Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

SUPPLEMENTARY INFORMATION

# Controlled Syntheses of Ag Nanoparticles inside MOFs by Using Amine-Boranes as Vapour Phase Reductant

Yohei Takashima,\* Yasushi Sato, Takaaki Tsuruoka and Kensuke Akamatsu\*

Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojimaminamimachi, Chuo-ku, Kobe 650-0047, Japan

E-mail: takashim@konan-u.ac.jp

#### Experimental

#### General methods

All chemicals and solvents used in this research were of reagent grade and used without further purification. X-ray powder diffraction data were collected on a Rigaku RINT-2200 Right System (Ultima IV) diffractometer with CuK $\alpha$  radiation. UV-Vis diffused transmission spectra were measured by UV/Vis spectrometer (JASCO V-550) equipped with an integrated sphere ( $\phi$ 60 mm, JASCO ISV-469). The TEM observations were performed with a JEOL JEM-1400 transmission electron microscopy (TEM) system operating at 120 kV. ICP analyses were conducted by ICP AES (SPS 7800, Seiko Instruments).

#### Synthesis of MIL-101(SO<sub>3</sub>H)

Monosodium 2-sulfoterephthalic acid (3.35 g, 12.5 mmol),  $CrO_3$  (1.25 g, 12.5 mmol) and concentrated aqueous hydrochloric acid (0.91 g (12 N), 25 mmol) were dissolved in water (50 ml), then transferred to Teflon-lined stainless steel autoclave. The resulting solution was heated at 453 K for 6 days under hydrothermal conditions. The reaction product was finally obtained after washing three times with DMF under sonication.

#### Synthesis of Ag<sup>+</sup>(x)@MIL-101(SO<sub>3</sub><sup>-</sup>) (x = 20, 200, 2000)

To 10 ml of x mM AgNO<sub>3</sub> solution (CH<sub>3</sub>CN/H<sub>2</sub>O = 1/1), added 50 mg of dried MIL-101(SO<sub>3</sub>H), and then the resulting suspensions were stirred at r.t. for 12 hrs. After filtration, washing under sonication with 10 ml of CH<sub>3</sub>CN/H<sub>2</sub>O solution three times and drying under vacuum, Ag<sup>+</sup>(x)@MIL-101(SO<sub>3</sub><sup>-</sup>) were obtained as powder samples.

## Synthesis of Ag NP(2000)@MIL-101(SO<sub>3</sub>H) by AB

4 mg of Ag<sup>+</sup>(2000)@MIL-101(SO<sub>3</sub><sup>-</sup>) and 4.5 mmol of AB were put into glass tube and then heated at 100 °C for 1.5 hrs under N<sub>2</sub> flow (20 ml/min). After washing with water, Ag NP(2000)@MIL-101(SO<sub>3</sub>H) was obtained as powder sample.

#### Synthesis of Ag NP(2000)@MIL-101(SO<sub>3</sub>H) by DMAB

4 mg of Ag<sup>+</sup>(2000)@MIL-101(SO<sub>3</sub><sup>-</sup>) and 4.5 mmol of DMAB were put into glass tube and then heated at 70 °C for 1.5 hrs under N<sub>2</sub> flow (20 ml/min). After washing with water, Ag NP(2000)@MIL-101(SO<sub>3</sub>H) was obtained as powder sample.

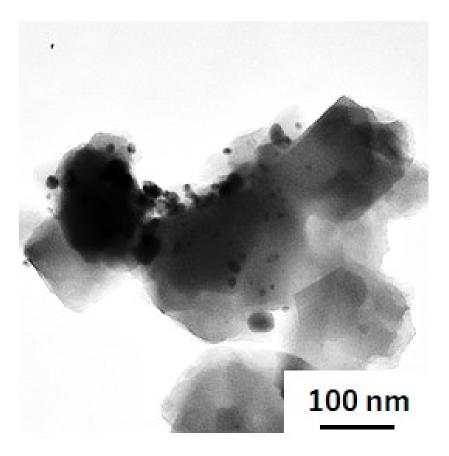
#### Syntheses of Ag NP(x)@MIL-101(SO<sub>3</sub>H) by TMAB

4 mg of Ag<sup>+</sup>(x)@MIL-101(SO<sub>3</sub><sup>-</sup>) (x = 20, 200, 2000) and 4.5 mmol of TMAB were put into glass

tube and then heated at 100, 150, 180 and 200 °C for 30 mins under N<sub>2</sub> flow (20 ml/min). After washing with water, corresponding Ag NP(x)@MIL-101(SO<sub>3</sub>H) were obtained as powder sample.

