-1.498276	2.883499
С	4.844495	-0.501711	2.038375
Н	5.580261	0.202396	2.422663
С	4.422629	-0.382447	0.706980
С	1.915779	-3.283741	0.520925
Н	2.271145	-3.774286	-0.393438
Н	1.700789	-4.056847	1.264605
С	4.778660	-1.589586	4.326504
Н	4.065531	-1.073545	4.982230
Н	5.759564	-1.128134	4.478650
Н	4.831866	-2.630814	4.661865
С	5.000857	0.700630	-0.175154
Н	5.508041	1.461087	0.426028
Н	4.225641	1.192921	-0.770820
Н	5.733762	0.289636	-0.880467
С	-2.322269	-1.916692	-1.350025
С	-2.714386	-2.485978	-2.585091
Н	-3.548287	-3.146762	-2.767773
С	-1.813116	-1.992891	-3.516028
н	-1.731787	-2.150877	-4.581995
С	-2.926531	-2.047638	-0.009956
С	-3.218307	-0.870078	0.772653
С	-3.771964	-1.045434	2.077879
н	-3.983716	-0.155290	2.666886
С	-4.048643	-2.298972	2.601435
С	-3.767665	-3.427752	1.805674

0 -2097.340637 0.616093 -2097.756304 -2097.140211 1 -38.5i

Н	-3.967814	-4.419431	2.206346
С	-3.215862	-3.321056	0.518566
С	-3.009682	0.447798	0.308926
Н	-3.293786	1.289660	0.935067
Н	-2.647082	0.663322	-0.688284
Н	-1.194555	0.558726	1.761004
С	-4.629338	-2.469870	3.984145
Н	-4.774294	-1.505090	4.479199
Н	-3.969653	-3.079834	4.612713
Н	-5.598457	-2.981530	3.943137
С	-2.929977	-4.593546	-0.248725
Н	-1.985547	-4.534177	-0.798118
Н	-3.719045	-4.805921	-0.980409
Н	-2.879046	-5.446353	0.434267
С	-0.393948	2.793464	-1.620748
С	-0.526394	3.311797	-2.924847
Н	-0.753037	4.330590	-3.201514
С	-0.286287	2.236550	-3.771114
Н	-0.276895	2.167262	-4.849331
С	-0.541993	3.430850	-0.293849
С	0.564897	3.476288	0.584444
С	0.388997	4.016249	1.863664
Н	1.240290	4.051448	2.540541
С	-0.851188	4.503917	2.296112
С	-1.928817	4.463997	1.402028
Н	-2.897700	4.845809	1.718831
С	-1.797154	3.938902	0.109736
С	1.923759	2.960517	0.166010
Н	1.958482	1.864831	0.171785
Н	2.699952	3.318514	0.848482
Н	2.177292	3.280176	-0.850375
С	-1.029559	5.026394	3.701905
Н	-1.260742	4.205311	4.393949
Н	-1.852189	5.746843	3.759648
Н	-0.117752	5.511730	4.065957
С	-2.993184	3.921632	-0.815632
Н	-3.920818	4.053074	-0.250656
Н	-3.061424	2.984090	-1.375634
Н	-2.937740	4.731287	-1.553707
В	0.229307	-0.329284	-3.428681
Н	0.281642	-0.422600	-4.620967
Н	0.977252	-2.777376	0.272084

I-OOH_rot-OS

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies 0 -2097.341750 0.613709 -2097.757798 -2097.144089 0

Cu	0.087735	-0.076596	-0.329716
0	-0.891187	0.199372	1.607838
0	0.084462	-0.867875	1.376660
Ν	-0.108511	1.367953	-1.701880
Ν	-0.167053	0.991377	-3.006941

N	1.587348	-0.923505	-1.449699
N	1 360158	-0 972//9	-2 7022/0
	1.000100	-0.372++3	-2.1322-0
N	-1.437915	-1.179164	-1.468647
N	-1.140114	-1.317649	-2.786954
C	-0.200580	2 702/30	-1 6/025/
0	-0.230300	2.702-03	-1.0+323+
C	-0.474649	3.192114	-2.958948
н	-0.633860	4.218152	-3.254721
C	-0 385071	2 077483	-3 782031
	-0.303071	2.077400	-3.702031
н	-0.454027	1.977445	-4.855571
С	-0.271064	3.405378	-0.347837
C	0 8795/3	3 3/10060	0 172000
0	0.079040	0.0770.40	0.472099
C	0.857060	3.977240	1.719694
н	1.742359	3.924668	2.350389
C	-0 268755	4 672258	2 175840
ő	0.200700	4.072200	2.170040
C	-1.395556	4.727382	1.343881
н	-2.283576	5.256380	1.684917
C	-1 417281	4 110626	0 087975
õ	0.400044	0.507040	0.007070
C	2.126244	2.597249	0.045188
н	2.299116	2.677349	-1.031914
н	3 003914	2 984522	0 570975
	0.000014	Z.00+022	0.010010
C	-0.267016	5.364467	3.517960
Н	-1.235951	5.262873	4.018403
н	-0.071459	6.438553	3,404560
	0 504540	4 055075	4 477256
	0.504546	4.900270	4.177300
С	-2.664493	4.200061	-0.762603
н	-3.533118	4,449556	-0.145778
 Ц	2 960461	2 261155	1 205120
	-2.009401	3.201155	-1.200109
н	-2.569990	4.979707	-1.528714
С	2.857034	-1.322112	-1.233208
Ċ	3 161683	-1 632750	-2 /67/61
	3.404003	-1.032739	-2.407401
н	4.470563	-1.992119	-2.625126
С	2.486987	-1.398541	-3.423487
н	2 499350	-1 507622	-4 498347
 C	2,100000	1 202002	0 100706
C	3.412404	-1.392802	0.133706
С	2.849222	-2.315511	1.081182
С	3.410446	-2.352136	2.392091
ц Ц	2 096179	2 0/6967	2 1129//
	2.900170	-3.040007	5.115044
C	4.467789	-1.532749	2.763888
С	4.995619	-0.640051	1.808440
н	5 816500	0.016234	2 000503
0	1.40.4070	0.010204	2.030303
C	4.484676	-0.561958	0.503117
С	1.788655	-3.184298	0.750307
н	1 382545	-3 856121	1 499700
	1 222020	2 405462	0.000007
	1.333020	-3.105105	-0.232307
С	5.047555	-1.578681	4.157533
н	4.939657	-0.609997	4.659993
ц	6 118085	-1 800880	1 131123
	0.110900	-1.009000	4.131123
н	4.550849	-2.335694	4.771048
С	5.094126	0.420914	-0.472339
н	4 334556	0 886064	-1 106976
	F 040F44	0.000001	1.100070
н	5.812511	-0.073185	-1.137833
Н	5.629381	1.211443	0.061816
С	-2,490390	-1.974219	-1.214913
č	2.100000	2 640240	2 205274
	-2.0/39/5	-2.049219	-2.395214
Н	-3.691958	-3.343531	-2.519647
С	-1.990980	-2.198168	-3.367141
н	-1 010077	-2 /20728	-4 /10720
	-1.310311	-2.723120	
C	-3.087286	-1.969361	0.140367
С	-3.662716	-0.770619	0.633048
С	-4,176477	-0.752909	1,938022
ы	1 61 11 61	0 160 / 17	2 2474 44
п	-4.014131	0.100447	2.31/141

-4.147070	-1.890230	2.759532
-3.584797	-3.063675	2.244194
-3.544983	-3.953055	2.869578
-3.049489	-3.123345	0.949861
-3.726818	0.480439	-0.219055
-2.731212	0.910716	-0.372087
-4.355928	1.237833	0.256582
-4.132815	0.261167	-1.212544
-4.713730	-1.837332	4.158222
-4.588764	-2.792420	4.676884
-5.784069	-1.598979	4.139529
-4.221073	-1.059426	4.753178
-2.408484	-4.397514	0.451458
-2.364949	-5.147109	1.246684
-1.388594	-4.207704	0.098557
-2.965597	-4.827489	-0.388473
0.021642	-0.499931	-3.398062
0.042854	-0.620394	-4.589017
2.053748	1.527345	0.278201
-1.745505	-0.284967	1.549333
	-4.147070 -3.584797 -3.544983 -3.049489 -3.726818 -2.731212 -4.355928 -4.132815 -4.713730 -4.588764 -5.784069 -4.221073 -2.408484 -2.364949 -1.388594 -2.965597 0.021642 0.042854 2.053748 -1.745505	-4.147070 -1.890230 -3.584797 -3.063675 -3.544983 -3.953055 -3.049489 -3.123345 -3.726818 0.480439 -2.731212 0.910716 -4.355928 1.237833 -4.132815 0.261167 -4.713730 -1.837332 -4.588764 -2.792420 -5.784069 -1.598979 -4.221073 -1.059426 -2.408484 -4.397514 -2.364949 -5.147109 -1.388594 -4.207704 -2.965597 -4.827489 0.021642 -0.499931 0.042854 -0.620394 2.053748 1.527345 -1.745505 -0.284967

TSco-OS

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies Imaginary frequencies (cm-1)

Molecular Geometry in Cartesian Coordinates

Cu	0.115239	0.025668	-0.312112
0	-0.857813	0.217879	1.471612
0	0.388722	-0.836086	1.352877
Ν	-0.348155	1.469286	-1.636485
Ν	-0.366496	1.148423	-2.958119
Ν	1.629556	-0.591705	-1.512898
Ν	1.404745	-0.621481	-2.852546
Ν	-1.282899	-1.273209	-1.525450
Ν	-1.030438	-1.276348	-2.859421
С	-0.702153	2.764355	-1.524520
С	-0.960596	3.284687	-2.809464
Н	-1.254884	4.293350	-3.057606
С	-0.732489	2.229887	-3.682424
Н	-0.797669	2.169353	-4.759169
С	-0.749199	3.415435	-0.197214
С	0.424234	3.504965	0.584261
С	0.346914	4.097381	1.852085
Н	1.250606	4.166603	2.454340
С	-0.856105	4.598228	2.362167
С	-2.005752	4.503028	1.565416
Н	-2.951160	4.883862	1.947564
С	-1.974644	3.922825	0.293006
С	1.754820	2.981686	0.089330
Н	1.885761	3.154205	-0.983466
Н	2.580336	3.461528	0.623596
С	-0.916817	5.254973	3.720622

0 -2097.334316 0.615508 -2097.750404 -2097.134896 1 -523.0i

Н	-1.820719	4.959366	4.263809
ы	0.020750	6 240222	2 625 407
	-0.930739	0.340222	3.025497
н	-0.047987	4.992732	4.331557
C	-3 2/13207	3 8/3020	-0 526138
	-3.243207	3.043023	-0.520150
н	-4.119840	4.022776	0.103092
н	-3 356203	2 865176	-1 00/1820
	-0.000200	2.000170	-1.00+020
н	-3.248622	4.594694	-1.324745
С	2 915007	-0 947247	-1.306060
õ	2.010007	4.000005	0.554040
C	3.525258	-1.209905	-2.551643
н	4.541801	-1.528539	-2.725778
0	0 500044	0.004000	2.400000
C	2.533644	-0.994636	-3.496988
н	2.543575	-1.085359	-4.573454
C	2 /70112	1 022775	0.054705
C	3.479113	-1.033775	0.054795
С	2.824784	-1.829863	1.055104
C	3 404430	-1 895229	2 353341
	5.404450	-1.035223	2.000041
н	2.902810	-2.494785	3.109583
С	4 573104	-1 217151	2 673007
õ	5.40.4000	0.404454	4.070000
C	5.184688	-0.434154	1.673632
н	6.087778	0.122527	1.915569
C	1 657510	0.221670	0 277/17
C	4.007012	-0.331070	0.377417
С	1.613423	-2.530860	0.810453
н	1 207/2/	-3 17/503	1 581880
	1.207 +24	-0.17-000	1.001003
н	1.206105	-2.636296	-0.187013
C	5 179052	-1 294250	4 053986
ŭ	5.050052	0.007000	1.000000
н	5.258357	-0.297609	4.503960
н	6.192421	-1.711705	4.016816
	4 577400	1 000004	4 74 00 60
п	4.577499	-1.920204	4.710900
С	5.351227	0.562920	-0.626413
Ц	1 631217	1 16278/	-1 102800
	4.001217	1.102704	-1.132003
н	5.933850	-0.015722	-1.352555
н	6 040395	1 242844	-0 117289
	0.010407	0.040440	4 200200
C	-2.216407	-2.212410	-1.300299
С	-2.565684	-2.843683	-2.515540
Ц	2 202072	2 629256	2 665206
	-3.233072	-3.020230	-2.003200
С	-1.789362	-2.213367	-3.479076
н	-1 726089	-2 356303	-4 548555
	0.704000	0.000000	0.070455
C	-2.734230	-2.388006	0.076455
С	-3.459709	-1.327987	0.676449
Ċ	2 001 120	1 162012	2 006226
C	-3.001430	-1.403042	2.000230
н	-4.431673	-0.646996	2.469302
C	-3 614807	-2 623696	2 750148
õ	0.011001	2.020000	2.100110
C	-2.914099	-3.662545	2.128101
н	-2.694382	-4.566987	2.691863
C	2 465747	2 565200	0 000705
C	-2.403747	-3.000090	0.602795
С	-3.780930	-0.064209	-0.094918
н	-2 871027	0 486580	-0 357573
	-2.011321	0.400000	-0.007070
н	-4.422804	0.594865	0.496221
н	-4.293100	-0.297519	-1.035328
0	4.000526	0 700640	4 4 0 4 0 0 2
C	-4.080536	-2.738012	4.181803
Н	-3.731681	-3.668140	4.640707
ы	-5 175381	-2 721387	1 212550
	-0.170001	-2.121001	7.272008
Н	-3.711462	-1.900980	4.784449
С	-1.691613	-4.704122	0.180287
	4 050047	E 440440	0.045400
н	-1.359317	-5.412140	0.945103
Н	-0.812252	-4.339546	-0.359919
н	-2 3061/6	-5 255600	-0 5/1/20
	-2.000140	-0.20000	-0.0+1428
В	0.004439	-0.281215	-3.430263
н	0.030574	-0.332972	-4.626113
	4 040057	1 000 400	0.054044
н	1.843657	1.900468	0.251344
н	-1.594751	-0.428359	1.454939

C-CSS

Charge Spin State Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies 0 Closed-shell singlet -2097.421713 0.622276 -2097.838041 -2097.215765 0

