Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supplementary information for

Crystal structure, phase transition and properties of indium(III) sulfide

Paweł Wyżga^{a,b}, Wilder Carrillo-Cabrera^b, Lev Akselrud^{b,c}, Igor Veremchuk^{b,d}, Jörg Wagler^e, Christoph

Hennig^{f,g}, Alexander A. Tsirlin^h, Andreas Leithe-Jasper^b, Edwin Kroke^e, Roman Gumeniuk^{a,*}

^a Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Straße 23, 09599 Freiberg, Germany

^b Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany

^c Ivan Franko National University of Lviv, Kyryla and Mefodiya Str. 6, UA-79005, Lviv, Ukraine

^d Institute for Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany

^e Institut für Anorganische Chemie, TU Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany

^f Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany

^g The Rossendorf Beamline BM20, European Synchrotron Radiation Facility, 71, avenue des Martyrs, 38043 Grenoble, France

^h Experimental Physics VI, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg,
 86135 Augsburg, Germany

			Heat treatme	ent		Unit-cell para	meters ^b			Density	WDXS
No.	Series ^a	Mass [g], Form	Heating <i>T</i> [K] / <i>t</i> [h]	Annealing T [K] / t [h]	Cooling $T[K] / t[h]$	a [Å]	c [Å]	c/a	V[Å ³]	$d [g \cdot cm^{-1}]$	composition °
1	B1	~ 2, In + S, powders	723/24	723/96	308/12	7.61914(5)	32.3238(4)	4.24245(6)	1876.44(3)		
2	B2	~ 1, from B1, pieces	873/24	873/168	$Q_{ m W}$	7.6197(2)	32.324(1)	4.2422(2)	1876.73(9)		
3	B3	~ 1, from B2, pieces	873/6	873/136	$Q_{ m N}$	7.6198(1)	32.3224(9)	4.2419(1)	1876.68(6)		
4	B4	~ 0.1, from B1, pieces	873/0.17	873/168	$Q_{ m W}$	7.61955(9)	32.3231(7)	4.2421(1)	1876.60(5)		
5	B6 ^c	0.015, from B3, powder	873/60	873/90	$Q_{ m N}$	7.61901(9)	32.3261(6)	4.24282(9)	1876.51(3)		
6	B7	0.138, from B1	1073/8	1073/80 (in liquid)	$Q_{ m N}$	7.6197(2)	32.328(1)	4.2427(2)	1876.96(9)		
7	SPS (B3)	0.81, from B3	923/0.22	923/0.17	900/0.5	7.6193(1)	32.3253(9)	4.2426(1)	1876.60(6)	4.568(6)	$In_{2.66(1)}S_{4.00(1)}$
8	LFA (B3)	round pellet	773/~12	-	773/~12	7.6199(1)	32.3245(9)	4.2421(1)	1876.85(9)		
9	ZEM (B3)	rectangular bar	773/~8	-	773/~8	7.6192(2)	32.323(1)	4.2423(2)	1876.42(9)		
10	C1 ^d	~ 2, In + S (excess)	873/24	873/168	$Q_{ m W}$	7.61893(9)	32.3248(6)	4.24270(9)	1876.39(5)		
11	SPS (C1#1)	~ 0.85, from C1	923/0.22	923/0.17	900/0.5	7.61920(7)	32.3251(5)	4.24258(8)	1876.54(4)	4.584(6)	
12	LFA (C1#2)	round pellet	773/~12	-	773/~12	7.6202(2)	32.323(2)	4.2418(3)	1876.9(1)	4.580(8)	
13	SC1	~ 0.9 , In _{2.67} S ₄ + S + I	1123/362	1123→1073/312	air quenching + $Q_{\rm W}$	7.61911(4)	32.3281(3)	4.24303(5)	1876.67(2)		$In_{2.67(1)}S_{4.00(1)}$
						Pseudo-cubic	value: $c/a = 3\sqrt{2} =$	4.24264			

Table S1. Synthesis and heat treatment conditions for all studied samples together with unit cell parameters, experimental density (determined by immersion technique) and WDXS chemical compositions.

^a B1-B6 samples were reported in our previous work¹⁰ and we kept the same labels for unification. ^b Presented unit-cell parameters were determined using LaB₆ as internal standard. ^c B6 sample was manually ground and sealed in a quartz capillary $\phi = 0.5$ mm before annealing. ^d C1 sample was additionally annealed in S-vapor at 873 K for 1h. ^e As a standard material, we used the SC1 sample annealed in sulfur vapor. SC1 - single crystal. Q_W/Q_N - quenching in iced water/liquid nitrogen.