## Syntheses of Ag NP(x)@MIL-101(SO<sub>3</sub>H) by TEAB

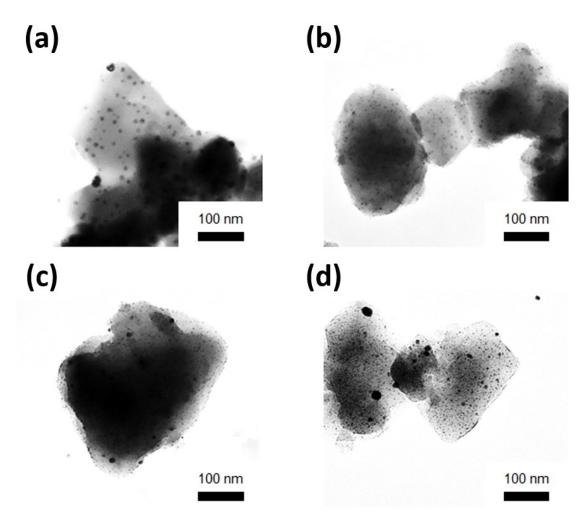
4 mg of Ag<sup>+</sup>(x)@MIL-101(SO<sub>3</sub><sup>-</sup>) (x = 20, 200, 2000) and 4.5 mmol of TMAB were put into glass tube and then heated at 100, 150 and 180 °C for 30 mins under N<sub>2</sub> flow (20 ml/min). After washing with water, corresponding Ag NP(x)@MIL-101(SO<sub>3</sub>H) were obtained as powder sample.


### Synthesis of Ag NP(2000)@MIL-101(SO<sub>3</sub>H) by H<sub>2</sub> gas

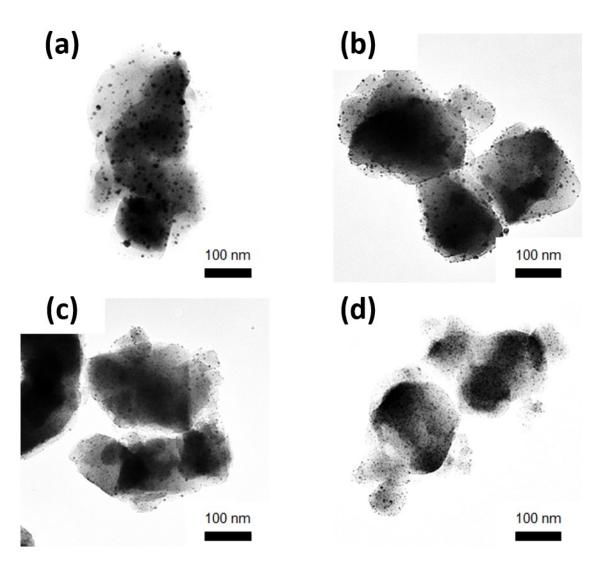
5 mg of Ag<sup>+</sup>(2000)@MIL-101(SO<sub>3</sub><sup>-</sup>) was put into the hydrothermal bomb and then heated at 200 °C for 2 hrs under 5atm of H<sub>2</sub> gas. After cooling down to r.t., Ag NP(2000)@MIL-101(SO<sub>3</sub>H) was obtained as powder sample.

#### Synthesis of Ag NP(2000)@MIL-101(SO<sub>3</sub>H) by NaBH₄aq

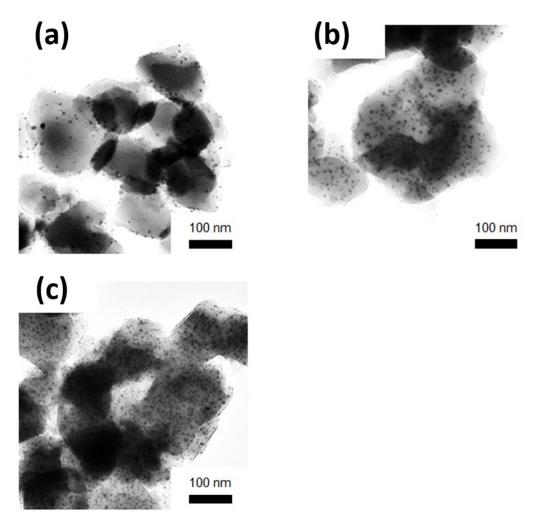
 $60 \text{ mM NaBH}_4$  aq was added to 5 mg of Ag<sup>+</sup>(2000)@MIL-101(SO<sub>3</sub><sup>-</sup>) under vigorous stirring. After 20 mins, the sample was filtered, washed with water and dried in vacuo to obtain Ag NP(2000)@MIL-101(SO<sub>3</sub>H).