Cu	0.039495	0.119828	-0.256110
0	-0.137067	1.359710	1.048253
0	-0.600545	-1.048318	1.001299
Ν	0.786336	1.482614	-1.421810
Ν	0.336802	1.573623	-2.700634
Ν	0.441171	-1.189405	-1.641142
Ν	0.173032	-0.880227	-2.937348
Ν	-2.060090	0.400063	-1.383912
Ν	-1.942492	0.466590	-2.734393
С	1.621852	2.515417	-1.184697
С	1.698413	3.295625	-2.355994
Н	2.297938	4.181092	-2.502788
С	0.880812	2.664369	-3.281968
Н	0.655849	2.897686	-4.312395
С	2.347116	2.680197	0.092418
С	3.212995	1.663017	0.550569
С	3.896207	1.852366	1.758923
Н	4.568352	1.070884	2.108727
С	3.737939	3.013212	2.524530
С	2.877533	4.010214	2.045169
Н	2.739998	4.919581	2.627256
С	2.179366	3.866124	0.841352
С	3.411848	0.373273	-0.213504
Н	3.403143	0.528746	-1.296827
Н	4.358292	-0.099086	0.065588
С	4.451518	3.174989	3.845541
Н	3.829664	2.803878	4.670322
Н	4.675538	4.226180	4.053765
Н	5.389842	2.611410	3.864542
С	1.246815	4.963479	0.381986
Н	1.056875	5.671372	1.193989
Н	0.286240	4.557236	0.049484
Н	1.668174	5.527920	-0.458002
С	1.130995	-2.355800	-1.618757
С	1.288266	-2.802617	-2.945973
Н	1.767558	-3.712917	-3.271108
С	0.673141	-1.844607	-3.737290
Н	0.543849	-1.780503	-4.807693
С	1.553627	-2.997784	-0.362051
С	0.636564	-3.096675	0.710297
С	1.010144	-3.757907	1.881964
Н	0.293261	-3.825623	2.698005
С	2.282279	-4.327799	2.027685
С	3.187245	-4.191755	0.968499
Н	4.190877	-4.598758	1.074897
С	2.853400	-3.538661	-0.226462
С	-0.710179	-2.412829	0.643479
Н	-1.385599	-2.849670	1.393837

н	-1 190961	-2 540526	-0.335803
C	2 657173	-5.063361	3 291257
н	2 394335	-4 480522	4 180788
н	3 728998	-5 278933	3 325757
н	2 119777	-6.017476	3 359554
C	3 902981	-3 410396	-1 306855
Ĥ	3.834531	-2.450733	-1.827609
Н	3.805004	-4.198952	-2.062723
Н	4.903985	-3.497468	-0.874076
C	-3.372962	0.313468	-1.115944
Č	-4.113819	0.324244	-2.323182
H	-5.187698	0.283512	-2.434506
С	-3.162235	0.422143	-3.327572
Н	-3.258134	0.465727	-4.403335
С	-3.847626	0.246503	0.287830
С	-3.712701	1.376414	1.123102
С	-4.126267	1.284279	2.459071
Н	-4.019040	2.154903	3.103759
С	-4.670855	0.105819	2.984552
С	-4.802284	-1.000232	2.133792
Н	-5.217623	-1.927361	2.525041
С	-4.403503	-0.948988	0.792340
С	-3.109128	2.660011	0.603577
Н	-2.020559	2.550979	0.527152
Н	-3.331471	3.494570	1.276287
Н	-3.490396	2.906434	-0.393467
С	-5.136028	0.037565	4.420509
Н	-4.605070	0.761151	5.047038
Н	-4.982896	-0.960881	4.843231
Н	-6.208050	0.261459	4.496691
С	-4.560595	-2.168163	-0.087901
Н	-4.771090	-3.057772	0.513482
Н	-3.658018	-2.355742	-0.678130
Н	-5.386287	-2.044257	-0.799185
В	-0.532794	0.450949	-3.330906
Н	-0.557729	0.562443	-4.521542
Н	2.611751	-0.341728	0.014823
Н	-0.637294	0.837107	1.703390

Open-shell singlet PES, pathway B

TS_{COH}-OS

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies Imaginary frequencies (cm-1) 0 -2097.323577 0.611638 -2097.740084 -2097.128446 1 -684.2i

Cu	-0.204921	0.036122	-0.296456
0	-0.535561	-0.623633	1.416849
0	1.025247	0.105228	1.311710
Ν	-1.744785	-0.440569	-1.495216
Ν	-1.493622	-0.609501	-2.821658

N	0.466505	1.375158	-1.644532
N	0 375/78	1 070860	-2 96/615
	0.070470	1.070000	-2.30-013
N	1.070916	-1.468895	-1.499030
N	0.917761	-1.371225	-2.844684
C	2 025276	0 700006	1 270010
C	-3.025276	-0.700000	-1.270919
С	-3.611199	-1.195741	-2.488246
н	-4 629862	-1 516439	-2 646147
 C	0.000405	1.004007	2.010111
C	-2.608495	-1.064237	-3.438210
Н	-2.605011	-1.254528	-4.501753
C	-3 620237	-0 673341	0 078637
0	-0.020207	-0.0700+1	0.070007
C	-3.689987	0.588646	0.710074
С	-4.277684	0.676678	1.978134
ы	-1 330375	1 6/0710	2 461567
	-4.559575	1.049719	2.401307
С	-4.791265	-0.447498	2.634829
С	-4.702761	-1.689401	1.992288
ů	5 007010	2 576262	2 401 000
	-5.067219	-2.576362	2.491000
С	-4.124736	-1.824154	0.725237
C	-3 138768	1 836150	0 056940
Ň	0.100700	1.000100	0.000540
н	-3.322500	1.848338	-1.022551
н	-3.582381	2.734462	0.497848
C	-5 307250	-0 332054	1 013123
	-0.001200	-0.332034	4.010120
Н	-4.646482	-0.534456	4.787936
н	-6.211535	-1.050966	4.153366
Ц	5 700016	0 672247	1 102250
п	-5.790910	0.075547	4.192250
С	-4.024970	-3.190317	0.085133
н	-4 255764	-3 974208	0 812083
	2 04 0 4 0 4	0.071440	0.012000
п	-3.018434	-3.371410	-0.306335
н	-4.721118	-3.298959	-0.754760
C	0 962119	2 625722	-1 545478
õ	4.400040	2.020122	0.044000
C	1.196612	3.131472	-2.841830
н	1.599409	4.098279	-3.102820
C	0 815054	2 114036	-3 704259
Ň	0.010004	2.114000	4.7007200
н	0.828954	2.052359	-4.782722
С	1.180426	3.267106	-0.231676
Ċ	2 004666	2 647259	0 750606
0	2.004000	2.047330	0.759000
C	2.202927	3.311196	1.997035
н	2.828042	2.830235	2.745624
C	1 619624	1 512010	2 272162
C	1.010024	4.042019	2.273102
С	0.798604	5.120585	1.287018
н	0.312157	6.071068	1,495976
C	0 571252	4 500267	0.046447
C	0.571252	4.009307	0.040447
С	2.602902	1.362111	0.573888
н	3.318768	1.007390	1.307764
	2 615260	0.007500	0.400470
п	2.015200	0.007500	-0.400472
С	1.840740	5.245744	3.590105
н	2 452290	4 642051	4 266365
	0.007000	L 457040	4.000005
п	0.887699	5.457312	4.088385
Н	2.347160	6.206905	3.440723
C	-0 349138	5 182475	-0 946445
ŭ	4.040005	4.405400	4.404.000
п	-1.040305	4.405120	-1.401096
н	0.210303	5.654857	-1.762029
н	-0 935573	5 962182	-0 451054
~	-0.800070	0.002102	-0.+01804
С	2.093442	-2.312943	-1.282879
С	2.609463	-2.770306	-2.517341
ц Ц	2 400000	2 466445	2674505
н	3.420029	-3.400415	-2.0/4535
С	1.832136	-2.144040	-3.481314
н	1,858159	-2.192044	-4.560741
~	0.500.400	0.044400	0.400440
U	2.503423	-2.011132	0.109448
С	1.594336	-3.242202	0.991210
С	1 986161	-3 461237	2 321379
Ň	1.000101	2 0 4 2 4 4 0	2.021013
н	1.286056	-3.943412	3.000337

С	3.245394	-3.078856	2.795845
С	4.133763	-2.463798	1.901198
Н	5.117686	-2.158577	2.252966
С	3.788320	-2.225517	0.566321
С	0.213396	-3.656966	0.539708
Н	-0.454963	-2.789356	0.578887
Н	-0.190087	-4.431137	1.199670
Н	0.218121	-4.036016	-0.486890
С	3.641871	-3.305309	4.235819
Н	3.724814	-2.352489	4.773491
Н	4.616514	-3.801431	4.305755
Н	2.905845	-3.921950	4.760118
С	4.780338	-1.555811	-0.357422
Н	5.584632	-1.083702	0.215266
Н	4.301934	-0.791422	-0.978249
Н	5.238449	-2.280519	-1.041282
В	-0.086484	-0.343887	-3.414708
Н	-0.122471	-0.404421	-4.610035
Н	-2.052036	1.897490	0.196692
Н	1.520411	-0.741599	1.250466

I-COH-OS

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies

Molecular Geometry in Cartesian Coordinates

Cu	-0.141058	-0.077885	-0.230365
0	-0.590016	-1.004110	1.276235
0	1.388657	0.843587	0.936509
Ν	-1.404028	-1.095019	-1.459808
Ν	-1.057433	-1.266892	-2.763211
Ν	0.005718	1.334893	-1.675535
Ν	0.059298	0.961333	-2.979634
Ν	1.624621	-1.090515	-1.412110
Ν	1.467738	-1.102493	-2.759672
С	-2.503443	-1.834412	-1.224239
С	-2.868407	-2.504943	-2.411151
Н	-3.715476	-3.158462	-2.556190
С	-1.929801	-2.114294	-3.355307
Н	-1.821899	-2.366511	-4.400359
С	-3.172764	-1.812932	0.094363
С	-3.691807	-0.599200	0.597898
С	-4.352252	-0.608803	1.833712
Н	-4.757973	0.324560	2.219158
С	-4.502542	-1.780884	2.582393
С	-3.973042	-2.972091	2.064850
Н	-4.072498	-3.892223	2.637876
С	-3.311162	-3.010294	0.834214
С	-3.549784	0.702783	-0.157981
Н	-3.712546	0.571466	-1.232733
Н	-4.260714	1.446466	0.214583
С	-5.209180	-1.771825	3.917342
Н	-4.512308	-2.001625	4.732549

0 -2097.395777 0.620842 -2097.811940 -2097.191098 0

н	-6.002973	-2.526970	3.950802
Ц	5 659001	0 705904	1 12/9/6
	-5.050091	-0.795694	4.124040
C	-2.738811	-4.314/2/	0.327406
Н	-2.739312	-5.068462	1.120334
н	-1 710059	-4 186494	-0 025645
	2 220450	4 74 40 47	0.020010
П	-3.320459	-4.714247	-0.511654
С	-0.092225	2.680204	-1.638990
С	-0.096518	3.178098	-2.958628
н	-0 1/7681	1 210783	-3 268230
	0.147001	4.210700	0.200200
C	0.002342	2.056690	-3.769739
Н	0.040824	1.956983	-4.844701
С	-0.156055	3.395364	-0.348500
Ĉ	0 800185	3 1/67/6	0 653005
č	0.009100	5.140740	0.000090
C	0.741848	3.832696	1.872465
Н	1.493345	3.627777	2.631656
С	-0.263426	4.768821	2,129420
Ĉ	-1 218/6/	1 007/83	1 127/87
	-1.210404	4.337403	1.12/40/
н	-2.019904	5.709583	1.314916
С	-1.187708	4.335104	-0.103755
С	1,900848	2,125357	0.467800
ŭ	2 771227	2 282570	1 079745
	2.771327	2.302379	1.070745
н	2.206765	2.034772	-0.578609
С	-0.340710	5.501349	3.446693
н	0 507782	5 253850	4 090938
 	1 260446	E 242402	2.094647
	-1.200410	5.242402	3.964647
н	-0.349971	6.586778	3.294887
С	-2.269800	4.613370	-1.122326
н	-2 634275	3 690001	-1 584050
 Ц	1 007720	5 250712	1 020975
	-1.907739	5.256712	-1.930675
н	-3.116233	5.119994	-0.649945
С	2.883245	-1.492853	-1.164663
С	3 549681	-1 771560	-2 380270
ц	4 561401	2 126600	2 500005
	4.501491	-2.120000	-2.509005
C	2.610237	-1.509415	-3.367323
Н	2.666617	-1.582591	-4.444174
С	3.355010	-1.562350	0.238721
Ĉ	2 722/07	-2 1/3067	1 151/50
õ	2.122401	-2.4-0307	0.405000
C	3.148604	-2.450021	2.485609
Н	2.664334	-3.127237	3.186447
С	4.173287	-1.611136	2.943095
Ċ	4 790831	-0 754772	2 023086
ц	5 500440	0.007/61	2.020000
	5.590440	-0.097461	2.330022
С	4.406022	-0.718174	0.675934
С	1.587463	-3.343427	0.723762
н	0 646204	-2 777777	0 761325
 Ц	1 502042	4 200274	1 200917
	1.502942	-4.200374	1.399017
н	1.724019	-3.713105	-0.297075
С	4.578101	-1.612111	4.397807
н	3,907656	-0.974455	4.987945
н	5 596074	-1 233186	1 530015
	4.505007	-1.200100	4.004044
H	4.525625	-2.01916/	4.824011
С	5.111548	0.220800	-0.276853
Н	5.638834	1.005361	0.273759
н	4 412073	0 694485	-0 973360
11	T.TI2010	0.03++00	0.010000
Н	5.852210	-0.314090	-0.883504
В	0.167579	-0.539431	-3.369490
Н	0.174050	-0.655433	-4.561443
н	-2 541328	1 116014	-0 037609
., Ц	2 11 1020	0 105700	0 0000 4 4
п	2.114070	0.100/00	0.093844

TS_{OHO}-OS

Charge

Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies Imaginary frequencies (cm-1) 0 -2097.382568 0.613832 -2097.796776 -2097.182944 1 -907.2i