			In1:8a	In2:16d	S:32e		
			4 3 <i>m</i>	.3 <i>m</i>	.3 <i>m</i>		
$F4_1/d32/m$			1/ ₈	1/ ₄	0.257		
$(In_{2/3}\Box_{1/3})_8In_{16}S_{32}$			1/ ₈ 1/ ₈	0 3/4	0.257 0.257		
I t3			² / ₃	1	1		
$^{1/2}(a-b), ^{1/2}(a+b), c$			x - y	x + y +	1/2, z		
* I4 ₁ /a2/m2/d			In1:4 <i>a</i> 4 <i>m</i> 2	In2:8 <i>d</i> .2/m.	S:16h .m.		
$(In_{2/3}\Box_{1/3})_4In_8S_{16}$			0 3/4	1/4 3/4	0 0.014		
I <i>k3</i>			1/8	³ / ₄	0.257		
<i>a</i> , <i>b</i> , 3 <i>c</i>			2/3				
\downarrow			$x + \frac{1}{2}$	$y, \frac{1}{3}z \pm \psi$	(0,0,¹/ ₃) ♥		
I4 ₁ /a2/m2/d	In4:4 <i>a</i>	In3:8 <i>e</i>	In1:8c	In2:16h	S1:16h	S2:16h	S3:16h
	4 <i>m</i> 2	2 <i>mm</i> .	.2/ <i>m</i> .	. <i>m</i> .	. <i>m</i> .	. <i>m</i> .	. <i>m</i> .
$\Box_4 \Pi_8 \Pi_8 \Pi_{16} S_{48}$	0	0	0	0	0	0	0
	1/ ₄	1/ ₄	0	0.981	0.993	0.006	0.020
	7/ ₈	0.205	0	0.333	0.251	0.079	0.413
	0	1	1	1	1	1	1

Figure S1. Group-subgroup relation in the form of a Bärnighausen scheme (atom type, Wyckoff position, site symmetry, atomic coordinates and site occupancy factor) for the cubic (873 K) and the tetragonal (80 K) modification of $In_{0.67}\square_{0.33}In_2S_4$. Coordinates for both space groups are presented according to Origin Choice 2. The intermediate structure is not observed for $In_{0.67}\square_{0.33}In_2S_4$.

Figure S2. Laboratory PXRD patterns for the studied polycrystalline samples. LaB₆ was used as an internal standard for unitcell parameter refinements.

Figure S3. Rietveld refinement of the powdered SC1 sample. Diffraction data were taken at 80 (a) and 298 K (b) with $\lambda = 0.42768$ Å. Inset in a): as-grown aggregate of β -In_{0.67} $\square_{0.33}$ In₂S₄ crystals used for the structural studies.

Temperature [K]	80	298
Chemical composition	Iı	12 S 3
Space group, Pearson symbol	$I4_{1}/amd$ (r	144), <i>tI</i> 80
a [Å]	7.60670(4)	7.62091(8)
<i>c</i> [Å]	32.3008(2)	32.3401(7)
<i>V</i> [Å ³]	1868.99(3)	1878.26(8)
<i>d</i> [g·cm ⁻³]	4.6313(1)	4.6089(2)
λ [Å]	0.4	2768
$2\theta_{\rm max}$ [°], $\sin\theta/\lambda$ (max)	42.13, 0.84	40, 0.80
No. of refined reflections	1243	1136
<i>R</i> _I , <i>R</i> _P [%]	3.13, 15.98	5.15, 15.65
In1 at 8 <i>c</i> (0 0 0) / <i>U</i> _{iso} [Å ²]	0.012(2)	0.025(3)
In2 at 16 <i>h</i> (0 y z) / $U_{\rm iso}$ [Å ²]	0.9811(3), 0.3325(2) / 0.013(1)	0.9815(6), 0.3328(3) / 0.021(2)
In3 at 8 <i>e</i> (0 ¹ / ₄ <i>z</i>) / $U_{\rm iso}$ [Å ²]	0.2050(2) / 0.011(1)	0.2052(3) / 0.019(1)
S1 at 16 <i>h</i> (0 y z) / U_{iso} [Å ²]	0.993(1), 0.2512(3) / 0.013(5)	0.988(3), 0.251(1) / 0.014(7)
S2 at 16 <i>h</i> (0 y z) / U_{iso} [Å ²]	0.006(1), 0.0790(4) / 0.012(4)	0.008(3), 0.079(1) / 0.021(7)
S3 at 16 h (0 y z) / U_{iso} [Å ²]	0.020(1), 0.4130(4) / 0.010(4)	0.024(3), 0.414(1) / 0.013(6)
4 × In1-S1, 2 × In1-S2 [Å]	2.653(7), 2.55(1)	2.62(2), 2.57(3)
$1 \times \text{In2-S1}, 2 \times \text{In2-S2}, 1 \times \text{In2-S3}, 2 \times \text{In2-S3}$	2.63(1), 2.561(7), 2.61(2), 2.694(6)	2.66(3), 2.55(2), 2.65(3), 2.67(2)
$2 \times \text{In3-S1}, 2 \times \text{In3-S3} [Å]$	2.46(1), 2.46(1)	2.48(3), 2.49(3)

Table S2. Crystallographic data for the β -In_{0.67} $\square_{0.33}$ In₂S₄ (powdered SC1-sample) at 80 and 293 K obtained from Rietveld refinements.