## Supporting data

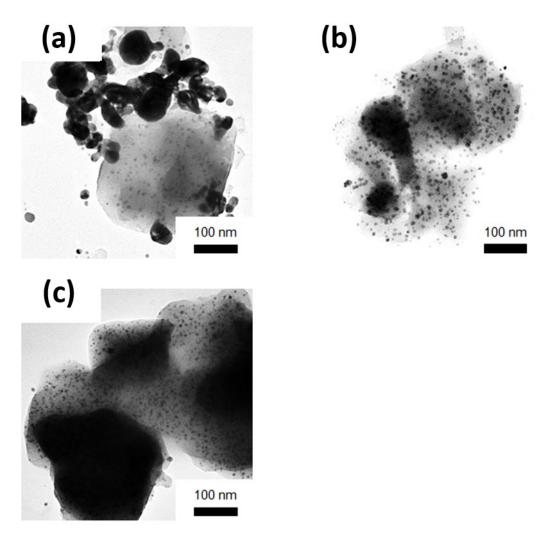



**Fig. S1.** TEM picture of Ag NP(2000)@MIL-101(SO<sub>3</sub>H)

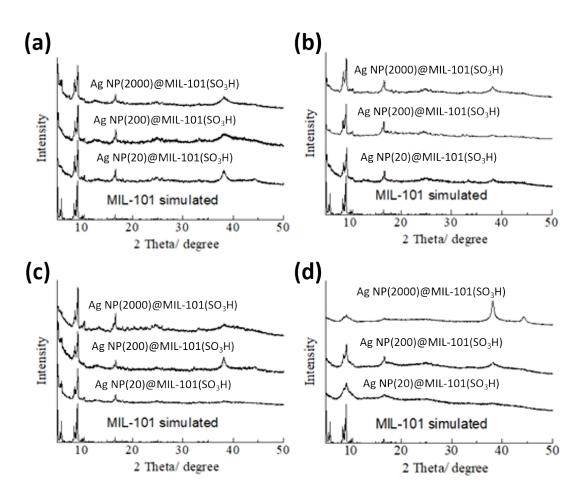
| amine-boranes | reaction temp./ °C | reaction time/ hr | Vaporization amount/ $\mu$ mol |
|---------------|--------------------|-------------------|--------------------------------|
| AB            | 100                | 1.5               | 70                             |
| DMAB          | 70                 | 1.5               | 280                            |
| ТМАВ          | 100                | 0.5               | 2357                           |
|               | 150                | 0.5               | 4500                           |
|               | 180                | 0.5               | 4500                           |
|               | 200                | 0.5               | 4500                           |
| TEAB          | 100                | 1.0               | 808                            |
|               | 150                | 1.0               | 4500                           |
|               | 180                | 1.0               | 4500                           |