Cu	0.034363	-0.146878	-0.307307
0	1.339693	0.242671	1.114130
0	-0.946128	0.512378	1.289522
Ν	0.977438	-1.449812	-1.504569
Ν	0.908119	-1.264697	-2.847479
Ν	-1.598882	-0.191511	-1.516518
Ν	-1.337277	-0.116882	-2.853042
Ν	0.789055	1.492363	-1.605225
Ν	0.761408	1.246578	-2.940097
С	1.749919	-2.526204	-1.270001
Ċ	2,199905	-3.040818	-2.504517
Ĥ	2.826212	-3.906036	-2.661978
C	1 641594	-2 214829	-3 471229
Ĥ	1 708134	-2 234363	-4 549376
C	1 964289	-2 994264	0 116761
C	0.858112	-3 384456	0.906118
C	1 082794	-3 795896	2 227544
н	0.231261	-1 102285	2.227044
C	2 365425	-3 826801	2 784616
C C	3 117326	-3 443026	1 070235
н	1 152822	-3 /60677	2 305230
C	3 271507	-3.027559	0.655709
C C	-0 558480	-3 381028	0.000700
ц	-0.500+00	-3.58711/	-0 702015
ц	-0.333113	-4 130381	0.800867
$\hat{\mathbf{C}}$	2 581137	-4.738878	4 221313
ц	2.001107	-4.230070	4.221313
Ц	2.043773	-3.338032	4.07.5415
Ц	1 757942	4.790007	4.540249
$\hat{\mathbf{C}}$	1.757045	2 602655	4.300300
с ц	5 252521	2.003033	0.103320
	1 201152	1 6/6769	0.473477
	4.291155	-1.040700	-0.003820
$\hat{\mathbf{C}}$	2 029970	0.067649	1 250194
ĉ	2 522/59	-0.007040	2 620021
С Ц	-3.555450	0.095940	-2.030031
	-4.000400	0.221211	-2.042004
	-2.409030	0.000122	-3.537003
	-2.4/0/02	0.140214	-4.013000
C	-3.032340	-0.106244	-0.060199
C	-3.271135	0.712357	1.032140
	-4.038727	0.719272	2.200428
н	-3.723544	1.351476	3.028497
	-5.182898	-0.075568	2.336097
	-5.525526	-0.909166	1.20502/
Н	-6.3891/1	-1.564624	1.361389
C	-4.789778	-0.942784	0.072501
C	-1.9/1868	1.480552	1.028626
н	-1.966125	2.237784	1.820546

н	-1.791570	1.979158	0.068251
С	-6.018671	-0.032896	3.592314
Н	-5.402637	0.172323	4.473493
Н	-6.546491	-0.978445	3.751609
Н	-6.775835	0.759652	3.530893
С	-5.235368	-1.901476	-1.011973
Н	-4.388228	-2.313910	-1.567283
Н	-5.896539	-1.413098	-1.738672
Н	-5.795498	-2.732457	-0.571435
С	1.487258	2.624926	-1.425189
С	1.908572	3.128580	-2.674755
Н	2.480654	4.025668	-2.861862
С	1.428730	2.217042	-3.608041
Н	1.511769	2.188060	-4.685247
С	1.728574	3.103581	-0.043569
С	2.835920	2.592526	0.673204
С	3.035957	3.014718	1.994138
Н	3.886331	2.623047	2.548908
С	2.162057	3.912066	2.619573
С	1.072246	4.405057	1.886777
Н	0.386009	5.105795	2.358838
С	0.842260	4.019013	0.560162
С	3.807723	1.643032	0.012330
Н	3.275229	0.852063	-0.522644
Н	4.460607	1.175815	0.755526
Н	4.439456	2.172617	-0.712987
С	2.374001	4.316669	4.059413
Н	1.952495	3.566540	4.741503
Н	1.890173	5.273139	4.282298
Н	3.439834	4.406234	4.294866
С	-0.320735	4.597628	-0.212783
Н	-1.070164	5.020501	0.463004
Н	-0.805092	3.842788	-0.839552
Н	0.015523	5.400431	-0.881474
В	0.107594	-0.068028	-3.422908
Н	0.080818	-0.120299	-4.618404
Н	-1.040702	-2.407458	0.528445
Н	0.196235	0.689262	1.495641

Closed-shell singlet Potential Energy Surface

1-02-CSS

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies 0 -2097.364719 0.617014 -2097.777346 -2097.160332 0

Cu	-0.209345	0.160854	-0.363119
0	0.511941	0.349981	1.330307
0	-0.502235	-0.556480	1.311267
Ν	0.435945	1.544653	-1.577518
Ν	0.404922	1.285694	-2.912530
Ν	1.182528	-1.281947	-1.509196

N	1.094638	-1.125196	-2.857757
N I	4 000500	0.440400	4 50 4000
IN	-1.623539	-0.416498	-1.564889
N	-1 342835	-0 509832	-2 891739
	1.012000	0.000002	2.001100
С	0.859696	2.813878	-1.406113
C	1 000121	3 38370/	-2 670206
U	1.033121	5.5057 54	-2.010230
Н	1.449824	4.384584	-2.872688
C	0 000600	2 201020	2 500522
C	0.003092	2.304030	-3.000023
н	0.855566	2.368966	-4.667457
0	4 0 4 0 4 4 7	0.004447	0.050000
C	1.042147	3.384117	-0.052682
С	2 134367	2 951624	0 733346
õ	2.101001	2.001021	0.100010
С	2.300234	3.498532	2.009437
н	3 138033	3 167305	2 618566
	0.100300	5.107505	2.010500
С	1.409052	4.450665	2.526026
C	0 333333	4 957126	1 700070
C	0.332322	4.007120	1.720070
н	-0.373145	5.589002	2.117432
0	0.40.4074	4.040744	0.440000
C	0.134271	4.342714	0.440086
С	3.100548	1.911819	0.213440
	0.504700	0.407400	0.704004
н	3.504722	2.197499	-0.764624
н	3 935735	1 776096	0 906115
	0.000700	1.770000	0.000110
С	1.624581	5.036055	3.901371
н	2/21008	5 700072	3 88/155
	2.721300	5.130012	5.00-155
н	1.924124	4.264831	4.618795
Ц	0 710121	5 521011	1 275011
	0.7 10131	5.521011	4.275944
С	-1.031414	4.818809	-0.396387
	4 700405	C 004047	0.000040
п	-1.792425	5.291917	0.230942
н	-1.500080	3,995152	-0.943376
	0.707000	5.550070	4 4 4 0 0 0 0
н	-0.707999	5.556970	-1.140839
С	2 180053	-2 154590	-1 284595
õ	2.100000	2.101000	0.544704
С	2.746842	-2.563134	-2.514734
н	3 555371	-3 263837	-2 6632/15
	0.000071	-0.200007	-2.0002-0
С	2.025665	-1.884743	-3.485629
н	2 000650	-1 8872/6	-1 563035
	2.099000	-1.007240	-4.000900
С	2.519410	-2.569466	0.096814
C	1 560700	2 270607	0 065050
C	1.0007.00	-3.279097	0.665650
С	1.899236	-3.652008	2.173459
	4 400004	4.000000	0 700 477
п	1.169021	-4.203032	2.763477
С	3.142218	-3.337948	2,740581
0	4 000405	0.000050	4.050504
C	4.069105	-2.639052	1.958581
н	5 039713	-2 385621	2 381147
	0.0001.10	0.040005	0.040404
C	3.780002	-2.249065	0.643424
С	0 218434	-3 645506	0 293942
	0.044530	4.007000	0.000005
н	-0.314570	-4.327323	0.963295
н	0.316408	-4 127367	-0 685743
	0.010100	0.750740	0.0001 10
н	-0.394739	-2.750718	0.158002
C	3 457403	-3 724538	4 166557
Ň	0.107 100	0.721000	1.100007
н	4.536203	-3.728233	4.351134
н	3 06/030	-/1 718360	1 105570
	0.00+000	4.7 10000	4.400070
н	3.002792	-3.017615	4.872374
C	1 916151	1 405226	0 150961
U	4.010131	-1.495220	-0.159001
Н	4.364658	-0.687074	-0.743036
Ц	E 338330	2 155920	0 970262
	3.320320	-2.100000	-0.070203
Н	5.577043	-1.063794	0.497577
C	2 800210	-0 830810	-1 370595
U	-2.090310	-0.029019	-1.3/0303
С	-3.430813	-1.219945	-2.613992
-	4 407000	1 500044	0 700700
н	-4.427982	-1.089311	-2.199182
С	-2.422715	-0.993617	-3.541827
-	0.000.40	1 100001	4 640400
н	-2.393842	-1.130301	-4.012160
С	-3,507434	-0.832744	-0.027357
~	2 700000	0.004007	0.040470
U	-3.709862	0.391207	0.040172
С	-4.302523	0.372362	1.915470
Ц	1 162610	1 215/27	2 122621
11	-4.403010	1.515457	2.400004

С	-4.687443	-0.822790	2.532821
С	-4.466206	-2.026399	1.847752
Н	-4.749698	-2.966244	2.317925
С	-3.884957	-2.054574	0.575877
С	-3.290095	1.710632	0.038980
Н	-2.216636	1.884089	0.182662
Н	-3.820603	2.542048	0.511950
Н	-3.478947	1.744294	-1.038730
С	-5.329334	-0.825955	3.900074
Н	-5.390676	0.184578	4.314408
Н	-4.760365	-1.447198	4.601338
Н	-6.345415	-1.236592	3.857270
С	-3.660934	-3.379173	-0.118516
Н	-3.685058	-4.199843	0.604370
Н	-2.698298	-3.406283	-0.637883
Н	-4.437635	-3.575126	-0.868050
В	0.062934	-0.137346	-3.433977
Н	0.065796	-0.152937	-4.629688
Н	2.605395	0.943337	0.089527

TS_{co}-CSS

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies Imaginary frequency (cm-1)

Molecular Geometry in Cartesian Coordinates

Cu	-0.039950	0.012168	-0.385575
0	0.907084	-0.509741	1.908177
0	-0.074251	-0.943750	1.174860
Ν	1.670006	-0.532951	-1.501088
Ν	1.446362	-0.493740	-2.846205
Ν	-1.279454	-1.184965	-1.523277
Ν	-0.996558	-1.169498	-2.853133
Ν	-0.359060	1.528912	-1.621138
Ν	-0.344862	1.255026	-2.949671
С	2.986546	-0.752554	-1.325272
С	3.621541	-0.854224	-2.581449
Н	4.668192	-1.042020	-2.769716
С	2.608482	-0.684708	-3.512926
Н	2.623329	-0.692787	-4.593369
С	3.571138	-0.894064	0.028328
С	3.232307	-2.018524	0.816755
С	3.818629	-2.157657	2.079548
Н	3.558141	-3.022214	2.687008
С	4.718512	-1.210540	2.584525
С	5.034188	-0.102738	1.787582
Н	5.725931	0.647160	2.166777
С	4.481342	0.069487	0.511487
С	2.267641	-3.061561	0.306651
Н	2.547308	-3.405433	-0.695949
Н	2.243638	-3.927698	0.974425
С	5.346094	-1.395259	3.946198

0 -2097.341379 0.616458 -2097.756323 -2097.139865 1 -130.9i

Н	6.125097	-2.167768	3.917332
н	4.603586	-1.714055	4.685636
	5 200221	0.460005	4 202004
11	5.009551	-0.409995	4.302004
С	4.871269	1.269911	-0.321382
Н	5.290591	2.059321	0.309526
н	4 016982	1 680117	-0 867430
	T.010302	1.000117	4.00000
н	5.631198	1.004031	-1.000088
С	-2.233917	-2.109519	-1.315746
С	-2.568363	-2.711049	-2.549180
н	-3 308505	-3 /77630	-2 723533
	-3.300303	-3.477030	-2.723333
C	-1.765578	-2.083153	-3.490927
н	-1.690122	-2.211396	-4.561182
С	-2 785652	-2 315470	0 041770
Ĉ	2 260409	1 220010	0 722000
C	-3.309496	-1.229010	0.733008
С	-3.869257	-1.440797	2.025418
н	-4.324745	-0.605361	2.553853
C	-3 803026	-2 691078	2 649655
č	0.000020	2.001070	2.040000
C	-3.222876	-3./53/85	1.943005
н	-3.159309	-4.733579	2.412674
С	-2.714260	-3.590073	0.650225
č	-3 475600	0 150007	0 122101
	-3.47 3009	0.130337	0.122191
н	-4.264726	0.728132	0.613381
н	-3.689147	0.107193	-0.949987
н	-2 538656	0 711152	0 236792
C	4 219056	2 000042	4.055400
C	-4.316056	-2.009943	4.055409
н	-4.834289	-3.850276	4.159293
н	-5.011312	-2.093634	4.343067
н	-3 491833	-2 886522	4 777719
	0.401000	4.7050022	
C	-2.078114	-4.765368	-0.057196
н	-1.114305	-4.491221	-0.499612
н	-2.710521	-5.139584	-0.870612
н	-1 913422	-5 590774	0 641530
	0.740044	0.000774	4.404050
C	-0.749844	2.807778	-1.461053
С	-0.988650	3.371350	-2.731844
н	-1.299759	4.381955	-2.949731
C	-0 71032/	2 355301	-3 6/0/35
Ň	-0.713324	2.000001	-3.0+0+33
н	-0.760423	2.336193	-4./1984/
С	-0.864472	3.376237	-0.100044
С	0.264733	3.396419	0.755296
Ĉ	0 110/00	3 800860	2 053006
	0.119409	3.099000	2.000090
н	0.988242	3.917476	2.708455
С	-1.107315	4.382326	2.527966
С	-2.208341	4.355848	1.663715
н	-3 171170	1 710157	2 017/35
	-0.171173	4.713137	2.017 +00
C	-2.110654	3.863473	0.355856
С	1.618656	2.887761	0.310382
н	1.715445	1.809419	0.488571
н	2 /16808	3 381000	0 872004
	2.410030	0.001033	0.072304
н	1.786019	3.056058	-0.757151
С	-1.226331	4.922155	3.933195
н	-0.633592	5.837324	4.052855
н	-0 853156	4 1987/0	4 666875
	-0.000100	T. 100/40	4.40.407.4
Н	-2.264512	5.158540	4.184074
С	-3.337990	3.844673	-0.527194
Н	-4,244730	3,968130	0.072040
н	-3 418816	2 907677	-1 086/60
	-010010	2.301011	4 0000403
Н	-3.314566	4.656702	-1.263913
В	0.045107	-0.171502	-3.422302
Н	0.065222	-0.227703	-4.617339
н	1 251631	-2 657840	0 230104
	1.201001	2.001040	0.200104

$1-O_2b-CSS$

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies Value 0 -2097.342363 0.613401 -2097.758244 -2097.144843 0