Table S3. Anisotropic displacement parameters U^{ij} [Å²] from single-crystal refinement of β -In_{0.67} $\square_{0.33}$ In₂S₄ (sample SC1). The anisotropic-displacement-factor exponent takes the form: $-2\pi^2 [h^2 \cdot a^{*2} \cdot U^{11} + ... + 2h \cdot k \cdot a^* \cdot b^* \cdot U^{12}]$.

Atom	U ¹¹	U^{22}	U^{33}	U^{23}	U ¹³	U^{12}	
In1 (8 <i>c</i>)	0.0207(8)	0.0120(8)	0.0179(9)	-0.0022(5)	0	0	
In2 (16h)	0.0211(5)	0.0117(4)	0.0182(6)	-0.0030(4)	0	0	
In3 (8e)	0.0153(5)	0.0169(6)	0.0122(6)	0	0	0	
S1 (16h)	0.016(2)	0.015(2)	0.015(2)	-0.001(1)	0	0	
S2 (16h)	0.017(2)	0.014(2)	0.016(2)	-0.000(1)	0	0	
S3 (16h)	0.013(2)	0.011(1)	0.012(2)	0.000(1)	0	0	

Figure S4. Temperature evolution of the intensity of satellite reflections (112) and (105) near the phase transition. Dashed lines indicate $I \sim \left[\frac{(T_S - T)}{T_S}\right]^{0.5}$ dependence with $T_S = 694$ K.

	Temperature [K]				
	298	373	473	573	673
Refined composition	In ₂ S ₃				
Space group, Pearson symbol	<i>I</i> 4 ₁ / <i>amd</i> (no. 144), <i>tI</i> 80				
a [Å]	7.6210(3)	7.6271(3)	7.6351(2)	7.6438(2)	7.6525(2)
<i>c</i> [Å]	32.317(2)	32.339(2)	32.366(2)	32.395(2)	32.422(2)
<i>V</i> [Å ³]	1876.9(2)	1881.2(2)	1886.8(2)	1892.8(2)	1898.7(2)
<i>d</i> [g·cm ⁻³]	4.6121(5)	4.6016(6)	4.5881(5)	4.5736(5)	4.5593(5)
λ [Å]	0.73138				
$2\theta_{\max}$ [°], $\sin\theta/\lambda$ (max)	34.98, 0.411				
No. of refined reflections	169	170	170	170	170
$R_{\mathrm{I}}, R_{\mathrm{P}}$ [%]	2.22, 5.01	2.13, 5.31	2.23, 5.30	2.26, 5.43	2.29, 5.68
In1 at 8 c (0 0 0) / $U_{\rm iso}$ [Å ²]	0.030(1)	0.032(1)	0.037(1)	0.043(2)	0.050(2)
In2 at 16 <i>h</i> (0 <i>y z</i>) / U_{iso} [Å ²]	0.9813(3), 0.3327(1) / 0.0265(7)	0.9812(3), 0.3327(2) / 0.0320(8)	0.9812(3), 0.3327(2) / 0.0364(8)	0.9811(3), 0.3328(2) / 0.0415(9)	0.9822(3), 0.3329(2) / 0.0480(9)
In3 at 8e (0 $^{1}/_{4}$ z) / U_{iso} [Å ²]	0.2044(1) / 0.0239(7)	0.2044(1) / 0.0278(7)	0.2044(1) / 0.0312(7)	0.2046(2) / 0.0358(8)	0.2051(2) / 0.0422(8)
S1 at 16 <i>h</i> (0 <i>y z</i>) / U_{iso} [Å ²]	0.996(2), 0.2522(5) / 0.013(3)	0.997(2), 0.2520(5) / 0.023(4)	0.996(2), 0.2515(5) / 0.025(4)	0.995(2), 0.2512(5) / 0.033(4)	0.993(2), 0.2509(5) / 0.041(5)
S2 at 16 <i>h</i> (0 y z) / $U_{\rm iso}$ [Å ²]	0.006(2), 0.0768(5) / 0.029(4)	0.006(2), 0.0769(6) / 0.027(4)	0.007(2), 0.0771(5) / 0.032(4)	0.008(2), 0.0774(5) / 0.036(4)	0.008(1), 0.0777(5) / 0.046(4)
S3 at 16 <i>h</i> (0 y z) / $U_{\rm iso}$ [Å ²]	0.018(2), 0.4130(6) / 0.026(3)	0.018(2), 0.4129(6) / 0.029(3)	0.018(2), 0.4134(6) / 0.032(3)	0.019(1), 0.4143(6) / 0.034(4)	0.020(1), 0.4150(5) / 0.035(4)

Table S4. Crystallographic data for the In_{0.67} $\square_{0.33}$ In₂S₄ (sample B3) at 298–673 K obtained from Rietveld refinements with the tetragonal *I*4₁/*amd* space group.