**Table S1.** Amount of amine-boranes consumed during the reactions.

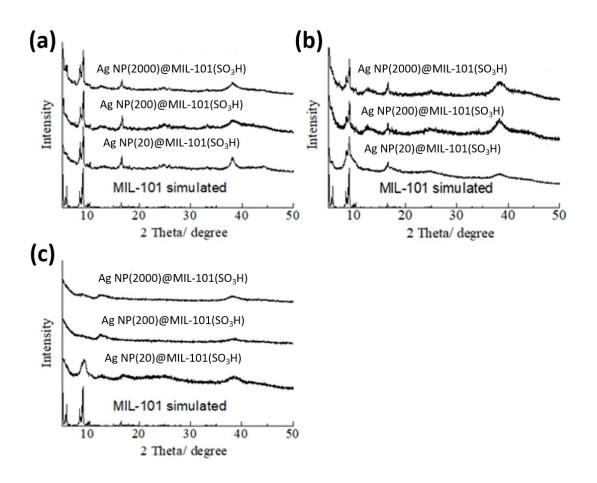



**Fig. S2.** TEM pictures of Ag NP(20)@MIL-101(SO<sub>3</sub>H) by TMAB reduction at (a) 100 °C, (b) 150 °C, (c) 180 °C and (d) 200 °C. Size of Ag NPs: (a)  $11.2 \pm 1.7$  nm; (b)  $5.9 \pm 0.9$  nm; (c)  $4.7 \pm 0.6$  nm; (d)  $3.2 \pm 0.6$  nm.

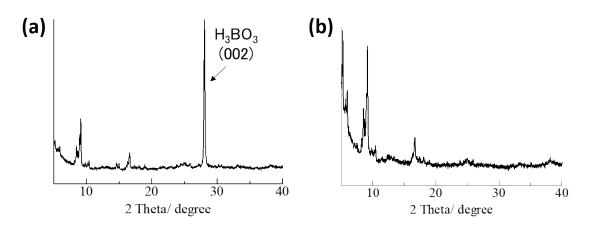



**Fig. S3.** TEM pictures of Ag NP(200)@MIL-101(SO<sub>3</sub>H) by TMAB reduction at (a) 100 °C, (b) 150 °C, (c) 180 °C and (d) 200 °C. Size of Ag NPs: (a)  $8.1 \pm 1.6$  nm; (b)  $6.5 \pm 1.4$  nm; (c)  $4.9 \pm 0.8$  nm; (d)  $3.3 \pm 0.3$  nm.

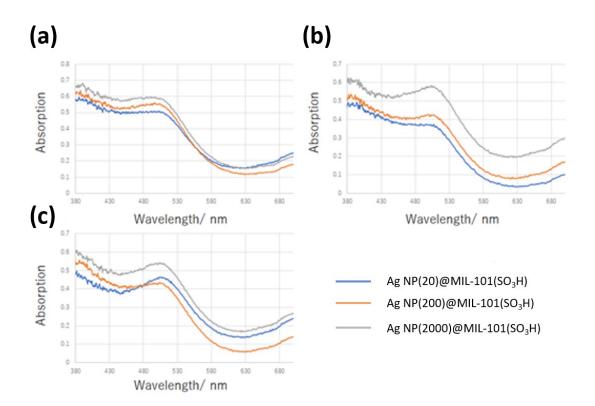



**Fig. S4.** TEM pictures of Ag NP(20)@MIL-101(SO<sub>3</sub>H) by TEAB reduction at (a) 100 °C, (b) 150 °C and (c) 180 °C. Size of Ag NPs: (b)  $8.9 \pm 0.8$  nm; (c)  $6.4 \pm 0.8$  nm.

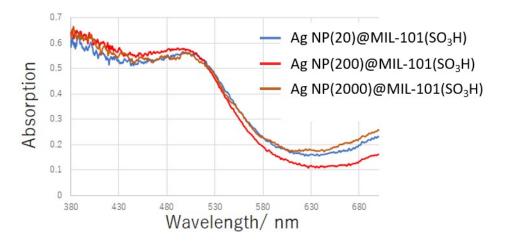



**Fig. S5.** TEM pictures of Ag NP(200)@MIL-101(SO<sub>3</sub>H) by TEAB reduction at (a) 100 °C, (b) 150 °C and (c) 180 °C. Size of Ag NPs: (b)  $9.5 \pm 1.2$  nm; (c)  $7.0 \pm 0.8$  nm.

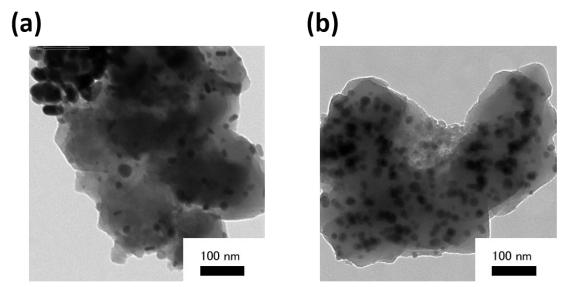



**Fig. S6.** XRD patterns of Ag NP@MIL-101(SO<sub>3</sub>H) generated by TMAB reduction at (a) 100 °C, (b) 150 °C, (c) 180 °C and (d) 200 °C.