Cu	0.050538	0.068896	-0.408352
0	0.840843	-0.545871	2.147103
0	-0.140939	-0.555942	1.319427
Ν	1.478963	-0.810442	-1.582401
Ν	1.272989	-0.695532	-2.922834
Ν	-1.487489	-0.882453	-1.567460
Ν	-1.249647	-0.866917	-2.906987
Ν	-0.054398	1.622626	-1.629557
Ν	-0.128027	1.382923	-2.962151
С	2.709226	-1.327232	-1.403599
Ĉ	3.308351	-1.551053	-2.660714
Ĥ	4 284459	-1 970158	-2 854252
C	2 363843	-1 138154	-3 590148
й	2 381598	-1 136157	-4 670507
C	3 207/11/	-1 588301	-0.035775
ĉ	2 513782	-2 /07870	0.707034
Ĉ	2.010702	2 711000	2 101004
с ц	2.903010	2 100851	2.101904
П С	2.440393	-3.409034	2.741974
C	4.110330	-2.030731	2.397002
	4.791951	-1.170209	1.749029
П	5.674666	-0.650000	2.116277
	4.358192	-0.922710	0.439770
C	1.301315	-3.255002	0.311867
н	1.416961	-3.584156	-0.725679
Н	1.118536	-4.131264	0.940545
C	4.578474	-2.273440	4.018778
н	5.667188	-2.194824	4.102643
Н	4.273440	-3.256193	4.391620
Н	4.143611	-1.519597	4.687499
С	5.120170	0.052955	-0.428160
Н	5.763921	0.691469	0.183899
Н	4.444814	0.693793	-1.003275
Н	5.760653	-0.468704	-1.149804
С	-2.602203	-1.606968	-1.367469
С	-3.089178	-2.075323	-2.608777
Н	-3.971766	-2.672590	-2.784090
С	-2.203130	-1.579173	-3.554242
Н	-2.182740	-1.672962	-4.630622
С	-3.139450	-1.772892	0.002187
С	-3.519144	-0.633621	0.748222
С	-4.006868	-0.808004	2.049739
Н	-4.306639	0.069626	2.619491
С	-4.120484	-2.075718	2.633637
С	-3.737387	-3.189952	1.875803
Н	-3.814966	-4.183658	2.313115
С	-3.248518	-3.062118	0.569976
С	-3.413714	0.762127	0.174570
н	-4.006539	1.467556	0.764138
Н	-3.757453	0.798264	-0.864456

н	-2 375670	1 115277	0 176274
C	-4 617407	-2 236831	4 050816
й	-5 157297	-3 180570	4 179598
н	-5 284161	-1 416720	4 335508
н	-3 780104	-2 240000	4 760449
C	-2 830319	-4 295833	-0 197990
н	-1 847838	-4 162956	-0.663842
н	-3 537913	-4 529427	-1 002052
н	-2 780895	-5 164525	0 465094
C	-0 173747	2 949517	-1 433975
Č	-0.333958	3 580114	-2 685264
Ĥ	-0.444508	4.637168	-2.875310
C	-0.295860	2.552303	-3.620411
Ĥ	-0.370493	2.567807	-4.698128
C	-0.122776	3.477197	-0.051882
Ċ	1.035261	3.260463	0.733938
Č	1.037576	3.691235	2.065238
H	1.928049	3.526114	2.668998
С	-0.072524	4.325796	2.639557
С	-1.201534	4.538353	1.839865
Н	-2.073539	5.027784	2.269207
С	-1.247763	4.127746	0.500653
С	2.263884	2.580084	0.170476
Н	2.155387	1.488934	0.179909
Н	3.147597	2.826423	0.766294
Н	2.447539	2.873248	-0.867847
С	-0.035438	4.783412	4.078184
Н	0.672837	5.610896	4.209050
Н	0.287998	3.974314	4.742496
Н	-1.018302	5.127786	4.413164
С	-2.493796	4.381238	-0.316998
Н	-3.343343	4.606720	0.334187
Н	-2.753967	3.519334	-0.938638
Н	-2.357971	5.235413	-0.991625
В	-0.041880	-0.082005	-3.474131
Н	-0.043218	-0.109426	-4.670599
Н	0.401783	-2.629559	0.348979

TS_{CH}-CSS

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies Imaginary frequency (cm-1)

Molecular Geometry in Cartesian Coordinates

Cu	-0.297881	0.143542	-0.297161
0	0.681937	-0.934045	2.065508
0	-0.453323	-0.453387	1.466489
Ν	1.585886	-0.057726	-1.517631
Ν	1.323336	0.087057	-2.845802
Ν	-1.171530	-1.184090	-1.613988
Ν	-0.973316	-0.943563	-2.937444
Ν	-0.751790	1.719573	-1.435959
Ν	-0.707742	1.566513	-2.784723

Value 0 -2097.309766 0.607810 -2097.726454 -2097.118644 1 -440.1i

С	2 926900	-0 179118	-1 405913
õ	2.020000	0.170110	0.00000
C	3.525704	-0.106083	-2.684907
н	4 575914	-0 188840	-2 920975
	4.070014	0.1000+0	2.020010
С	2.470501	0.057545	-3.565161
н	2 1/6677	0 153/30	-/ 6/1116
	2.440077	0.100-00	-+.0+1110
С	3.624243	-0.404848	-0.124871
C	3 280270	-1 52/658	0 708803
0	0.200210	1.024000	0.700000
С	4.059517	-1.771299	1.878351
н	3 786314	-2 617338	2 504351
	5.400000	2.017000	2.001001
C	5.128999	-0.962069	2.235707
С	5.417312	0.145717	1.416362
ŭ	0.000045	0.040074	4 704 040
п	0.228215	0.812674	1.701610
С	4.692434	0.435543	0.250407
Ċ	0 1 / 1 7 / 1	2 242550	0 474462
C	2.141741	-2.342330	0.474402
Н	1.601999	-2.279452	-0.466296
Ц	2 0/6/25	-3 272601	1 02000/
	2.040420	-0.272001	1.023334
С	5.963574	-1.249272	3.458922
н	6 897903	-1 753018	3 180783
	5.007.000	1.700010	4.45004.4
н	5.429919	-1.896858	4.159614
н	6.234691	-0.324405	3.979243
C	E 060610	1 650010	0 554520
C	5.000010	1.059010	-0.554526
Н	5.615879	2.369836	0.071162
Ц	1 185625	2 161210	-0.050886
	4.103023	2.101219	-0.959000
н	5.714479	1.400125	-1.401218
C	-1 854270	-2 340191	-1 511017
ő	0.007270	2.040101	0.001000
C	-2.095086	-2.855254	-2.804009
н	-2.632507	-3.757037	-3.057425
0	1 501100	1 020054	2 672750
C	-1.521166	-1.939054	-3.0/3/39
н	-1.463635	-1.918580	-4.752622
C	-2 258022	-2 863/03	-0 187005
0	-2.230322	-2.003403	-0.107003
С	-3.133165	-2.108286	0.630392
C	-3 503508	-2 619854	1 877840
ŭ	4.470.440	0.000705	0.500.40.4
н	-4.179440	-2.039735	2.503494
С	-3.021664	-3.850057	2.346168
Ĉ	2 152050	4 576420	1 504050
C	-2.152959	-4.576459	1.524056
Н	-1.763663	-5.531222	1.872535
C	-1 764381	-4 106880	0 261830
0	-1.70-001	-4.100000	0.201000
C	-3.660198	-0.761918	0.189960
н	-4.524698	-0.466702	0.791994
	2 052022	0.762464	0.964066
	-3.953023	-0.763464	-0.664966
Н	-2.891232	0.010857	0.305873
C	-3 423480	-4 363950	3 708445
ŭ	0.420400	000000	0.700440
н	-3.030293	-5.368933	3.888432
н	-4.513968	-4.400827	3.813597
ы	2 046116	2 707465	4 501761
п	-3.040110	-3.707405	4.301701
С	-0.818872	-4.931325	-0.582775
н	-0 037158	-4 312389	-1 035185
	0.007 100	5.4000.44	1.000100
н	-1.345284	-5.432241	-1.404190
н	-0.337966	-5.705835	0.022266
<u> </u>	1 220024	2 047720	1 1 7 9 1 7 0
C	-1.239034	2.947720	-1.1/04/0
С	-1.516678	3.600061	-2.398284
н	-1 907708	4 507613	-2 532262
~	1.001100		2.002202
C	-1.161010	2.690789	-3.386038
н	-1,190560	2,762007	-4,463721
~	4.070004	0.007055	0.005000
C	-1.3/6364	3.397055	0.225329
С	-0.221694	3.517545	1.032314
Ĉ	-0 272157	3 803000	2 222220
	-0.372137	3.093000	2.313339
Н	0.516037	3.985507	2.995380
С	-1.630515	4,146960	2,933325
Š	0.750707	4 004 000	2.000020
C	-2.759727	4.021983	2.112916
н	-3.746448	4.205384	2,533986

С	-2.656002	3.650874	0.767069
С	1.159936	3.243284	0.480224
Н	1.334015	2.166505	0.364150
Н	1.929631	3.637794	1.149911
Н	1.294857	3.691715	-0.509827
С	-1.766230	4.573495	4.375649
Н	-1.737095	5.667373	4.464393
Н	-0.952321	4.172958	4.988140
Н	-2.716627	4.236841	4.802484
С	-3.903228	3.500464	-0.074233
Н	-4.800836	3.584765	0.545102
Н	-3.926747	2.529846	-0.581998
Н	-3.958502	4.270455	-0.852143
В	-0.122390	0.267250	-3.386232
н	-0.101737	0.335871	-4.582028
н	1.256164	-1.477437	1.311837

I-COH-CSS

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies

Molecular Geometry in Cartesian Coordinates

Cu	-0.134322	0.076937	-0.378184
0	-0.146260	-0.894728	1.014613
0	1.126168	-3.166126	1.165631
Ν	-0.223936	1.606559	-1.571760
Ν	-0.030314	1.465934	-2.903433
Ν	1.861193	-0.367134	-1.469340
Ν	1.743622	-0.296023	-2.823337
Ν	-1.068606	-1.022729	-1.655187
Ν	-0.700106	-0.933214	-2.962562
С	-0.573724	2.882734	-1.317305
С	-0.599335	3.585837	-2.537759
Н	-0.832615	4.629602	-2.683646
С	-0.249384	2.653765	-3.508880
Н	-0.134647	2.749902	-4.578666
С	-0.863287	3.278400	0.078295
С	0.136314	3.138499	1.068772
С	-0.189153	3.436189	2.399458
Н	0.580231	3.332422	3.161722
С	-1.468826	3.862621	2.770344
С	-2.438536	4.007531	1.766938
Н	-3.438953	4.339972	2.037268
С	-2.160868	3.724057	0.426492
С	1.543384	2.689105	0.735573
Н	1.849164	3.018975	-0.261121
Н	2.254356	3.082253	1.468247
С	-1.810778	4.141621	4.214135
Н	-2.407732	3.323189	4.635562
Н	-2.401812	5.058490	4.313212
Н	-0.909414	4.244057	4.825365
С	-3.243939	3.883919	-0.616038
Н	-4.225386	3.968646	-0.141131

Value 0 -2097.370683 0.618558 -2097.788449 -2097.169891 0

Ц	2 267274	2 026622	1 200672
	-3.207371	3.030032	-1.300072
	-3.000927	4.707121	-1.217039
	3.153833	-0.621477	-1.202741
C	3.883319	-0.708048	-2.410351
Н	4.937585	-0.913052	-2.525145
С	2.947869	-0.496613	-3.412138
Н	3.044883	-0.476528	-4.488347
С	3.609064	-0.768392	0.200536
С	3.186434	-1.863836	0.975599
С	3.572730	-1.943214	2.322080
Н	3.218120	-2.784070	2.913920
С	4.381389	-0.969496	2.911182
С	4.809483	0.106869	2.115409
н	5.437438	0.878149	2.558341
С	4,440287	0.225884	0.773256
Ċ	2 318001	-2 980715	0 415907
н	2.873907	-3 925434	0 475253
н	2.0700077	-2 707262	-0.644047
Ц	0.626430	-2.797202	1 128703
Ċ	4 720602	1 055902	1.120703
Ц	4.709093	-1.000092	4.302729
	4.390000	-1.901429	4.034013
	4.419049	-0.192195	4.927033
н	5.881143	-1.063784	4.467505
C	4.911944	1.410736	-0.038662
н	4.094049	1.852784	-0.616404
Н	5.688718	1.119330	-0.755976
Н	5.331876	2.183911	0.611394
С	-2.059891	-1.928927	-1.537351
С	-2.330934	-2.441612	-2.821162
Н	-3.084210	-3.172223	-3.074274
С	-1.458645	-1.788312	-3.681775
Н	-1.323914	-1.862635	-4.751022
С	-2.727847	-2.189605	-0.247369
С	-3.524440	-1.174465	0.330187
С	-4.164329	-1.433798	1.546040
Н	-4.778536	-0.655813	1.994999
С	-4.030878	-2.666801	2.200560
С	-3.231383	-3.653075	1.608855
н	-3.107166	-4.609994	2.111730
С	-2.574640	-3.440195	0.391535
C	-3.670410	0.181242	-0.323586
H	-2.775698	0.793925	-0.158600
Н	-4.522501	0.724149	0.094673
н	-3 807748	0.098989	-1 407097
C	-4 756867	-2 937744	3 496142
н	-4 185290	-3 615956	4 137567
н	-5 729911	-3 409519	3 306570
н	-/ 0/2770	-2 012735	4 050734
Ċ	1 652997	4 500549	4.050754
ц	-1.002007	-4.000040	0.109070
п	-1.000303	-0.470100	0.234013
п	1 70040	-4.204242	0.000200 1.045407
	-1.733812	-4.001534	-1.24519/
В	0.386/22	0.072993	-3.44/542
H	0.440572	0.076338	-4.640991
Н	1.635919	1.595666	0.756109

TS_{rot}-CSS

Charge

Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies Imaginary frequencies (cm-1) -2097.360062 0.615061 -2097.776626 -2097.161565 1 -142.4i

Cu	0.220791	-0.192024	-0.387206
0	0.670775	-0.359235	1.279910
0	1.213743	-2.960047	1.547701
Ν	-0.444054	1.393439	-1.705252
Ν	-0.324723	1.165705	-3.040359
Ν	1.699056	-0.399982	-1.590868
Ν	1.525336	-0.512569	-2.925916
N	-1.029572	-1.361826	-1.631436
N	-0.873526	-1.279225	-2.978320
C	-0.889656	2.653796	-1.547332
Ĉ	-1.061185	3.249807	-2.816996
Ĥ	-1.400087	4.252847	-3.029773
C	-0.689520	2.272947	-3.730165
Ĥ	-0.660491	2 281451	-4 810455
C	-1.160060	3.156927	-0.181163
Ĉ	-0 124445	3 214256	0 777450
Ĉ	-0 442534	3 576354	2 095949
й	0.355540	3 610359	2 835383
C	-1 750059	3 880370	2 485449
C C	-2 755403	3 855001	1 507167
н	-3 777813	4 101804	1 787453
C	-2 484731	3 504510	0 181038
C C	1 312537	2 883729	0.441678
н	1.512607	2 982298	-0.626305
н	1.010000	3 541347	0.020000
C	-2 085921	4 195384	3 923851
н	-2 524459	3 318213	4 417492
н	-2 817007	5 007782	3 996426
н	-2.017007	1 480895	1 400637
C	-3 609881	3 483708	-0.828882
н	-/ 570111	3 5//130	-0.325544
н	-3 502351	2 57/59/	-0.020044
ц	-3.541651	1 332301	-1.430414
$\hat{\mathbf{C}}$	3 007762	-0.563250	-1.320402
Ĉ	3 607022	-0.303239	-7.508714
С Ц	4 755252	0.046227	2.5007 14
н С	4.755555	0.340337	-2.027002
С Ц	2.720000	0.737317	-3.504500
C	2.003003	-0.044030	-4.570445
C	3.403023	-0.474362	1.050450
C	3.033249	1 270299	2 400270
С Ц	2 040001	-1.2/9200	2.400379
	3.049991	-2.010200	3.114020 2.910665
C	4.179010	-0.207437	2.019000
С Ц	4.007430	0.720299	2 172021
C	1 260166	0.616960	2.172931
C	4.209100	0.010009	0.505464
с ц	2.201331	-2.101101	0.000130
п Ц	2.310402 1 010065	-3.004301	0.710/13
11 H	0.765951	-2.031429	1 600052
с С	0.700004 1551117	-2.012100	1.000902
0	4.004447	-0.020733	4.200000