	Temperature [K]		
	678	683	688
Refined composition	In ₂ S ₃		
Space group, Pearson symbol	<i>I</i> 4 ₁ / <i>amd</i> (no. 144), <i>tI</i> 80		
<i>a</i> [Å]	7.6531(2)	7.6537(3)	7.6547(6)
<i>c</i> [Å]	32.424(2)	32.426(2)	32.435(4)
V [Å ³]	1899.1(2)	1899.5(3)	1900.5(6)
$d \left[\text{g·cm}^{-3} \right]$	4.5583(5)	4.5573(6)	4.555(2)
λ [Å]	0.73138		
$2\theta_{\max}$ [°], $\sin\theta/\lambda$ (max)	34.98, 0.411		
No. of refined reflections	170	170	170
<i>R</i> _I , <i>R</i> _P [%]	2.25, 5.92	2.33, 6.50	2.82, 9.11
In1 at 8 c (0 0 0) / $U_{\rm iso}$ [Å ²]	0.050(2)	0.050(2)	0.049(3)
In2 at 16 <i>h</i> (0 y z) / U_{iso} [Å ²]	0.9831(3), 0.3329(2) / 0.049(1)	0.9845(4), 0.3330(2) / 0.050(1)	0.9892(8), 0.3331(3) / 0.051(2)
In3 at 8e (0 $^{1}/_{4} z$) / U_{iso} [Å ²]	0.2054(2) / 0.0440(9)	0.2058(2), 0.046(1)	0.2069(3) / 0.052(2)
S1 at 16 <i>h</i> (0 y z) / U_{iso} [Å ²]	0.993(2), 0.2510(5) / 0.042(5)	0.991(2), 0.2509(5) / 0.045(6)	0.984(4), 0.251(1) / 0.05(1)
S2 at 16 <i>h</i> (0 <i>y z</i>) / U_{iso} [Å ²]	0.007(1), 0.0778(5) / 0.049(5)	0.005(2), 0.0785(6) / 0.050(5)	0.999(3), 0.081(1) / 0.053(9)
S3 at 16 <i>h</i> (0 <i>y z</i>) / U_{iso} [Å ²]	0.020(1), 0.4150(5) / 0.033(4)	0.020(2), 0.4149(6) / 0.029(4)	0.019(3), 0.415(1) / 0.022(7)

Table S5. Crystallographic data for the In_{0.67} $\square_{0.33}$ In₂S₄ (sample B3) at 678–688 K obtained from Rietveld refinements with the tetragonal *I*4₁/*amd* space group.

Standard deviations for isotropic displacement parameters and coordinates, and reliability factors R_{I} and R_{P} are significantly larger than in the refinements for temperatures lower than 678 K.