**Fig. S7.** XRD patterns of Ag NP@MIL-101(SO<sub>3</sub>H) generated by TEAB reduction at (a) 100 °C, (b) 150 °C and (c) 180 °C.




**Fig. S8.** XRD patterns of Ag NP@MIL-101(SO<sub>3</sub>H) generated by TMAB reduction (a) before and (b) after water washing.



**Fig. S9.** Difference spectra obtained by the absorption spectra of Ag NP@MIL-10(SO<sub>3</sub>H) by TMAB reduction and MIL-101(SO<sub>3</sub>H). Reaction temperatures: (a) 100 °C; (b) 150 °C; (c) 180 °C.



**Fig. S10.** Difference spectra obtained by the absorption spectra of Ag NP@MIL-10(SO<sub>3</sub>H) by TEAB reduction at 150 °C and MIL-101(SO<sub>3</sub>H).



**Fig. S11.** TEM pictures of Ag NP@MIL-10(SO<sub>3</sub>H) generated by the reduction with (a) NaBH<sub>4</sub> aq. and (b)  $H_2$  gas.

| Sample                                 | Ag content<br>(weight%) | Amine-<br>boranes | Reaction<br>temp./ °C | Average Size of<br>Ag NPs/ nm |
|----------------------------------------|-------------------------|-------------------|-----------------------|-------------------------------|
| Ag NP(2000)@MIL-101(SO <sub>3</sub> H) | 21                      | AB                | 100                   | Aggregated                    |
| Ag NP(2000)@MIL-101(SO <sub>3</sub> H) | 21                      | DMAB              | 50                    | 5.4                           |
|                                        |                         |                   | 60                    | 5.4                           |
|                                        |                         |                   | 70                    | 5.2                           |

**Table S2.** Summary of AgNP generations with AB or DMAB as reductant.

| sample                                 | Ag content<br>(weight%) | Amine-<br>boranes | Reaction<br>temp./ °C | Average Size of<br>Ag NPs/ nm |
|----------------------------------------|-------------------------|-------------------|-----------------------|-------------------------------|
| Ag NP(20)@MIL-101(SO <sub>3</sub> H)   | 7.4                     | TMAB              | 100                   | 11.2                          |
|                                        |                         |                   | 150                   | 5.9                           |
|                                        |                         |                   | 180                   | 4.7                           |
|                                        |                         |                   | 200                   | 3.2                           |
| Ag NP(200)@MIL-101(SO <sub>3</sub> H)  | 11                      | ТМАВ              | 100                   | 8.1                           |
|                                        |                         |                   | 150                   | 6.5                           |
|                                        |                         |                   | 180                   | 4.9                           |
|                                        |                         |                   | 200                   | 3.3                           |
| Ag NP(2000)@MIL-101(SO <sub>3</sub> H) | 21                      | TMAB              | 100                   | 9.4                           |
|                                        |                         |                   | 150                   | 6.8                           |
|                                        |                         |                   | 180                   | 5.4                           |
|                                        |                         |                   | 200                   | 4.8                           |

**Table S3.** Summary of AgNP generations with TMAB as reductant.

| sample                                 | Ag content<br>(weight%) | Amine-<br>boranes | Reaction<br>temp./ °C | Average Size of<br>Ag NPs/ nm |
|----------------------------------------|-------------------------|-------------------|-----------------------|-------------------------------|
| Ag NP(20)@MIL-101(SO <sub>3</sub> H)   | 7.4                     | TEAB              | 100                   | Aggregated                    |
|                                        |                         |                   | 150                   | 8.9                           |
|                                        |                         |                   | 180                   | 6.4                           |
| Ag NP(200)@MIL-101(SO <sub>3</sub> H)  | 11                      | TEAB              | 100                   | Aggregated                    |
|                                        |                         |                   | 150                   | 9.5                           |
|                                        |                         |                   | 180                   | 7.0                           |
| Ag NP(2000)@MIL-101(SO <sub>3</sub> H) | 21                      | TEAB              | 100                   | Aggregated                    |
|                                        |                         |                   | 150                   | 8.8                           |
|                                        |                         |                   | 180                   | 6.8                           |

**Table S4.** Summary of AgNP generations with TEAB as reductant.