Н	4.273597	-0.890067	4.869548
Н	4.046788	0.857217	4.686603
Н	5.631689	0.145555	4.381461
С	4.719048	1.664877	-0.486548
Н	3.886511	2.003456	-1.111512
Н	5.489376	1.272972	-1.160822
Н	5.135379	2.532813	0.032111
С	-2.050451	-2.199964	-1.386979
С	-2.560324	-2.680479	-2.613672
Н	-3.380096	-3.369147	-2.756815
С	-1.788213	-2.067505	-3.592893
Н	-1.825611	-2.129038	-4.671240
С	-2.486276	-2.394696	0.018366
С	-3.137875	-1.320540	0.670641
С	-3.458931	-1.444520	2.026083
Н	-3.947744	-0.612415	2.529604
С	-3.156463	-2.607019	2.750863
С	-2.527268	-3.661409	2.080321
Н	-2.275077	-4.566586	2.629531
С	-2.177618	-3.573733	0.724029
С	-3.460115	-0.043601	-0.070566
Н	-2.546495	0.508017	-0.320717
Н	-4.092418	0.608842	0.537488
Н	-3.976535	-0.248941	-1.015536
С	-3.510664	-2.709461	4.216393
Н	-3.000669	-3.552270	4.692485
Н	-4.590580	-2.850296	4.355010
Н	-3.232730	-1.795129	4.753028
С	-1.389687	-4.689726	0.081460
Н	-1.558287	-5.638665	0.599866
Н	-0.320525	-4.455025	0.151523
Н	-1.641134	-4.820711	-0.974726
В	0.116587	-0.233022	-3.541535
Н	0.168764	-0.273957	-4.734887
Н	1.541512	1.852938	0.737424

I-COH-b-CSS

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies

Molecular Geometry in Cartesian Coordinates

Cu	0.084472	-0.508679	-0.346069
0	0.797918	-0.175339	1.172426
0	1.508317	-2.780377	1.451802
Ν	-0.669147	1.494671	-1.550601
Ν	-0.640238	1.294946	-2.896897
Ν	1.517387	-0.436956	-1.634535
Ν	1.218624	-0.402277	-2.959038
Ν	-1.204951	-1.326395	-1.548685
Ν	-1.173775	-1.146419	-2.888851
С	-1.163183	2.730334	-1.357179
С	-1.452997	3.337452	-2.603526
Н	-1.846516	4.328575	-2.775312

0 -2097.365798 0.619955 -2097.782755 -2097.162800 0

С	-1 104690	2 389714	-3 552194
	4 4 4 0 0 0 0	0.400404	4 004000
	-1.149292	2.406404	-4.031969
С	-1.329477	3.266170	0.013786
С	-0 207200	3 392485	0 865167
õ	0.207200	0.002100	0.000101
C	-0.395104	3.881317	2.165201
Н	0.470726	3.982159	2.817264
C	-1 658974	4 245278	2 644651
0	0.755440	4.400000	2.044001
C	-2.755110	4.120392	1.781141
Н	-3.746300	4.398354	2.135137
C	-2 6138/7	3 637858	0 474108
0	-2.013047	5.057050	0.474190
С	1.178428	3.002547	0.410169
Н	1.341840	3.247823	-0.643389
н	1 030082	3 510230	1 010037
	1.000002	0.010200	1.010307
C	-1.840359	4.731592	4.063147
Н	-2.022692	3.889467	4.743145
н	-2 695016	5 / 105/8	1 1/7000
	-2.095010	5.410540	4.147033
н	-0.948017	5.253620	4.423137
С	-3.836042	3.509843	-0.407589
н	-1 750253	3 5/0587	0 102326
	-4.700200	0.040007	0.132320
Н	-3.831526	2.569562	-0.967841
Н	-3.887158	4.321080	-1.143823
C	2 864086	-0 /73518	-1 /02760
0	2.00+000	-0.+/ 0010	-1.+32700
C	3.434665	-0.462675	-2.780063
Н	4.487632	-0.498016	-3.013963
C	2 360030	-0/1175///	-3 666830
ŭ	2.000000	0.70400	-3.000030
н	2.341054	-0.376429	-4.745873
С	3.538231	-0.431509	-0.182291
С	3 425297	-1 488476	0 746876
õ	4.004.000	1.100170	4.000050
C	4.081889	-1.390838	1.980959
Н	3.970981	-2.203573	2.694469
С	4 853962	-0 277579	2 312282
č	1.000002	0.200000	4.070044
C	4.960156	0.763853	1.370644
Н	5.548465	1.644450	1.620722
С	4 326724	0 709442	0 130425
õ	0.570050	0.740000	0.00045
C	2.570053	-2.710222	0.502015
н	3.173244	-3.621964	0.634658
Н	2.186440	-2.724344	-0.527940
L	1 167250	1 9/6592	1 501244
	1.107259	-1.040302	1.301244
С	5.566310	-0.176620	3.637652
Н	5.347193	-1.036925	4.275957
н	5 267217	0 732110	1 172702
	0.207217	0.752115	4.172702
н	6.652524	-0.124026	3.495583
С	4.473136	1.861598	-0.836358
н	3 522591	2 110612	-1 316532
 	E 10E1C0	1 600074	1.625245
п	5.165466	1.022971	-1.035215
Н	4.840666	2.751224	-0.317469
С	-2.204162	-2.180661	-1.251981
Ĉ	2 922519	2 562590	2 452026
0	-2.032510	-2.502509	-2.452920
н	-3.668709	-3.236432	-2.563086
С	-2.153306	-1.882679	-3.457896
н	-2 200/08	-1 862200	-1 527001
	-2.233+00	-1.002233	-4.527.551
C	-2.467560	-2.527520	0.162951
С	-2.948391	-1.527542	1.039832
C	-3 133/67	-1 851258	2 388007
	0.100407	1.001200	2.000337
Н	-3.501686	-1.084594	3.067799
С	-2.856393	-3.132330	2.885088
С	-2.387407	-4.105824	1.993287
ч	2 160720	5 102/55	2 265060
	-2.100/30	-0.102400	2.303000
С	-2.185916	-3.825990	0.636736
С	-3.261108	-0.134146	0.541992
Н	-2.347214	0,428846	0.318156
••			

-3.821545	0.429758	1.292558
-3.847537	-0.164909	-0.382801
-3.087075	-3.460351	4.340730
-2.510193	-4.337675	4.648576
-4.146443	-3.677903	4.528567
-2.809096	-2.620787	4.986180
-1.635495	-4.887431	-0.287393
-1.423837	-5.808873	0.262013
-0.704995	-4.551818	-0.759869
-2.338203	-5.125820	-1.093443
-0.218863	-0.074379	-3.464577
-0.239880	-0.077927	-4.659662
1.317306	1.920847	0.530975
	-3.821545 -3.847537 -3.087075 -2.510193 -4.146443 -2.809096 -1.635495 -1.423837 -0.704995 -2.338203 -0.218863 -0.239880 1.317306	-3.8215450.429758-3.847537-0.164909-3.087075-3.460351-2.510193-4.337675-4.146443-3.677903-2.809096-2.620787-1.635495-4.887431-1.423837-5.808873-0.704995-4.551818-2.338203-5.125820-0.218863-0.074379-0.239880-0.0779271.3173061.920847

TS_{OHO}-CSS

Charge Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibss Energy, BS2 (a.u.) Number of Imaginary Frequencies Imaginary frequency (cm-1)

Molecular Geometry in Cartesian Coordinates

Cu	0.043156	-0.340151	-0.352022
0	0.809326	0.193782	1.081245
0	1.212574	-2.419125	1.114377
Ν	-0.721996	1.508431	-1.532926
Ν	-0.708438	1.291647	-2.876653
Ν	1.569666	-0.334464	-1.576124
Ν	1.288655	-0.245848	-2.904876
Ν	-1.117246	-1.337905	-1.540832
Ν	-1.031762	-1.186826	-2.883445
С	-1.305786	2.703814	-1.336727
С	-1.677542	3.264882	-2.581021
Н	-2.152141	4.219908	-2.752239
С	-1.276724	2.336070	-3.528878
Н	-1.345612	2.339864	-4.607451
С	-1.444166	3.262878	0.027914
С	-0.283122	3.558312	0.779935
С	-0.430119	4.081380	2.070702
Н	0.463446	4.311770	2.648114
С	-1.690177	4.314630	2.636816
С	-2.824985	4.023982	1.869678
Н	-3.812988	4.200521	2.291207
С	-2.724824	3.505745	0.571507
С	1.098454	3.307905	0.225280
Н	1.166118	3.581206	-0.832906
Н	1.848567	3.878606	0.782083
С	-1.819725	4.838315	4.047539
Н	-1.801370	4.014299	4.772423
Н	-2.761455	5.378214	4.188583
Н	-0.994518	5.511911	4.300647
С	-3.984066	3.220820	-0.216081
Н	-4.844390	3.122870	0.452820
Н	-3.896326	2.302243	-0.803104
Н	-4.205959	4.032064	-0.920697

0 -2097.365071 0.620752 -2097,780983 -2097.160231 1 -52.3i

С	2.912820	-0.337108	-1.421320
С	3 501518	-0 258786	-2 698627
ц	4 557090	0.266917	2.000027
	4.007900	-0.200017	-2.919200
C	2.447137	-0.203418	-3.597382
Н	2.431128	-0.129540	-4.674893
С	3.581183	-0.393884	-0.107508
С	3.422045	-1.507746	0.743828
Ċ	4 091819	-1 536637	1 973290
ц	2 052502	2 205944	2 625610
	3.952595	-2.393044	2.025010
C	4.922569	-0.488669	2.377944
С	5.064697	0.613379	1.517969
Н	5.693839	1.446124	1.826031
С	4.417797	0.682301	0.282380
Ċ	2 453016	-2 623039	0 427324
ц	2,960006	2.020000	0.764494
	2.000000	-3.363441	0.704404
н	2.275140	-2.698587	-0.653994
Н	1.133958	-1.435198	1.294156
С	5.649468	-0.524113	3.699679
Н	5.403477	-1.425587	4.268033
н	5 390475	0 347129	4 312401
н	6 735707	-0 501307	3 551/50
0	4.500442	4 0005 47	0.501450
C	4.599443	1.903547	-0.589547
н	3.653750	2.222130	-1.037721
Н	5.298372	1.710216	-1.412149
Н	5.000424	2.735132	-0.003241
С	-2.019766	-2.303677	-1.274992
Ċ	-2 521941	-2 789441	-2 498371
ц	2.021011	2.560905	2.100071
0	-3.204975	-3.300803	-2.033402
C	-1.8/462/	-2.054173	-3.484335
Н	-1.958328	-2.076100	-4.561056
С	-2.359352	-2.650184	0.123178
С	-2.993252	-1.688365	0.939534
С	-3.294917	-2.026069	2.266562
Ĥ	-3 786514	-1 288103	2 897236
C 11	-3.700314	2 202057	2.037230
	-2.903713	-3.202037	2.790190
C	-2.351076	-4.218751	1.964221
н	-2.090913	-5.196595	2.364907
С	-2.028516	-3.924004	0.636744
С	-3.342483	-0.313611	0.414712
н	-2.453523	0.326366	0.349486
н	-4 057693	0 183162	1 075865
	-3 771070	-0.363581	-0 501601
0	-3.771079	-0.303301	4 00004
C	-3.300500	-3.626952	4.232024
н	-2.380309	-3.752539	4.815364
Н	-3.856714	-4.568833	4.301388
Н	-3.895690	-2.842821	4.708957
С	-1.296270	-4.935473	-0.212726
H	-1.036212	-5.820088	0.375462
ц	-0 3702272	-1 505830	-0.610604
	1 007404	-4.000008 E 060060	1 060050
	-1.09/404	-5.203200	-1.008250
В	-0.159014	-0.035886	-3.437208
Н	-0.157692	-0.036261	-4.632282
Н	1.337292	2.241690	0.317399

MECP

Charge Spin State Electronic Energy, BS1 (a.u.)