	Temperature [K]			
	678	683	688	693
Refined composition	In ₂ S ₃			
Space group, Pearson symbol	I41/amd (no. 144), tI80			
<i>a</i> [Å]	7.6532(2)	7.6539(2)	7.6553(2)	7.6558(3)
c [Å]	32.423(2)	32.425(2)	32.431(2)	32.440(2)
V [Å ³]	1899.1(2)	1899.5(2)	1900.6(2)	1901.4(3)
<i>d</i> [g·cm ⁻³]	4.5583(5)	4.5573(5)	4.5548(5)	4.5528(6)
λ [Å]	0.73138			
$2\theta_{\max}$ [°], $\sin\theta/\lambda$ (max)	34.98, 0.411			
No. of refined reflections	170			
<i>R</i> I, <i>R</i> P [%]	2.23, 5.53	2.20, 5.51	2.20, 5.36	2.22, 5.22
In1 at 8 c (0 0 0) / $U_{\rm iso}$ [Å ²]	0.051(2)	0.051(2)	0.053(2)	0.051(4)
In2 at 16 <i>h</i> (0 y z) / $U_{\rm iso}$ [Å ²]	0.9826(3), 0.3329(2) / 0.049(1)	0.9839(3), 0.3330(2) / 0.051(1)	0.9882(4), 0.3332(2) / 0.054(1)	0.9917(9), 0.3348(3) / 0.055(2)
In3 at 8 e (0 ¹ / ₄ z) / $U_{\rm iso}$ [Å ²]	0.2049(2) / 0.0420(8)	0.2051(2) / 0.0424(9)	0.2057(2) / 0.0441(9)	0.2076(4) / 0.047(3)
In4 at 4 <i>a</i> (0 $^{1}/_{4}$ $^{7}/_{8}$) / $U_{\rm iso}$ [Å ²]	0.044^{+}	0.044^{+}	0.044^{+}	0.040(6)
S1 at 16 <i>h</i> (0 y z) / U_{iso} [Å ²]	0.994(1), 0.2511(4) / 0.041(5)	0.993(1), 0.2511(4) / 0.042(5)	0.990(2), 0.2512(4) / 0.041(6)	0.983(3), 0.2516(8) / 0.043(7)
S2 at 16 <i>h</i> (0 y z) / $U_{\rm iso}$ [Å ²]	0.008(1), 0.0776(5) / 0.045(4)	0.008(1), 0.0778(5) / 0.044(4)	0.009(1), 0.0784(5) / 0.046(5)	0.016(2), 0.0812(7) / 0.043(7)
S3 at 16 <i>h</i> (0 <i>y z</i>) / U_{iso} [Å ²]	0.019(1), 0.4147(5) / 0.038(4)	0.019(1), 0.4148(5) / 0.038(4)	0.019(1), 0.4152(5) / 0.040(5)	0.006(3), 0.4129(7) / 0.041 ⁺
Site occupancy factor of $8e^*$	0.977(4)	0.955(4)	0.885(4)	0.684(8)
Site occupancy factor of $4a^*$	0.047(6)	0.090(6)	0.229(7)	0.63(2)

Table S6.Crystallographic data for the $In_{0.67}\square_{0.33}In_2S_4$ (sample B3) at 678–698 K obtained from Rietveld refinements with the tetragonal $I4_1/amd$ space group and partially occupied tetrahedral 4a and 8e sites.

* refinement yielded unreliably high U_{iso} value and thus the parameter was fixed. * Site occupancy factors (SOF) of 8e and 4a sites fulfill the constrain: SOF(8e) + 1/2SOF(4a) = 1.

	Temperature [K]		
	683	688	693
	Phas	e 1	
Assumed compositions	In ₂ S ₃		
Space group, Pearson symbol	<i>I</i> 4 ₁ / <i>amd</i> (no. 144), <i>tI</i> 80		
a [Å]	7.6544	7.6547	7.6536
<i>c</i> [Å]	32.422	32.435	32.458
V[Å ³]	1899.6	1900.5	1901.3
$d \left[\text{g·cm}^{-3} \right]$	4.5572	4.5548	4.5530
λ [Å]	0.73138		
$2\theta_{\max}$ [°], $\sin\theta/\lambda$ (max)	34.98, 0.411		
No. of refined reflections	170		
$R_{\rm I}, R_{\rm P}$ [%]	3.06, 6.16	4.19, 6.16	11.94, 6.49
In1 at 8 c (0 0 0) / $U_{\rm iso}$ [Å ²]	0.050(3)	0.048(1)	0.047(5)
In2 at 16 <i>c</i> (0 <i>y z</i>) / U_{iso} [Å ²]	0.9793(4), 0.3329(2) / 0.046(1)	0.9811(2), 0.3330(1) / 0.048(1)	0.994(1), 0.3332(5) / 0.049(3)
In3 at 8 e (0 $^{1}/_{4}z$) / $U_{\rm iso}$ [Å ²]	0.2037(2) / 0.041(1)	0.2041(1)/0.037(1)	0.2075(6) / 0.058(4)
S1 at 16 <i>h</i> (0 y z) / U_{iso} [Å ²]	0.997(2), 0.2512(6) / 0.033(7)	0.996(1), 0.2509(2) / 0.038(2)	0.978(4), 0.249(1) / 0.04(2)
S2 at 16 <i>h</i> (0 <i>y z</i>) / U_{iso} [Å ²]	0.007(2), 0.0767(6) / 0.035(6)	0.005(1), 0.0765(2) / 0.038(2)	0.994(4), 0.084(1) / 0.05(2)
S3 at 16 <i>h</i> (0 <i>y z</i>) / U_{iso} [Å ²]	0.017(2), 0.4144(7) / 0.040(6)	0.017(1), 0.4145(3) / 0.038(2)	0.024(4), 0.414(1) / 0.02(1)
Phase fraction [%]	63.6(9)	37.5(7)	14.1(2)
	Phas	e 2	
Assumed compositions	In2.67S4		
Space group, Pearson symbol	$Fd\overline{3}m$ (no. 227), $cF56(53)$	3.3)	
a [Å]	10.8190	10.8212	10.8224
V[Å ³]	1266.4	1267.2	1267.6
$d \left[\text{g·cm}^{-3} \right]$	4.5612	4.5536	4.5522
λ [Å]	0.73138		
$2\theta_{\max}$ [°], $\sin\theta/\lambda$ (max)	34.98, 0.411		
No. of refined reflections	29		
$R_{\rm I}, R_{\rm P}$ [%]	3.16, 6.16	2.23, 6.16	2.12, 6.49
In1 at 8a (1/8 1/8 1/8) / $U_{\rm iso}$ [Å ²]	0.0388(1)	0.049(1)	0.047(1)
In2 at 16 d (¹ / ₄ 0 ³ / ₄) / $U_{\rm iso}$ [Å ²]	0.0568(1)	0.058(1)	0.055(1)
S at 32e (u u u) / $U_{\rm iso}$ [Å ²]	0.2573(1) / 0.050(1)	0.2569(3) / 0.046(2)	0.2572(2) / 0.040(1)
Phase fraction [%]	36.4(5)	62.5(6)	85.9(4)

Table S7. Crystallographic data for the $In_{0.67}\square_{0.33}In_2S_4$ (sample B3) at 693 and 698 K obtained from two-phase Rietveld refinements with the tetragonal $I4_1/amd$ and cubic $Fd\overline{3}m$ phases.

Firstly, each pattern was refined assuming single-phase tetragonal or cubic structure. Then, a two-phase refinement was performed, starting from models obtained in the first step. The atomic coordinates and displacements parameters of the tetragonal polymorph and unit-cell parameters of both phases were fixed in the two-phase refinement due to a strong correlation between both structures.

	Temperature [K]				
	698	703	713	773	873
Refined composition	In _{2.67} S ₄				
Space group, Pearson symbol	<i>Fd</i> 3 <i>m</i> (no. 227), <i>cF</i> 56(5	53.3)			
a [Å]	10.8234(2)	10.8239(2)	10.8249(2)	10.8311(2)	10.8421(2)
V[Å ³]	1267.91(6)	1268.08(6)	1268.43(6)	1270.64(7)	1274.49(8)
$d [g \cdot cm^{-3}]$	4.5521(2)	4.5514(2)	4.5502(2)	4.5423(2)	4.5286(3)
λ [Å]	0.73138				
$2\theta_{\max}$ [°], $\sin\theta/\lambda$ (max)	34.92, 0.410				
No. of refined reflections	29				
$R_{\rm I}, R_{\rm P} [\%]$	1.25, 4.44	1.23, 4.49	1.23, 4.48	1.42, 4.72	2.08, 5.01
In1 at 8 <i>a</i> ($^{1}/_{8}$ $^{1}/_{8}$ $^{1}/_{8}$) / $U_{\rm iso}$ [Å ²]	0.0459(9)	0.0460(9)	0.0460(9)	0.0505(9)	0.065(1)
In2 at 16 d (¹ / ₄ 0 ³ / ₄) / $U_{\rm iso}$ [Å ²]	0.0558(6)	0.0558(6)	0.0557(6)	0.0587(6)	0.0625(8)
S at 32e (u u u) / $U_{\rm iso}$ [Å ²]	0.2571(2) / 0.042(1)	0.2571(2)/0.042(1)	0.2570(2) / 0.042(1)	0.2569(2) / 0.043(1)	0.2569(2) / 0.045(1)
Site occupancy factor of 8a	0.667				

Table S8. Crystallographic data for the $In_{0.67}\square_{0.33}In_2S_4$ (sample B3) at 703–873 K obtained from Rietveld refinements with the cubic $Fd\overline{3}m$ space group.