0 Singlet/Triplet -2097.321569 S102 Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) 0.61500024 -2097.738502 -2097.123502

Cu	0.018245	0.011256	-0.329890
0	-0.366766	-0.139879	1.504723
0	-0.879758	1.113850	1.953272
Ν	1.002991	-1.497933	-1.464852
Ν	0.887810	-1.361931	-2.813096
Ν	-1.657748	-0.227544	-1.519718
Ν	-1.401423	-0.280094	-2.854963
Ν	0.812664	1.400507	-1.632450
Ν	0.673316	1.138647	-2.958300
С	1.869404	-2.502182	-1.239717
С	2.323052	-3.022484	-2.473287
H	3.014100	-3.838194	-2.627413
C	1.673602	-2.270362	-3.441385
Ĥ	1.709357	-2.313549	-4.520709
C	2.202378	-2.891745	0.149791
Ĉ	1 181481	-3 332566	1 022252
C C	1 514624	-3 658012	2 345106
н	0 728143	-4 002974	3 013661
C	2 823710	-3 551202	2 826966
C	3 820881	-3 115544	1 942429
н	1 844572	-3.020645	2 300503
$\hat{\mathbf{C}}$	3 535560	-2 787/32	0.612705
C	0.254410	-2.707432	0.012795
С Ц	-0.234410	2 962290	0.303903
	-0.320003	-3.003209	1 220 4 70
	-0.010043	-4.100333	1.230479
	3.103070	-3.000000	4.209322
	3.591711	-3.020516	4.770150
	3.911097	-4.090013	4.310/77
П	2.281760	-4.212077	4.816835
	4.648873	-2.318852	-0.297067
п	5.522445	-2.011966	0.286094
п	4.334083	-1.474971	-0.918185
П	4.969264	-3.116052	-0.978926
C	-2.999200	-0.315823	-1.3/18/5
C	-3.603971	-0.422717	-2.644378
Н	-4.659895	-0.489090	-2.859133
C	-2.557001	-0.391557	-3.550169
Н	-2.547266	-0.441901	-4.629357
C	-3.691182	-0.291906	-0.070324
C	-3.581247	0.837085	0.813906
С	-4.392858	0.872742	1.989269
Н	-4.312655	1.740288	2.640892
С	-5.264164	-0.155622	2.308750
С	-5.317141	-1.270316	1.444640
Н	-5.973583	-2.099943	1.698561
С	-4.557915	-1.351999	0.269452
С	-2.672975	1.887601	0.592617
Н	-2.680788	2.760257	1.236626
Н	-2.038701	1.923766	-0.285375
Н	-1.542139	0.825998	2.612785
С	-6.139900	-0.107524	3.537075
Н	-5.957562	0.797117	4.124181
Н	-5.962078	-0.976306	4.181006
Н	-7.199944	-0.124409	3.257381
С	-4.683450	-2.585897	-0.596949

ц	2 715605	2 226722	1 009041
и Ц	5 259152	2.000720	1 442522
	-0.00102	-2.415020	-1.443523
	-5.067635	-3.419052	-0.015237
	1.413245	2.601328	-1.521975
C	1.656469	3.124634	-2.810231
Н	2.132093	4.061659	-3.059013
С	1.174482	2.162532	-3.687935
Н	1.155742	2.127771	-4.767917
С	1.728381	3.130492	-0.175789
С	2.620566	2.417051	0.655589
С	2.841414	2.874633	1.961617
Н	3.525530	2.321748	2.602457
С	2.198528	4.011444	2.463741
С	1.338320	4.718376	1.611579
Н	0.836396	5.610283	1.982740
С	1.094750	4.301393	0.298333
С	3.313437	1.161383	0.175384
н	2.638536	0.298028	0.226012
н	4.187248	0.938746	0.795014
н	3.634781	1.251611	-0.867181
С	2.394783	4.453022	3.894488
н	1.532793	4.164402	4.509542
н	2.493592	5.541381	3.968319
н	3.284340	3.995548	4.337738
C	0.152601	5.091025	-0.581880
н	-0.373248	5 854612	-0.001134
н	-0.594082	4 443821	-1 054907
н	0.691208	5 599829	-1 390029
B	0.047671	-0 206291	-3 407202
н	0.028007	-0.275/18	-1 603255
	0.020007	2 172020	-4.003233
п	-0.740030	-2.4/0009	0.550333

Dinuclear complexes

Cu

Charge Spin State Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibs Energy, BS2 (a.u.) Number of Imaginary Frequencies

0 Doublet -197.215307 -0.016509 -197.215307 -197.231816 N/A

Molecular Geometry in Cartesian Coordinates

Cu 0.000000 0.000000 0.000000

C-Cu-D

Charge Spin State Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) 0 Doublet -2294.781275 0.617984 -2295.195061 \$104 Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies

-2294.577077 0

Cu	-1.035248	0.358071	-1.962632
Ν	2.182518	0.422306	1.384359
Ν	2.107410	0.940741	2.637875
С	0.504025	2.518877	-1.363612
Н	0.809045	3.143019	-0.512441
Н	0.953851	2.950729	-2.271080
С	3.486253	0.364981	1.056725
č	4.263226	0.861368	2.129737
Ĥ	5.339791	0.928222	2.181535
C	3.347921	1.211594	3.109665
Ĥ	3 482211	1 622547	4 100068
C	3 939841	-0 192084	-0 236667
C	3 578453	-1 504873	-0.618735
C	4 045589	-2 007432	-1 840895
н	3 768/170	-3 010700	-2 130071
$\hat{\mathbf{C}}$	4 852770	-1 2/0355	-2.100071
C C	5 187882	0.052055	-2.030000
ц	5 700005	0.052955	-2.304010
$\hat{\mathbf{C}}$	J.799995	0.000372	1 000862
C	4.747090	0.034377	-1.090002
	2.002071	-2.3//04/	0.231011
	2.070070	-3.430272	0.026154
п	2.822349	-2.195175	1.301061
	1.630184	-2.177878	-0.003693
	5.370191	-1.827884	-3.992154
н	4.655719	-2.533740	-4.427946
н	5.570510	-1.042420	-4.727863
Н	6.309807	-2.372562	-3.830941
	5.118886	2.018389	-0.739583
н	4.258606	2.568973	-0.345020
н	5.905249	2.058724	0.023248
Н	5.489460	2.546115	-1.623618
н	-0.164784	-5.572691	1.150244
Н	-0.650307	-4.793370	2.664865
Cu	0.324794	0.194255	0.319842
0	0.946939	1.182006	-1.243093
0	-0.339298	-1.162538	-1.043626
Н	-1.006393	-1.742273	-0.640945
Ν	-0.453003	1.923632	1.290921
Ν	-0.124196	2.149389	2.582950
Ν	-0.391842	-0.784026	2.016663
Ν	-0.017152	-0.262629	3.220606
С	-1.340458	2.869059	0.922809
С	-1.581696	3.730286	2.016907
Н	-2.228661	4.594049	2.046612
С	-0.790709	3.234700	3.045675
Н	-0.656612	3.570738	4.063855
С	-1.900106	2.777958	-0.439621
С	-1.014572	2.528814	-1.523280
С	-1.546390	2.198409	-2.804355
Н	-0.876804	2.168609	-3.665800
С	-2.947137	2.121798	-3.008210
С	-3.788367	2.422568	-1.930446
С	-3.297616	2.760846	-0.659503
С	-3.507132	1.819452	-4.374913
Н	-3.670742	2.748807	-4.935367
Н	-2.820272	1.198449	-4.957133

н	-4.469590	1.304075	-4.303758
С	-1.175951	-1.850393	2.276997
С	-1.284821	-2.029870	3.670821
Н	-1.848256	-2.793486	4.186088
С	-0.542329	-0.998664	4.225908
Н	-0.357112	-0.726675	5.255090
С	-1.881372	-2.589613	1.203706
С	-2.934079	-1.945030	0.512241
С	-3.606915	-2.645676	-0.498986
Н	-4.413948	-2.149336	-1.034049
С	-3.264833	-3.960790	-0.836849
С	-2.223438	-4.580944	-0.131032
Н	-1.942081	-5.600899	-0.385759
С	-1.526553	-3.920491	0.887061
С	-3.304805	-0.514494	0.823461
Н	-2.500077	0.168086	0.522339
Н	-3.462338	-0.366172	1.897470
С	-3.980000	-4.692377	-1.947435
Н	-3.319091	-4.831195	-2.811707
Н	-4.862653	-4.141026	-2.284555
С	-0.396832	-4.610012	1.614373
Н	0.509895	-3.995766	1.605874
В	0.739347	1.092417	3.324510
Н	0.874378	1.400795	4.474232
Н	-4.301158	-5.688711	-1.624008
Н	-4.865252	2.378331	-2.077400
С	-4.275822	3.029752	0.458309
Н	-4.282687	4.091218	0.731926
Н	-5.290940	2.755583	0.158466
Н	-4.015496	2.468209	1.361396
н	-4.214216	-0.223490	0.291027

C-Cu-Q

Charge Spin State Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies

Molecular Geometry in Cartesian Coordinates

Cu	0.465782	0.250407	-2.389891
Ν	1.945216	0.070323	1.711234
Ν	1.798408	0.228936	3.050733
С	0.322302	2.676237	-0.725100
Н	0.654966	3.084611	0.236919
Н	0.845819	3.214427	-1.524752
С	3.234770	0.304824	1.420270
С	3.937421	0.620599	2.606596
Н	4.990410	0.839011	2.709110
С	2.985435	0.561836	3.615820
Н	3.063491	0.726875	4.681150
С	3.676600	0.196443	0.010196
С	3.575732	-1.043600	-0.655984
С	3.891940	-1.105804	-2.020064
Н	3.808531	-2.060711	-2.535793

0 Quadruplet -2294.714860 0.619262 -2295.28948 -2294.509686 0

С	4.300034	0.025733	-2.737382
õ	4 44 4077	4.044505	0.040000
C	4.411977	1.241505	-2.049302
н	4,730059	2,131851	-2.588903
0	4 4 0 0 0 0 4	4.040050	0.007070
C	4.102621	1.340050	-0.68/8/3
С	3.094065	-2.285308	0.056888
ц Ц	2 200065	2 105 156	0.404007
п	3.389965	-3.185456	-0.491807
н	3.490168	-2.352044	1.075435
ы	2 000750	2 260052	0 110745
п	2.000759	-2.200053	0.116745
С	4.561527	-0.054704	-4.222576
Ū.	2 621 1 10	0.050062	4 700500
п	3.021440	0.050663	-4.760590
н	5.235135	0.740838	-4.556534
Ц	1 000529	1 019720	1 501599
	4.999020	-1.010/20	-4.501566
С	4.180535	2.689335	0.000858
ы	3 2/1//01	2 010520	0 515/82
	5.241401	2.919520	0.515462
н	4.974544	2.714699	0.756021
ы	1 270751	2 496462	0 721667
п	4.3/9/01	3.400402	-0.721007
н	0.185157	-5.779303	-0.049402
ы	0 654504	5 102912	1 /00201
п	-0.004094	-0.492040	1.402321
Cu	0.079041	0.010026	0.520835
0	0 7/1701	1 212177	0 772795
0	0.741701	1.312177	-0.775765
0	0.273541	-1.174864	-1.067105
н	-0 537020	-1 603267	-1 21/067
	-0.337 920	-1.095207	-1.214007
N	-0.719436	1.419293	1.754099
N	-0 466074	1 3/101/	3 084442
IN	-0.400374	1.541014	5.004442
N	-0.597112	-1.355152	1.849507
N	-0 314961	-1 149221	3 164892
	-0.51-501	-1.1-3221	5.104032
С	-1.566874	2.448565	1.550563
C	-1 851784	3 055586	2 793359
	1.001704	0.000000	2.750005
н	-2.482050	3.912917	2.974525
C	-1 137971	2 321835	3 730862
	1.10/0/1	2.021000	0.700002
н	-1.058314	2.424253	4.803438
С	-2 069690	2 737777	0 190792
õ	2.000000	2.101111	0.100102
C	-1.1/24/5	2.845187	-0.896925
C	-1 667408	3 071960	-2 187128
ŭ	0.050000	0.07 1000	0.000070
н	-0.959282	3.151392	-3.009973
С	-3.038858	3,192155	-2.437110
õ	0.000000	0.074.070	4.040707
C	-3.914679	3.071873	-1.349727
С	-3.462586	2.850917	-0.042590
õ	0.554005	0.400000	0.000000
C	-3.554905	3.460892	-3.829830
н	-3.559466	4.537564	-4.042877
	2 024005	0.001051	4 505704
п	-2.924985	2.981251	-4.585781
н	-4.579947	3.097737	-3.952647
C	1 070010	2 515226	1 750224
C	-1.273213	-2.010020	1.750554
С	-1.417157	-3.077086	3.035314
Ц	1 019162	2 009240	2 202174
	-1.910102	-3.330343	5.292174
С	-0.802584	-2.177641	3.895841
ы	-0 681277	-2 180/01	1 060206
	-0.001211	-2.103-01	4.303230
С	-1.763083	-2.981496	0.433610
C	-2 705177	-2 201/03	-0 276320
0	-2.100111	-2.201433	-0.270320
C	-3.108794	-2.625778	-1.551954
н	-3 829896	-2 023870	-2 100876
	0.020000	0.707007	2.100010
C	-2.609525	-3./9/68/	-2.132540
С	-1.683559	-4.558703	-1.403273
	1 070000	E 400505	1 0 40005
н	-1.279920	-5.408535	-1.842895
С	-1.249544	-4.172641	-0.131054
Č	2 255060	0.012020	0.000047
C	-3.200909	-0.913030	0.292917
н	-2.528811	-0.098022	0.195472
Ц	3 101156	1 010171	1 2500/5
-	-3.404430	-1.010171	1.000940
С	-3.043227	-4.234452	-3.511380
н	-2 108712	-4 220151	-4 210615
	-2.130/12	-4.220101	-4.210013
	**********	26/0/12	· · · · · · · · · · · · · · · · · · ·

С	-0.222034	-5.001824	0.603112
Н	0.607831	-4.380811	0.957535
В	0.379094	0.158216	3.644939
н	0.406282	0.201415	4.841069
Н	-3.431782	-5.259164	-3.496850
н	-4.986694	3.141256	-1.524361
С	-4.477216	2.697864	1.067689
Н	-4.535494	3.598129	1.690536
Н	-5.473005	2.521687	0.650793
Н	-4.227129	1.863221	1.730283
Н	-4.163916	-0.612659	-0.236915

4a

Charge Spin State Electronic Energy, BS1 (a.u.) 0 Doublet -5134.351687

29	-4.490350	0.144280	0.044910
29	-1.121519	0.608072	0.152592
8	-2.984642	0.880384	1.023890
7	-5.968390	-0.950915	-0.948870
7	-5.800395	2.063580	0.094441
7	-5.573966	-0.349057	1.722069
7	-7.253685	-0.530956	-0.784911
7	-7.136548	1.830393	0.214928
7	-6.926538	-0.215367	1.675097
6	-2.979471	-4.225567	-1.515858
7	0.312614	1.847449	0.850771
6	-5.983461	-1.952239	-1.856229
7	1.184277	-1.242503	0.811114
7	-2.052780	0.394963	-1.597920
6	-5.260298	-0.930622	2.899625
7	1.558895	1.821171	0.306049
6	-1.804834	5.378226	0.196141
6	-2.614141	-4.452338	-2.851019
6	-4.454939	-2.998169	-3.553493
7	-3.406568	0.314611	-1.623785
6	-3.758545	4.524305	1.40004 0
6	-7.307570	-2.151514	-2.304694
6	-1.236503	-1.631476	4.293870
6	-3.866683	-1.202768	3.305172
7	-0.150527	-1.212034	0.628238
6	-5.633419	3.395328	0.191077
6	-1.593534	-0.422539	3.676050
6	0.461509	-0.723586	-3.663078
6	-8.073546	-1.241527	-1.597183
6	6.815473	0.370683	-4.708225
6	-2.710202	0.389375	-3.752970
6	-4.298730	4.046518	0.186135
6	1.824475	-0.703101	-3.978459
6	-6.885559	4.030488	0.358149
6	-4.052788	-3.398258	-1.170837
6	4.048308	0.442988	-4.146536
6	1.970531	1.614114	-3.331319
6	-3.372325	-3.831557	-3.854176
6	-6.447953	-1.167825	3.627027
6	-0 158590	0 /52771	-3 186706
---	-----------	-----------	-----------
6	4 704202	2 762000	2 109770
0	-4.794363	-2.703099	-2.196770
6	-2.874987	-0.201272	3.167688
6	-3.516663	-2.449177	3.880431
6	-3.818791	0.317646	-2.909181
6	-0.282747	-5.251606	-2.388003
6	0.834960	-6.026178	-2.703175
6	0.816636	-6.866093	-3.822249
6	-0 328957	-6 921209	-4 623236
6	1 447602	6 146075	4.2020200
0	-1.447003	-0.140075	-4.308234
6	-1.442958	-5.298789	-3.184762
6	0.603069	1.632318	-3.022274
6	-7.809547	2.999255	0.372787
6	-3.604745	4.252866	-1.024828
6	6.170784	1.469662	1.050252
6	4.047026	-2.050289	0.245191
6	0.482206	2.401858	2.061622
6	3.941997	2.379396	0.763941
6	-2.375702	4.917972	-1.001717
6	-2.211115	-2.642125	4.346032
6	-7 469787	-0 700445	2 817619
6	-2 515000	5 169577	1 388200
6	0.525097	2 400162	0.640760
0	-0.525967	-2.499102	0.040709
6	2.600243	0.455984	-3.822132
6	3.139333	-2.697390	1.120522
6	1.831677	2.726286	2.288397
5	-7.664704	0.383616	0.420536
6	5.915319	-0.351373	-5.499384
6	-1.609993	0.433055	-2.877366
6	6.333660	1.132523	-3.638516
6	-0.093372	6.874365	-0.888473
6	1.142158	7.524891	-0.886909
6	2.010680	7.388733	0.201433
6	1 633365	6 586700	1 283643
6	0 300085	5 934486	1 280404
6	-0.480824	6.067525	0 106223
6	1 690060	2 501220	0.190223
0	1.009000	-2.301220	0.933799
6	3.628273	-3.465245	2.206262
6	0.581833	-3.346654	0.838009
6	4.832291	1.509296	1.441326
6	6.659295	2.277494	0.008523
6	4.965574	1.167975	-3.363391
6	0.297538	-2.723120	5.960851
6	0.109924	-1.827881	4.888251
6	1.231498	-1.109814	4.426385
6	2.484251	-1.278066	5.019578
6	2.654215	-2.175885	6.077903
6	1 553451	-2 901105	6 543328
6	1.000101	-0.316332	-5 222372
6	5 770116	2 162756	0.615402
6	3.770110	3.103730	-0.015492
0	4.415967	3.231021	-0.256430
6	2.509720	2.353175	1.132826
6	8.777657	3.293746	-0.901015
6	10.100114	3.177578	-1.334449
6	10.745484	1.936824	-1.305199
6	10.056340	0.812430	-0.838841
6	8.733775	0.926450	-0.407802
6	8.072562	2.169898	-0.430489
6	5.006079	-3.494636	2.446212
6	5.417305	-2.121094	0.511882
6	5.918395	-2.810510	1.624839