	Temperature [K]
	693
Refined composition	In _{20.6} S ₃₂ , 3392.77
Superspace group	$Fd-3m(\alpha,\alpha,\alpha)000(\alpha,-\alpha,-\alpha)000(-\alpha,\alpha,-\alpha)000$
a [Å]	10.8228(6)
Wavevectors	$\begin{pmatrix} \boldsymbol{q}_1 \\ \boldsymbol{q}_2 \\ \boldsymbol{q}_3 \end{pmatrix} = \begin{pmatrix} \alpha & \alpha & \alpha \\ \alpha & \overline{\alpha} & \overline{\alpha} \\ \overline{\alpha} & \alpha & \overline{\alpha} \end{pmatrix}, \ \alpha = 0.3344(1)$
<i>V</i> [Å ³]	1267.7(2)
$d \left[\text{g·cm}^{-3} \right]$	4.4437(2)
λ [Å]	0.73138
2θ -range [°], $\sin\theta/\lambda$ (max)	34.92, 0.410
Index range	$0 \le h \le 10$ $-3 \le m_1 \le 3$ $-9 \le k \le 10$ $-3 \le m_2 \le 3$ $-8 \le l \le 10$ $-3 \le m_3 \le 3$
Independent reflections	1032
Parameters: profile/background/atoms	9/12/32
$R_{\mathrm{I}}, R_{\mathrm{P}}, R_{\mathrm{WP}}$ [%]	1.33, 3.76, 5.70
In1 at 8 <i>a</i> ($^{1}/_{8}$ $^{1}/_{8}$ $^{1}/_{8}$) / <i>U</i> _{iso} [Å ²], SOF	0.0447(9), 0.650(1)
In2 at 16 d (¹ / ₄ 0 ³ / ₄) / $U_{\rm iso}$ [Å ²]	0.0530(7), 0.961(1)
S at 32 $e(u u u) / U_{iso} [Å^2]$	0.2572(1) / 0.0365(9)
$4 \times \text{In1-S}, [\text{Å}]$	2.478(1)
6 × In2-S, [Å]	2.630(1)

Table S9. Crystallographic data for the $In_{0.67}\square_{0.33}In_2S_4$ (sample B3) at 693 K obtained from Rietveld refinements with the modulated cubic $Fd\bar{3}m(\alpha,\alpha,\alpha)000(\alpha,-\alpha,-\alpha)000(-\alpha,\alpha,-\alpha)000$ superspace group.

Figure S5. A distribution of 3D-function of the site occupancy factors (SOF) in the additional coordinates of the modulated structure (x_4 , x_5 , x_6) within (0–2, 0–2, 0–2)-ranges for In1-atoms at the isosurface with SOF = 0.65.

As one can see from Figure S5, the maxima of the statistical distribution of the positions' occupancies for In1-atoms depending on the additional coordinates of the modulated structure might reveal a partially incommensurate ordering of atoms.

$F_{\rm xyz}^{\rm (i)}$	U
$F_{\rm z}^{(1)}$	0.0018(3)
$F_{\rm xyz}^{(2)}$	-0.0005(1)
$F_{z}^{(3)}$	0.0001(5)
$F_{\rm xyz}^{(4)}$	0.0007(1)
$F_{z}^{(5)}$	-0.0007(2)
$F_{\rm xyz}^{(6)}$	0.0002(1)
$F_{\rm z}^{(7)}$	0.0024(2)
$F_{\rm xyz}^{(8)}$	0.0005(1)
$F_{z}^{(9)}$	-0.0022(2)
$F_{\rm xyz}^{(10)}$	0.0010(1)
-	
$F_{\rm z}^{(11)}$	0.0120(2)
$F_{\rm xyz}^{(12)}$	-0.0025(2)
$F_{\rm xyz}^{(13)}$	0.0017(1)
$F_{\rm xyz}^{(14)}$	0.0053(1)
$F_{z}^{(15)}$	0.0032(3)
$F_{\rm xyz}^{(16)}$	0.0026(2)
$F_{\rm xyz}^{(17)}$	0.0010(4)
$F_{\rm xyz}^{(18)}$	0.0009(2)
	$\begin{array}{r} F_{xyz}^{(0)} \\ F_{z}^{(1)} \\ F_{z}^{(2)} \\ F_{xyz}^{(3)} \\ F_{z}^{(3)} \\ F_{xyz}^{(4)} \\ F_{xyz}^{(5)} \\ F_{z}^{(5)} \\ F_{xyz}^{(6)} \\ F_{xyz}^{(7)} \\ F_{xyz}^{(9)} \\ F_{xyz}^{(10)} \\ F_{xyz}^{(10)} \\ F_{xyz}^{(11)} \\ F_{xyz}^{(12)} \\ F_{xyz}^{(15)} \\ F_{xyz}^{(16)} \\ F_{xyz}^{(16)} \\ F_{xyz}^{(18)} \\ F_{xyz}^{(18)} \end{array}$

Table S10. Modulation amplitudes of the displacive modulation in $In_{0.67}\square_{0.33}In_2S_4$ at 693 K.

Table S11. Occupational modulation amplitudes in $In_{0.67}\square_{0.33}In_2S_4$ at 693 K.

Atom	$F_{\rm p}$	U
	$F^{(19)}$	0.002(1)
In1	$F^{(20)}$	-0.003(2)
	$F^{(21)}$	0.005(2)
In 2	$F^{(22)}$	-0.021(2)
1112	$F^{(23)}$	0.010(4)

$$p = p_0 + \sum_i U^i F^i(x_4, x_5, x_6)_p$$

Modulation functions for sine and cosine of Fourier terms:

$$\begin{split} \mathbf{x} = \mathbf{x}_{0} + \sum_{i} U^{i} F^{i} (\mathbf{x}_{4}, \mathbf{x}_{5}, \mathbf{x}_{0})_{z}; \quad \mathbf{y} = \mathbf{y}_{0} + \sum_{i} U^{i} F^{i} (\mathbf{x}_{4}, \mathbf{x}_{5}, \mathbf{x}_{0})_{z}; \quad \mathbf{z} = \mathbf{z}_{0} + \sum_{i} U^{i} F^{i} (\mathbf{x}_{4}, \mathbf{x}_{5}, \mathbf{x}_{0})_{z} \\ F^{(i)} = [\cos(2\mathbf{x}_{1} + 2\mathbf{x}_{5}) - \sin(2\mathbf{x}_{1} - 2\mathbf{x}_{5}) + \sin(2\mathbf{x}_{1} - 2\mathbf{x}_{0}) + \sin(2\mathbf{x}_{1} - 2\mathbf{x}_{0})]_{z} + \\ + [\sin(2\mathbf{x}_{1} + 2\mathbf{x}_{2}) - \sin((2\mathbf{x}_{2} - 2\mathbf{x}_{3}) + \sin(2\mathbf{x}_{1} - 2\mathbf{x}_{0}) + \sin(2\mathbf{x}_{1} - 2\mathbf{x}_{0})]_{z} + \\ + [\sin(2\mathbf{x}_{1} + 2\mathbf{x}_{0}) - \sin((2\mathbf{x}_{2} - 2\mathbf{x}_{0}) + \sin(2\mathbf{x}_{1} - 2\mathbf{x}_{0}) - \sin(2\mathbf{x}_{2} - 2\mathbf{x}_{0})]_{z} + \\ + [\sin(2\mathbf{x}_{1} + 2\mathbf{x}_{0}) - \cos((\mathbf{x}_{1} + \mathbf{x}_{0} - 3\mathbf{x}_{0}) - \cos((\mathbf{x}_{1} + 3\mathbf{x}_{0} + \mathbf{x}_{0}) +) + \\ + (\cos(3\mathbf{x}_{1} + 3\mathbf{x}_{1} + \mathbf{x}_{0}) - \sin((\mathbf{x}_{1} + 3\mathbf{x}_{0} + \mathbf{x}_{0}) - \cos((\mathbf{x}_{1} + 3\mathbf{x}_{0} + \mathbf{x}_{0}) +) + \\ + (\cos(3\mathbf{x}_{1} + \mathbf{x}_{1} + \mathbf{x}_{0}) - \sin((\mathbf{x}_{1} + 3\mathbf{x}_{0} + \mathbf{x}_{0}) + \sin((\mathbf{x}_{1} + 3\mathbf{x}_{0} + \mathbf{x}_{0}) + \sin((\mathbf{x}_{1} + 3\mathbf{x}_{0} + \mathbf{x}_{0}) - \sin((\mathbf{x}_{1} + 3\mathbf{x}_{0} + \mathbf{x}_{0}))]_{z} + \\ + [\sin(3\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{0}) - \sin((\mathbf{x}_{1} + \mathbf{x}_{0} + 3\mathbf{x}_{0}) + \sin((\mathbf{x}_{1} + 3\mathbf{x}_{0} + \mathbf{x}_{0}) + \sin((\mathbf{x}_{1} + 3\mathbf{x}_{0} + \mathbf{x}_{0}) + \sin((\mathbf{x}_{1} + 3\mathbf{x}_{0} + \mathbf{x}_{0}))]_{z} + \\ + \sin((\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{0}) - \sin((\mathbf{x}_{1} + \mathbf{x}_{0} + \mathbf{x}_{0}))]_{z} + \\ + (\sin(3\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{0}) - \sin((\mathbf{x}_{1} + 3\mathbf{x}_{0} + \mathbf{x}_{0}))]_{z} + \\ + [\sin(3$$

Figure S6. Molar heat capacity of C1#2-, B3- and SC1-samples in the vicinity of the α - β phase transition range measured with heating rates of 5 and 20 K·min⁻¹. Polycrystalline samples reveal endothermic peak within narrow onset temperature 688 K < T_{onset} < 694 K. The lower T_{onset} for single-crystalline sample (T_{onset} = 674 K) might be attributed to the presence of twin domains.

Figure S7. Electrical resistivity for samples C1#1 and C1#2, obtained in parallel SPS-processes. Below the phase transition, values agree well for both specimens, proving a reproducibility of the SPS-procedure and a good homogeneity of the obtained pellets. Further cycles lead to an increase of resistivity, independent from in-between-polishing of the sample (performed in an argon-filled glovebox).