6	8.330139	-2.819161	0.901071
6	9 694525	-2 766981	1 195738
6	10 126662	-2 680761	2 523541
6	0 182875	-2 651155	3 555300
6	7 818506	-2 705173	3 262/00
6	7.010300	2.703173	1 020952
6	1.309791	-2.100110	1.930652
0	-4.100270	3.773959	-2.330325
1	-3.506303	3.975035	-3.163001
1	-4.376719	2.698820	-2.297258
1	-5.142918	4.268688	-2.540389
6	-4.511108	4.393263	2.705174
1	-5.210906	5.228450	2.836610
1	-5.098694	3.472889	2.747504
1	-3.821692	4.405290	3.554969
6	-3.145564	1.081645	2.411759
1	-4.155185	1.453734	2.629220
1	-2.434921	1.852484	2.742879
6	-4.498907	-3.593559	4.002451
1	-3.967596	-4.550379	3.990940
1	-5.056714	-3.542538	4.945685
1	-5.231011	-3.593900	3.191038
6	3.527417	4.232186	-0.958447
1	3.686718	4.200635	-2.041019
1	2.466820	4.074056	-0.757457
1	3 773055	5 247174	-0.627290
6	4 361750	0.630930	2 574737
1	3 482159	0.000000	2 293989
1	5 1/8123	-0.065680	2.200000
1	4 092022	1 222011	2.01 4202
I G	4.003933	2 242122	0.200072
0	-4.397399	-3.242132	0.290972
1	-5.477940	-3.201152	0.455104
1	-3.983864	-4.073068	0.870068
1	-3.983055	-2.314182	0.699709
6	-5.219797	-2.377336	-4.701129
1	-4.555488	-2.211555	-5.554827
1	-6.027563	-3.038481	-5.039742
1	-5.675110	-1.423208	-4.428066
6	-0.058300	2.904411	-2.550262
1	-0.892193	3.168212	-3.209693
1	-0.479206	2.784979	-1.546401
1	0.648736	3.738540	-2.533798
6	-0.326738	-2.001822	-3.795779
1	0.331741	-2.850688	-3.996027
1	-0.891210	-2.203613	-2.880807
1	-1.060043	-1.939304	-4.606893
1	1.421033	8.148504	-1.731983
1	2.970098	7.898228	0.204474
1	2.306063	6.456686	2.127034
1	0.130525	5.294952	2.114836
1	-0.768636	7.014065	-1.727928
1	8 294222	4 266639	-0.906548
1	10 629112	4 058698	-1 686896
1	11 774/3/	1 847778	-1 641212
1	10 5/5176	-0 157/62	-0.816152
1	8 20/776	0.137403	-0.010102
1	0.204770	0.040139 -2 202507	0.0090/4
1	0.420490	-2.00309/	0.300120
1	0.005199	-2.905290	-0.132154
1	7.091226	-2.050055	4.068536
1	9.508138	-2.577005	4.589417
1	11.18/827	-2.638075	2.751536
1	-0.244448	-4.572050	-1.541918

1 1 72/221 -5 062221	-2 081501
1 1 696490 7 469160	4.060525
1 1.000400 -7.400139	-4.009525
	-5.491429
1 -2.339084 -6.210945	-4.926496
1 4.608203 1.735697	-2.510621
1 7.022746 1.687428	-3.008378
1 7.880280 0.339323	-4.921309
1 6.277670 -0.939723	-6.338067
1 3.855800 -0.867139	-5.854760
1 -0.552743 -3.265932	6.362857
1 1.667140 -3.596554	7.370358
1 3.632058 -2.308021	6.532295
1 3.334845 -0.718319	4.646761
1 1.127187 -0.432638	3.584183
1 -9.138194 -1.063896	-1.603608
1 -7 649032 -2 883956	-3 020700
1 -8 536915 -0 675144	2 978058
	2.570000 1.612111
	4.012114
	-1.429401
	1.574916
1 6.101425 -1.592732	-0.147005
1 5.376402 -4.075463	3.287312
1 -1.568096 -2.743874	0.506122
1 0.587332 -4.425087	0.887767
1 -1.951273 -3.616938	4.750886
1 -0.867264 0.380942	3.596026
1 -7.073993 5.090038	0.454780
1 -8.883159 3.015862	0.487260
1 -1.842250 5.057938	-1.937007
1 -2.113653 5.544408	2.326556
1 2.263633 3.184309	3.165361
1 -0.373567 2.542866	2.704473
1 -4 873860 0 270768	-3 136191
1 -2 694029 0 403635	-4 833961
1 1 667295 1 521934	-0.660032
1 1.601233 -0.368267	0.858803
1 2 209524 1 621922	4 214024
1 2.290324 -1.021033	2 227722
1 2.342012 2.333043	-3.231723
1 -2.435752 -4.732270	-0.722393
1 -3.092478 -3.967868	-4.895848
6 -9.258684 0.370916	0.630788
1 -9.782574 0.795382	-0.237280
1 -9.645921 -0.644384	-0.234303
1 -9.559860 0.959939	0.776283
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.234303 0.776283 1.505196
6 3.595625 -1.275614	0.776283 1.505196 -0.971710
ь 3.595625 -1.275614 1 4.383511 -1.274771	0.776283 1.505196 -0.971710 -1.728591
6 3.595625 -1.275614 1 4.383511 -1.274771 1 2.690783 -1.696818	-0.234383 0.776283 1.505196 -0.971710 -1.728591 -1.415976
6 3.595625 -1.275614 1 4.383511 -1.274771 1 2.690783 -1.696818 1 3.388610 -0.225386	0.776283 1.505196 -0.971710 -1.728591 -1.415976 -0.732302
6 3.595625 -1.275614 1 4.383511 -1.274771 1 2.690783 -1.696818 1 3.388610 -0.225386 6 2.701292 -4.252206	0.776283 1.505196 -0.971710 -1.728591 -1.415976 -0.732302 3.102136
6 3.595625 -1.275614 1 4.383511 -1.274771 1 2.690783 -1.696818 1 3.388610 -0.225386 6 2.701292 -4.252206 1 2.341783 -5.153844	0.234303 0.776283 1.505196 -0.971710 -1.728591 -1.415976 -0.732302 3.102136 2.591554
6 3.595625 -1.275614 1 4.383511 -1.274771 1 2.690783 -1.696818 1 3.388610 -0.225386 6 2.701292 -4.252206 1 2.341783 -5.153844 1 3.219996 -4.568921	0.234303 0.776283 1.505196 -0.971710 -1.728591 -1.415976 -0.732302 3.102136 2.591554 4.010432

Trinuclear complexes

2a-D

Charge

S111

Spin StateDoubletElectronic Energy, BS1 (a.u.)-4392.354178Thermal and entropic correction, BS1 (a.u.)1.279815Electronic Energy, BS2 (a.u.)-4393.179673Gibbs Energy, BS2 (a.u.)-4391.899858Number of Imaginary Frequencies1Imaginary frequencies (cm-1)-5.4i

Molecular Geometry in Cartesian Coordinates

Cu	2.991833	0.147128	-0.074872
Cu	0.004198	-0.004159	0.002602
0	1.475021	1.007966	0.747440
0	1.519605	-1.136143	-0.426593
H	1.514618	-1.546495	-1.306298
N	4.090458	1.900526	-0.107284
N	5 429253	1 795470	0 109016
N	4 482206	-0.820100	-1.063180
N	5 758480	-0 560495	-0.665941
C	3 819621	3 214182	-0.290966
c	5.013021	3 9507/6	-0.230300
ц	5 137168	5.020016	-0.100440
с С	6 009024	2.014014	-0.200520
С Ц	7.070204	2 121206	0.009000
	7.070304	3.121200	0.234093
C	2.471010	3.709320	-0.47 1410
	1.403269	3.420020	0.364622
	0.210576	4.156585	0.349674
Н	-0.594691	3.872533	1.021311
C	0.041920	5.252051	-0.504663
C	1.072908	5.541441	-1.406283
Н	0.940088	6.350930	-2.122072
С	2.279891	4.830882	-1.414473
С	-1.197040	6.111137	-0.444096
Н	-1.002724	7.023218	0.135661
Н	-2.023280	5.584878	0.039464
Н	-1.518907	6.426850	-1.442086
С	3.326675	5.211438	-2.440325
Н	2.842446	5.605211	-3.339318
Н	3.946919	4.358630	-2.729356
Н	3.998868	5.993514	-2.067056
С	4.552236	-1.735598	-2.055134
С	5.903138	-2.058024	-2.295929
Н	6.285322	-2.745612	-3.035040
С	6.627626	-1.292124	-1.397029
Н	7.690546	-1.209984	-1.222345
С	3.349515	-2.274278	-2.725837
С	2.449689	-1.414819	-3.395386
С	1.298308	-1.963971	-3.984903
Н	0.594374	-1.294398	-4.472975
С	1.029987	-3.335563	-3.943846
С	1.952726	-4.172792	-3.298554
н	1.755512	-5.241836	-3.250583
С	3.104490	-3.670604	-2.687189
C	2.669862	0.078142	-3.478683
Ĥ	2.146604	0.597417	-2.666036
Н	2.271853	0.464002	-4.419905
Н	3.728125	0.342867	-3.409721
C	-0.229354	-3.912332	-4.543020
Ĥ	-0.820557	-4.427962	-3.776865
H	-0.855035	-3.133196	-4.984832

С	4.041998	-4.620096	-1.976429
н	1 286602	-1 263806	-0.970216
	4.200032	-4.200000	-0.370210
в	6.076689	0.440041	0.470092
н	7.263293	0.572545	0.573220
N	1 159560	0.276002	1 952062
IN	-4.156560	0.376092	-1.652063
N	-5.477550	0.057532	-1.775510
C	-1 517359	-2 289755	-1.358208
	0.400000	0.000050	1.000200
п	-2.403030	-2.360059	-1.913046
Н	-0.699534	-2.350444	-2.084806
C	-3 023025	0 735817	-3 127/50
0	-0.020020	0.700017	-0.127400
С	-5.116170	0.633181	-3.883437
н	-5.252868	0.873140	-4.927713
C	-6 076602	0 200026	-2 083168
0	-0.070002	0.200920	-2.303100
Н	-7.130157	-0.007864	-3.104552
С	-2.608524	1.262818	-3.560095
Č	2.000246	2 400006	2.040770
C	-2.066216	2.423330	-2.940770
С	-0.873770	2.949455	-3.397735
н	-0 475975	3 840264	-2 916977
0	0.4/00/0	0.070204	2.010077
C	-0.167327	2.370198	-4.458413
С	-0.697842	1.219634	-5.055613
н	-0 163265	0 7511/1	-5 880257
	-0.105205	0.751141	-5.000257
С	-1.905497	0.654499	-4.623330
С	-2.806944	3.111200	-1.804933
ů	2 540204	4 170120	1 7700/1
п	-2.040304	4.170129	-1.//0241
н	-3.893634	3.027781	-1.897335
н	-2 512618	2 651584	-0 854141
<u> </u>	1 1 2 5 0 2 7	2.001001	4 020204
C	1.125927	2.900702	-4.930394
Н	1.893208	2.948425	-4.157315
н	1 513215	2 467833	-5 821026
	0.000054	2.107000	5.000074
н	0.983854	4.040813	-5.200874
С	-2.425831	-0.597036	-5.293652
н	-2 694591	-1 359683	-4 554846
	2.001001	0.000000	5.000005
н	-3.323903	-0.398408	-5.889635
н	-1.671520	-1.016468	-5.965977
ы	0 003580	-1 648560	-5 321305
	0.0000000	-4.040300	-0.021000
н	-3.581592	5.630084	1.879526
н	-4.977683	4.751285	2.507185
N	1 155213	-0 381600	1 858645
IN	4.100210	-0.301099	1.000040
N	5.474248	-0.061494	1.794508
С	1.521533	2.281392	1.367325
ů	2 /67212	2 250226	1 022120
	2.407212	2.330330	1.923139
Н	0.702360	2.339758	2.092799
С	3.906413	-0.738786	3.132046
Ċ	5 001176	0 622020	2 000380
C	5.091170	-0.032039	3.900309
н	5.217800	-0.870324	4.946374
С	6.060497	-0.200439	3.008967
ů	7 110067	0.010245	2 1 / 1 2 2 6
п	1.112307	0.010345	3.141220
Cu	-2.984672	-0.151458	0.082548
0	-1 469118	-1 014713	-0 741621
õ	1 510710	1 1 2 9 6 7 5	0 420210
0	-1.510716	1.120075	0.429310
Н	-1.505885	1.550001	1.303734
N	-4 081488	-1 903411	0 124328
. .	E 404474	1 707705	0.00740
IN	-5.421171	-1./9//05	-0.086/49
N	-4.469536	0.826041	1.071030
Ν	-5 747847	0 560871	0 684193
	0.141041	0.000071	0.00-100
C	-3.810997	-3.216889	0.310550
С	-5.014526	-3.952431	0.212252
н	-5 130/66	-5 022226	0 290657
~	0.100+00	0.022220	0.230007
C	-6.000815	-3.016444	-0.041229
Н	-7.063926	-3.122321	-0.201405
С	-2.462680	-3,794708	0.485781
0	2.102000	0.104100	0.100701

С	-1.397669	-3 433258	-0.374560
č	1.007000	0.100200	0.07 1000
C	-0.206733	-4.167050	-0.345834
н	0 596634	-3 883290	-1 019907
	0.000001	5.000200	0.505000
C	-0.037530	-5.264761	0.505329
С	-1.065729	-5.553380	1.410491
õ	0.070050	4.000700	1.110101
C	-2.270258	-4.838786	1.426222
С	1.200136	-6.125377	0.438731
	4.000000	7.000004	0 4 4 0 4 0 7
п	1.002899	-7.036094	-0.142187
Н	2.025421	-5.599002	-0.046658
ы	1 525240	6 112500	1 121021
п	1.525240	-0.443300	1.434924
С	-4.535434	1.750484	2.055082
C	-5 885//3	2 072804	2 300006
	-0.0000	2.072004	2.000300
н	-6.264355	2.765639	3.036779
С	-6 613983	1 297677	1 413433
ŭ	0.010000	1.201011	1.110100
н	-7.677744	1.212247	1.245585
С	-3 332602	2 295183	2 720767
č	0.002002	4 440005	2.025.00
C	-2.433220	1.440385	3.397530
С	-1.290346	1.995774	3.996699
Ū.	0 500420	1 2200/11	4 405041
п	-0.569439	1.330641	4.495041
С	-1.028186	3.368970	3.957572
C	-1 0/8116	1 200537	3 3016/1
0	-1.340110	4.200337	5.501041
Н	-1.757268	5.270756	3.255509
C	-3 092886	3 692036	2 681353
0	0.002000	0.002000	2.001000
С	-2.649337	-0.053004	3.481066
н	-2 129127	-0 569665	2 664853
	0.707040	0.000050	0.447400
н	-3.707312	-0.320253	3.417120
С	0.228293	3.948022	4.560348
Ū.	0.006066	1 05 1070	0 774000
п	0.926966	4.204373	3.111323
Н	0.739927	3.220613	5.195735
C	-1 031530	1 637/65	1 066658
	-4.001000	4.007400	1.300000
н	-4.276242	4.277082	0.961964
В	-6.070829	-0.443143	-0.446904
_	7.057000	0 577040	0 5 40050
н	-7.257882	-0.577040	-0.543050
н	3.590715	-5.612432	-1.893145
ш	4 000000	4 700000	0 517000
п	4.900200	-4.732002	-2.317065
Н	0.008371	4.838133	5.160220
н	-0 932126	-6 364671	2 124082
	-0.332120	-0.00+071	2.12-002
С	-3.313374	-5.219713	2.455659
н	-3 984237	-6 004431	2 085422
	0.001201	5.001101	2.000 122
н	-2.825699	-5.610421	3.354135
н	-3.935160	-4.368236	2.745045
C	2 500212	1 272402	2 545200
C	2.000342	-1.272403	3.040399
С	1.857786	-0.662649	4.589112
C	2 090043	-2 440197	2 922078
0	2.000040	2.440107	2.022010
C	0.644330	-1.233475	4.997462
С	0.869103	-2.971270	3.354331
Ċ	0 122615	2 200511	1 202/27
C	0.155015	-2.309511	4.393437
Н	0.088533	-0.763600	5.807247
н	0 /87132	-3 866218	2 860007
	0.45102	0.000210	2.0000007
Н	-2.245493	-0.439432	4.419307
С	2,351119	0.600385	5.258418
ц Ц	1 505044	0.001760	E 046500
п	1.595944	0.991/03	0.940009
Н	3.266413	0.428192	5.835642
Ц	2 570952	1 276212	1 510250
-	2.019000	1.570212	4.019000
С	2.835211	-3.127021	1.802662
н	2,558282	-2.668441	0.846282
	2.000202		4.047405
Н	3.919558	-3.040224	1.917425
Н	2,572581	-4.186852	1.770589
<u> </u>	1 170050	2 005/70	1 0000000
U	-1.1/2002	-3.005472	4.030058
	-1 0/1587	-4 063965	5 000608

Н	-1.581057	-2.495064	5.713658
Н	-1.918855	-2.956860	4.035150

2a-Q

Charge Spin State Electronic Energy, BS1 (a.u.) Thermal and entropic correction, BS1 (a.u.) Electronic Energy, BS2 (a.u.) Gibbs Energy, BS2 (a.u.) Number of Imaginary Frequencies

0 Quadruplet -4392.350813 1.277817 -4393.176164 -4391.898347 0

Molecular Geometry in Cartesian Coordinates

Cu	-2.940426	-0.198497	-0.075555
Cu	0.000030	-0.000085	-0.000040
0	-1.435575	-1.059207	0.770388
0	-1.528079	1.160791	-0.319871
H	-1.533213	1.597911	-1.186613
Ν	-3.989415	-1.958675	-0.295688
Ν	-5.334563	-1.919498	-0.101881
Ν	-4.467600	0.822270	-0.981986
Ν	-5.735855	0.495725	-0.609630
С	-3.671897	-3.229247	-0.636039
С	-4.852648	-4.007342	-0.657320
Н	-4.930982	-5.062382	-0.868729
С	-5.873343	-3.140037	-0.311192
Н	-6.935124	-3.297108	-0.188309
С	-2.298866	-3.737761	-0.828564
С	-1.272993	-3.428427	0.099161
С	-0.059240	-4.120342	0.040500
Н	0.710489	-3.883403	0.769583
С	0.173765	-5.126672	-0.904152
С	-0.816047	-5.359413	-1.865159
Н	-0.635654	-6.096524	-2.645942
С	-2.042974	-4.682580	-1.854361
С	1.436826	-5.951080	-0.869157
Н	1.298727	-6.836312	-0.234224
Н	2.272179	-5.380777	-0.457716
Н	1.714220	-6.306278	-1.866759
С	-3.040027	-5.003174	-2.948244
Н	-2.510531	-5.272634	-3.867349
Н	-3.699739	-4.159515	-3.166295
Н	-3.675931	-5.856711	-2.682708
С	-4.564567	1.831090	-1.877267
С	-5.924137	2.146364	-2.078206
Н	-6.326411	2.894157	-2.744490
С	-6.625777	1.277405	-1.259051
Н	-7.685582	1.152643	-1.090781
С	-3.384050	2.457352	-2.510276
С	-2.461163	1.678578	-3.247084
С	-1.344345	2.309545	-3.818877
Н	-0.627228	1.701482	-4.364983
C	-1.130442	3.687383	-3.698921
С	-2.071673	4.442436	-2.985606
Н	-1.919876	5.514436	-2.877082
С	-3.191888	3.856308	-2.387184

_			
С	-2.628428	0.187457	-3.435329
н	-2 06/337	-0 370937	-2 677506
	-2.00+001	-0.570357	-2.077500
н	-2.240892	-0.110416	-4.411982
Н	-3.673242	-0.123913	-3.360376
C	0 102029	4 241652	1 070000
C	0.102028	4.341052	-4.213200
Н	0.900112	4.382257	-3.520885
н	0 487517	3 785821	-5 132350
	4.455440	4 700050	4.04.4054
C	-4.155110	4.728050	-1.614051
Н	-4.413916	4.284113	-0.647176
R	-6 027830	-0.63/12/	0 404404
	-0.027003	-0.00+12+	0.404404
н	-7.209916	-0.816272	0.482846
Ν	4.146569	-0.113504	-1.885285
N	5 117168	0 264722	-1 770515
IN .	5.447100	0.204722	-1.779515
С	1.461448	2.408119	-1.203435
н	2.421905	2.573762	-1.711357
	0.662404	2 525507	1 0 4 2 0 0 0
	0.003494	2.000007	-1.943900
С	3.906473	-0.304419	-3.196537
С	5 078803	-0.031736	-3 943251
ŭ	5.070000	0.001700	5.044000
н	5.210884	-0.117987	-5.011829
С	6.030699	0.325078	-3.001865
н	7 060/3/	0 605028	-3 10/276
	7.003-0-	0.000320	-3.10+270
С	2.610232	-0.831640	-3.679225
С	2.133770	-2.067337	-3.180735
Ĉ	0.021446	2 502505	2 670200
C	0.931440	-2.002000	-3.079299
н	0.567238	-3.529848	-3.288584
С	0 193309	-1 921317	-4 667423
č	0.000000	0.700000	E 4 40004
C	0.681889	-0.700300	-5.148394
Н	0.123842	-0.167924	-5.916802
C	1 875835	-0 142226	-4 670319
0	1.070000	0.142220	4.070010
C	2.882084	-2.851923	-2.130010
н	2.651245	-3.915606	-2.224034
н	3 06/837	-2 721600	-2 211033
	0.50+007	-2.721000	-2.211000
н	2.577081	-2.515144	-1.132419
С	-1.089391	-2.524000	-5.190023
Ū.	1 942655	2 500071	1 207207
	-1.042000	-2.590071	-4.397207
н	-1.508474	-1.930582	-6.008423
н	-0.922309	-3.541933	-5.561624
C	2 244026	1 196600	5 220162
0	2.344020	1.100000	-5.220102
н	2.615364	1.878908	-4.416220
н	3.227034	1.074749	-5.859576
 ப	1 550161	1 650522	E 000717
	1.556101	1.050525	-5.625717
н	-0.103578	5.369916	-4.587293
н	3,719548	-5.715744	1.438706
L L	5 002494	4 975001	0 161767
	5.092461	-4.675091	2.101707
N	-4.146362	0.113738	1.885603
N	-5.446995	-0.264410	1,779903
0	4 404040	0.400.445	1.000000
C	-1.461249	-2.408415	1.203220
н	-2.421609	-2.574112	1.711307
н	-0 663154	-2 535985	1 943600
0	0.000104	2.000000	0.400044
C	-3.906211	0.304675	3.196844
С	-5.078529	0.032090	3.943614
μ	-5 210562	0 118/06	5 012102
	-0.210000	0.110400	0.012182
С	-6.030484	-0.324688	3.002279
Н	-7.069241	-0.605441	3.104733
<u> </u>	2 040404	0 100007	0.075677
Cu	2.940491	0.198387	110010.0
0	1.435701	1.058983	-0.770432
0	1,528118	-1.160957	0.319823
ц	1 522470	1 500406	1 100540
	1.0001/2	-1.590120	1.100040
Ν	3.989352	1.958715	0.296039
N	5.334541	1,919556	0.102460
NI	1 467000	0.000000	0.000400
IN	4.40/029	-0.022290	0.902160

N	5.735909	-0.495733	0.609913
С	3 671736	3 229341	0.636103
č	4.950460	4.007494	0.000100
C	4.652460	4.007461	0.057450
Н	4.930735	5.062557	0.868699
С	5.873238	3.140157	0.311634
ц	6 025025	2 207245	0 199002
	0.935035	3.297243	0.100902
C	2.298654	3.737843	0.828296
С	1.272954	3.428279	-0.099550
С	0 059157	4 120122	-0.041232
U U	0 740424	2 002011	0.770402
	-0.710431	3.003011	-0.770403
С	-0.174087	5.126616	0.903189
С	0.815532	5.359595	1.864322
C	2 0/2520	1 682845	1 853860
č	4.407400	0020-0 5 050007	0.007000
C	-1.437169	5.950967	0.867669
Н	-1.299334	6.835344	0.231489
н	-2.272695	5.380130	0.457327
Ц	_1 71/152	6 307/66	1 86/016
0	-1.7 14152	0.307400	1.004910
C	4.564517	-1.831266	1.877278
С	5.924066	-2.146642	2.078203
н	6.326290	-2.894565	2,744371
Ċ	6 625772	1 277552	1 250244
	0.025775	-1.277552	1.209244
н	7.685592	-1.152781	1.091058
С	3.383946	-2.457495	2.510208
C	2 461042	-1 678693	3 246957
č	4.044407	0.000000	0.240007
C	1.344167	-2.309630	3.818686
Н	0.627059	-1.701548	4.364779
С	1.130196	-3.687446	3.698680
Ċ	2 071/21	-1 112526	2 985376
	2.07 1421	-4.442520	2.905570
н	1.919570	-5.514514	2.876809
С	3.191704	-3.856443	2.387052
С	2 628256	-0 187564	3 435197
ц	2.020200	0.107001	2 677600
п	2.003014	0.370763	2.077000
Н	3.673000	0.123930	3.359875
С	-0.102322	-4.341686	4.272977
Ĥ	-0.000217	-/ 382601	3 520306
	-0.300217	-4.302091	5.520590
н	-0.488103	-3.785596	5.131738
С	4.154918	-4.728210	1.613938
Н	4.413881	-4.284210	0.647135
R	6 027020	0 63/271	-0 /03031
	0.027920	0.034271	-0.403931
н	7.209993	0.816488	-0.482277
Н	-3.719822	5.715642	-1.438956
Н	-5.092747	4.874779	-2.161791
н	0 103358	-5 369806	1 587/10
	0.100000	-0.000000	4.007410
н	0.634967	6.096859	2.644919
С	3.039367	5.003820	2.947817
Н	3.675284	5.857293	2.682105
Ц	2 500606	5 273572	3 866735
	2.509090	5.275572	3.000735
н	3.699082	4.160265	3.166266
С	-2.609932	0.831795	3.679539
С	-1.875573	0.142269	4.670590
č	2 122207	2.067496	2 101121
0	-2.133307	2.007400	5.101151
С	-0.681610	0.700251	5.148714
С	-0.931046	2.582654	3.679753
C	-0 192959	1 921285	4 667841
	0.102000	0.407705	F 047000
н	-0.1235/5	0.167785	5.917068
Н	-0.566801	3.529930	3.289100
Н	2.241052	0.110247	4.412005
C	-2 343701	-1 186600	5 220280
	-2.0+0/04	4 050003	5.220200
Н	-1.557940	-1.650602	5.823797
Н	-3.226811	-1.074825	5.859693
Н	-2.615110	-1.878825	4.416252

С	-2.881611	2.852151	2.130392	
Н	-2.576560	2.515422	1.132795	
Н	-3.964372	2.721843	2.211332	
Н	-2.650760	3.915823	2.224518	
С	1.089785	2.523817	5.190507	
Н	0.922753	3.541634	5.562447	
Н	1.508948	1.930140	6.008677	
Н	1.842969	2.590131	4.397636	